LIBRARY
Faculty of Forestry
University of Toronto
WOOD: A MANUAL OF THE NATURAL HISTORY AND INDUSTRIAL APPLICATIONS OF THE TIMBERS OF COMMERCE
SOME OPINIONS OF THE PRESS
ON THE FIRST EDITION

"An immense amount of information about the timbers of commerce from many points of view... The author has done his work much in his own way, and, on the whole, has done it well... The material is well arranged and rendered accessible by what appears to be a very complete index."—Nature.

"This handy, useful volume."—Engineering News.

"... A book of solid information on a subject that few people know anything about. It is a book much wanted by practical people, and will be a useful volume for the landowner and the timber merchant, and, in short, for anyone who works in wood, from the boy of the village carving club to the architect and surveyor..."— Pall Mall Gazette.

"We have no hesitation in recommending the present volume as a useful elementary work of reference to all who are interested in timber and its many and varied uses. It is just the book that has long been wanted by land agents, foresters, and woodmen, and it should find a place in all technical school and village libraries."—Field.

"... The book may unhesitatingly be commended for the clear arrangement and presentation of the contents. ... Professor Boulger's book may safely be commended to the notice of those who are seeking for an introduction to the subject, especially those who have already some practical knowledge which they wish to supplement."—Surveyor.

"... The arrangement of the matter being excellent, and the printing very clear, while the standardisation of the commercial names of the woods, by adopting one synonym, and referring to it all the other synonyms which are given in the alphabetical list, is very useful. The accenting of the Latin scientific names of the trees should ensure their correct pronunciation. ... Mr. Boulger has produced a very useful work; and although it cannot be considered as a completely authoritative account of wood, it will be easy to correct its defects in a new edition. ... There are disputes in the trade as regards the identity of some kinds of timber, that find their way into the Law Courts, and such disputes would be less frequent were Mr. Boulger's book to be consulted by timber merchants. ..."—Gardeners' Chronicle.

"So far as arrangement and lucidity are concerned, seems to us a capital text-book."—Times.
WOOD

A MANUAL OF THE NATURAL HISTORY AND INDUSTRIAL APPLICATIONS OF THE TIMBERS OF COMMERCE

BY

HONORARY PROFESSOR OF NATURAL HISTORY IN THE ROYAL AGRICULTURAL COLLEGE; LECTURER ON BOTANY, GEOLOGY AND FORESTRY IN THE CITY OF LONDON COLLEGE; HONORARY MEMBER OF THE ROYAL ENGLISH ARBORICULTURAL SOCIETY; AUTHOR OF "FAMILIAR TREES," "THE USES OF PLANTS," ETC.

WITH 48 PLATES AND 43 OTHER ILLUSTRATIONS

SECOND EDITION, REVISED AND ENLARGED

LONDON

EDWARD ARNOLD

1908

[All rights reserved]
Dedicated

BY KIND PERMISSION

TO

THE MASTER AND WARDENS OF

THE WORSHIPFUL COMPANY OF CARPENTERS

AND THE MASTER AND WARDENS OF

THE WORSHIPFUL COMPANY OF TURNERS
PREFACE

In an attempt, such as this, to cover a wide ground, within a book of small compass, perfect accuracy cannot be hoped for, completeness is impossible, and originality is neither expected nor desirable. Rather, however, than burden the body of the book with constant acknowledgments of indebtedness, I have thought it better to add a bibliographical appendix, indicating those works from which I have borrowed most freely. For Figs. 1, 7, 16, 17, 20, and 29 I am indebted to the courtesy of Mr. Francis Darwin and the Syndicate of the Cambridge University Press; for Figs. 10, 18, 21–23, and 27 to that of the late Professor Marshall Ward and Messrs. Kegan Paul, Trench, Trübner and Co.; for Figs. 12, 13, 15, 26, and 30 to that of Professor Somerville and Mr. David Douglas; and for Figs. 4 and 28, which are photographed from nature, to Mr. D. F. Mackenzie of Morton Hall, Midlothian; whilst Figs. 2, 3, 6, 8, 9, 11, 14, 24, 25, and 37–43 have been drawn for me by Miss Emily Carter.

To Mr. James A. Weale, of Liverpool, I am even more deeply indebted. Not only has he supplied the photographs for Figs. 32–36 and for all the 48 plates in Appendix IV.; but throughout my work of revision he has aided me with numerous corrections and suggestions from the store of his unrivalled practical knowledge.

I have thought it well to indicate the pronunciation of the Latin names by putting an accent over the syllables on which the stress falls; and it may be desirable to point out here that the chief symbols employed in Part II. are explained on pp. 120 and 121.

How incomplete my work is may be gauged by the statement that, while there are undoubtedly several thousand woods used in various parts of the world, only about 1,000 are here enumerated; but these include most of those which are practically known in general commerce, and to have dealt with more would have necessitated a volume fully twice as large.

G. S. B.
"Wood is an indispensable part of the material structure upon which civilization rests; and it is to be remembered always that the immense increase of the use of iron and substitutes for wood in many structures, while it has meant a relative decrease in the amount of wood used, has been accompanied by an absolute increase in the amount of wood used. More wood is used than ever before in our history."—President Roosevelt, January 3, 1905.
CONTENTS

PART I.—OF WOOD IN GENERAL

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>The Origin, Structure, and Development of Wood, and its use to the Tree</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>The Recognition and Classification of Woods</td>
<td>34</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td></td>
</tr>
<tr>
<td>Defects of Wood</td>
<td>55</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td></td>
</tr>
<tr>
<td>Selection, Durability, seasoning, and Storage of Woods</td>
<td>65</td>
</tr>
<tr>
<td>CHAPTER V</td>
<td></td>
</tr>
<tr>
<td>The Uses of Woods</td>
<td>76</td>
</tr>
<tr>
<td>CHAPTER VI</td>
<td></td>
</tr>
<tr>
<td>Our Supplies of Wood</td>
<td>94</td>
</tr>
<tr>
<td>CHAPTER VII</td>
<td></td>
</tr>
<tr>
<td>Testing Wood</td>
<td>112</td>
</tr>
</tbody>
</table>

PART II.—WOODS OF COMMERCE

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Their Sources, Characters, and Uses</td>
<td>123</td>
</tr>
</tbody>
</table>
CONTENTS

APPENDICES

I. Explanation of some Terms used with Reference to Converted Timber, etc. - - - - - - - 303

II. The Microscopic Examination of Woods - - - - 305

III. Select Bibliography - - - - - - - 307

IV. The Distinctive Microscopic Structures of Woods: (Plates I.-XLVIII.) - - - - - - - 309

Notes - - - - - - - - 322

Index - - - - - - - - - 324
List of Illustrations

Figures in the Text

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Transverse Section of an Oak</td>
</tr>
<tr>
<td>2.</td>
<td>Growing-point of Stem</td>
</tr>
<tr>
<td>3.</td>
<td>Terminal Bud</td>
</tr>
<tr>
<td>4.</td>
<td>Transverse Section of Clematis</td>
</tr>
<tr>
<td>5.</td>
<td>Early Development of Exogenous Stem</td>
</tr>
<tr>
<td>6.</td>
<td>Diagrams of Exogenous Stem</td>
</tr>
<tr>
<td>7.</td>
<td>Transverse Section of Helianthus</td>
</tr>
<tr>
<td>8.</td>
<td>Longitudinal Section of Helianthus</td>
</tr>
<tr>
<td>9.</td>
<td>Pits</td>
</tr>
<tr>
<td>10.</td>
<td>Elements of Oak Wood</td>
</tr>
<tr>
<td>11.</td>
<td>Coniferous Wood</td>
</tr>
<tr>
<td>12.</td>
<td>Wood of Spruce (Picea excelsa)</td>
</tr>
<tr>
<td>13.</td>
<td>Transverse Section of Picea excelsa</td>
</tr>
<tr>
<td>14.</td>
<td>Resin-duct</td>
</tr>
<tr>
<td>15.</td>
<td>Radial Section of Abies pectiníta</td>
</tr>
<tr>
<td>16.</td>
<td>Diagram of Merismatic Tissue</td>
</tr>
<tr>
<td>17.</td>
<td>Transverse Section of Pinus sylvestris</td>
</tr>
<tr>
<td>18.</td>
<td>Transverse Section of Oak, magnified</td>
</tr>
<tr>
<td>19.</td>
<td>Transverse Section of Oak, natural size</td>
</tr>
<tr>
<td>20.</td>
<td>Transverse Section of Oak, diagrammatic</td>
</tr>
<tr>
<td>21.</td>
<td>Tangential Section of Oak, magnified</td>
</tr>
<tr>
<td>22.</td>
<td>Tangential Section of Oak, more highly magnified</td>
</tr>
<tr>
<td>23.</td>
<td>Radial Section of Oak, highly magnified</td>
</tr>
<tr>
<td>24.</td>
<td>Wood of Oak, diagrammatic</td>
</tr>
<tr>
<td>25.</td>
<td>Dicotyledonous Wood, magnified</td>
</tr>
<tr>
<td>26.</td>
<td>Transverse Section of Beech, magnified</td>
</tr>
<tr>
<td>27.</td>
<td>Transverse Section of Oak, highly magnified</td>
</tr>
<tr>
<td>28.</td>
<td>Transverse Section of Buckthorn, magnified</td>
</tr>
<tr>
<td>29.</td>
<td>Transverse Section of Linden</td>
</tr>
<tr>
<td>30.</td>
<td>Radial Section of Pinus sylvestris</td>
</tr>
<tr>
<td>31.</td>
<td>Transverse Section of Ash, natural size</td>
</tr>
<tr>
<td>32.</td>
<td>Transverse Section of Humíria floribanda</td>
</tr>
<tr>
<td>33.</td>
<td>Transverse Section of Lóphira aláta</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

FIG. | PAGE
34. Transverse Section of *Dillenia indica* | - | - | - | 48
35. Transverse Section of *Rhus Cotinus* | - | - | - | 50
36. Transverse Section of *Juglans cinerea* | - | - | - | 51
37. Cup- and Heart-shake | - | - | - | 56
38. Star-shake | - | - | - | 57
39. Heart-shake | - | - | - | 58
40. Structural Aggregates | - | - | - | 67
41. Plank well laid | - | - | - | 67
42. Plank badly laid | - | - | - | 68
43. Honeycombed Board | - | - | - | 70

PLATES IN APPENDIX IV

I. *Banksia serrata*, transverse section
II. *Banksia serrata*, radial section
III. *Banksia serrata*, tangential section
IV. Moreton Bay Fig (*Ficus macrophylla*)
V. Padouk (*Pterocarpus marsupium*)
VI. *Cassia Fistula*
VII. Lignum-vitæ (*Guaiacum officinale*)
VIII. *Albizia procera*
IX. Greenheart (*Nectandra Rodicei*)
X. Thingan (*Hopea odorata*)
XI. *Sideroxylon borbonicum*
XII. *Calophyllum Tacamahaca*
XIII. American Ash (*Fraxinus americana*)
XIV. Locust (*Robinia pseudacacia*)
XV. Laburnum (*Cytisus Laburnum*)
XVI. American Elm (*Ulmus americana*)
XVII. Chestnut (*Castánea sativa*)
XVIII. American White Oak (*Quercus alba*)
XIX. Hickory (*Hicoria ovata*)
XX. Persimmon (*Diospyros Virginiana*)
XXI. Teak (*Tectona grandis*)
XXII. African Mahogany
XXIII. Cuban Mahogany
XXIV. Cigar-Box Cedar (*Cedrela odorata*)
XXV. Buckthorn (*Rhamnus catharticus*)
XXVI. American Walnut (*Juglans nigra*)
XXVII. Karri (*Eucalyptus versicolor*)
XXVIII. Western or American Plane (*Platanus occidentalis*)
XXIX. American Beech (*Fagus ferruginea*)
XXX. Hornbeam (*Carpinus Betulus*)
XXXI. Alder (Alnus glutinosa)
XXXII. Sycamore (Acer pseudoplatanus)
XXXIII. American Holly (Ilex opaca)
XXXIV. Canary Whitewood (Liriodendron tulipifera)
XXXV. Satin Walnut (Liquidambar styraciflua)
XXXVI. Basswood (Tilia americana)
XXXVII. Hawthorn (Crataegus oxyacantha)
XXXVIII. Pear (Pyrus communis)
XXXIX. Canadian Birch (Betula lenta)
XL. Willow (Salix alba)
XLI. Yew (Taxus baccata)
XLII. Californian Redwood (Sequoia sempervirens)
XLIII. Cedar of Lebanon (Cedrus libani)
XLIV. White Spruce (Picea alba)
XLV. Larch (Larix europaea)
XLVI. Oregon or Douglas Pine (Pseudotsuga Douglasii)
XLVII. Pinus palustris (the Pitch Pine of English Commerce)
XLVIII. Pinus Strobus (the Yellow Pine of English Commerce, White Pine of America, Weymouth Pine of Gardens)
PART I.—OF WOOD IN GENERAL

CHAPTER I

THE ORIGIN, STRUCTURE, AND DEVELOPMENT OF WOOD AND ITS USE TO THE TREE.

Few, if any, of the products of nature are of such manifold utility as wood. Though coal has in many lands largely replaced it as fuel, and as a source of tar, though stone, brick, and iron or steel have often been substituted for it as house-building materials, and the metals last mentioned for the construction of ships, new uses are constantly arising for it, such as railway sleepers, pavements, and paper-making, so as to more than make up for the saving effected by these substitutes. In England and the United States, for example, the consumption of wood per head of the population during the last half-century has more than doubled.

Most people are aware that for these manifold uses a great number of different woods are employed in the various countries of the world—woods that differ in colour, grain, hardness, weight, flexibility, and other properties almost as widely as the trees by which they are produced vary in foliage, flower, or fruit. It is, however, not so generally recognized that the suitability of wood of any kind for some particular purpose depends mainly upon its internal structure. This structure is determined not by man’s employment of the material, but by the vital requirements of the tree when growing.

Our present concern is with wood as a material in the arts, and not with any merely botanical interest it may have, or with its cultivation as a crop by the forester. In dealing with the means of recognizing different kinds of wood we shall, therefore, not depend in any way upon characters derived from bark, leaves, flowers, or fruit—the characters, that is, of standing, or of unconverted timber—but only on those of the wood itself as it
appears in the timber market. At the same time, if we are to be able to identify woods and determine their suitability for various economic applications, it is absolutely essential that we should know something of their origin, structure, development, and use to the plants that produced them.

Wood does not occur in any plants of a lower grade than ferns; and in the higher plants in which it does occur it is chiefly, but not exclusively, in the stem. The main physiological function of wood is the mechanical one of giving strength to resist the increasing weight of the structure as it grows erect and branches. Submerged aquatic plants, buoyed up, as they are, by the water, do not form wood in their stems, nor, as a rule, do annuals, nor, at first, the succulent, flexible shoots of longer-lived plants. In ferns, even when growing into lofty trees, and in allied plants, the wood, though dense, consists largely of scattered longitudinal strands and often of cells of no great vertical length. Though there are also generally woody layers just below the surface of the stem, giving it considerable strength as a whole, this structure renders tree-ferns useless as timber.

For all practical purposes, therefore, wood is produced only by the highest sub-kingdom of the plant world, the seed-bearing or flowering plants, the Spermatophyta or Phanerogámia of botanists. This great group of plants is sub-divided, mainly by characters derived from parts other than their stems, into two divisions, the Gymnospermae, or plants the seeds of which are naked, i.e. not enclosed in a fruit, and the Angiospermae, or fruit-bearing plants. The Gymnosperms are all perennial trees and shrubs; but of three "Natural Orders" into which they are divided, two, the Cycadáceae and Gnetáceae, belong almost exclusively to the Southern Hemisphere and are valueless as timber. The third Natural Order is the Coníferae, so named from the general arrangement of its seeds on a series of overlapping scales arranged in a cone, but having also other general characters, one of the most conspicuous of which is the production of numerous narrow, rigid, undivided leaves, whence they get the familiar name of needle-leaved trees. The members of this Order, which includes the Pines, Firs, Larches, Cedars, etc., have much-branched stems, and wood which, though in many points, such as its arrangement in annual rings of growth, it resembles that of some other, more highly-organized plants, has, as we shall see, many peculiarities. It is, in general, of rapid growth, soft and of even texture, and very commonly abounds in resinous substances. They are, therefore, often spoken of as "soft woods" or as "resinous woods," and being, from these characteristics, both easily worked and of considerable
PLANTS WHICH PRODUCE WOOD

durability, are more extensively used than any other class of woods. The Maidenhair-tree of China and Japan (Ginkgo biloba) is exceptional among conifers in having broad leaves: neither this tree nor the Yew can be said to bear cones, though their seeds are naked: the Yew is destitute of resin; and the epithet "soft-wooded" applies to Willow, Poplar, Horse-chestnut, etc., as truly as to conifers.

The second and higher division of seed-bearing plants, the Angiospermae, is divided into two Classes, which, whilst agreeing in having their seeds enclosed in fruits, differ in many characters, and in none more than in the structure of their stems. They are known botanically, from the number of seed-leaves or cotyledons of their embryos, as Monocotyledons and Dicotyledons. The Monocotyledons, with one such seed-leaf, comprise lilies, orchids, bananas, palms, sedges, grasses, etc. Few of these, such as Palms and Bamboos, reach the dimensions of trees, and those which do so have generally unbranched stems which do not as a rule increase in diameter after the very earliest stages of their growth, the wood in them being confined to isolated strands crowded together towards their outer surfaces. Though such stems may occasionally, like those of tree-ferns, be utilized "in the round," and veneers, cut from the outer part of the stem of the Cocoa-nut Palm (Cocos nucifera), and known, from the appearance of the dark-coloured woody strands in the lighter ground-tissue, as "Porcupine-wood," are used for inlaying, Monocotyledons may well be ignored as economic sources of wood.

Dicotyledons, so named from having two seed-leaves to the embryo, comprise an immense and varied assemblage of plants, a very large proportion of which are merely herbaceous, never forming wood. In those perennial members of the Class, however, which acquire the dimensions of trees or shrubs, the stem generally branches freely, has a separable "bark," and increases in girth with age; the wood, though, as we shall see, it differs in several important but not very obvious characters, agreeing with that of conifers in being arranged in rings produced in successive seasons (Fig. 1). These rings, as they appear in a cross-section of a tree, or conically tapering sheaths surrounding the tree, as they in fact are, form on the outside of the wood of previous seasons and beneath the bark; and this type of stem, characteristic of gymnosperms and dicotyledons, is in consequence correctly termed exogenous, from the Greek ex, outside of, and genuo, to produce. The term endogenous, still sometimes applied to the structure of the stem of monocotyledons, is less accurate.
Dicotyledons are commonly slower of growth than conifers, and their wood, especially that near the centre of the stem, is often much harder. They bear as a rule also broad, net-veined leaves; and are known familiarly, therefore, as "hardwoods," or as "broad-leaved trees." Such are the Oak, Beech, Ash, Elm, Teak, Willow, Alder, etc.

It is then only with the two classes of exogenous stems, those of gymnosperms or needle-leaved trees, and those of dicotyledons or broad-leaved trees, that we are concerned.

Though, as we have already said, conifers and broad-leaved trees present important differences in the structure and consequent character of their wood, their manner of growth is so nearly identical in its initial stages and broad outlines that we may well treat them at first collectively. It is, perhaps, the many branches and the numerous small leaves exposed by means of these branches to a maximum of air and light in these two groups of plants (as contrasted with the general absence of branching, and the small number and large size of the leaves in ferns and palms) that has determined the production of the progressively enlarging, solid stem that characterizes them. It must be remembered, however, that the stem of a tree fulfils several very distinct physiological purposes. Besides bearing up the weight of leaves and flowers so as best to obtain the air and light they require, it is the means of communication between the root and the leaves. Through it the water and its

1 "This statement is too general when the trees of the whole world are taken into account. Species of Eucalyptus and Casuarina, Altingia excelsa, Bombax malabaricum, Cedrela Toona, Mahogany, and planted Teak grow faster than any Conifer. Even among our European trees, Birch, Alder, Ash, and Sycamore more than hold their own with Conifers for the first thirty years; the rapid growth of Poplars is well known, and Beech beats Spruce and Silver fir up to seventy or eighty years, and after ninety outgrows Scots Pine."—Gardeners' Chronicle, December 20, 1902.
dissolved gases and saline substances, taken in by the root from the soil, are conveyed to the leaves, which have been termed the "laboratory of the plant," to be built up in them, with the carbonaceous food-material taken in from the atmosphere, into those complex "organic" compounds of which the whole structure of the plant is composed. Furthermore, the stem serves as a reservoir in which some of these organic compounds, the "plastic material" of the plant, are stored up for use in future growth.

Every stem and every branch—and a branch is but a secondary stem, differing only in position—as long as it remains capable of elongation, is terminated, in the groups of trees with which we are concerned, by a bud. A bud is a growing-point protected by overlapping rudimentary leaves.

In the immediate neighbourhood of this growing-point the stem in this its initial stage is entirely made up of structures which almost completely resemble one another. Whether we cut such a growing-point across or lengthwise it presents under the microscope the appearance of a delicate mesh-work of thin membrane filled in with a viscid semi-fluid substance. These meshes, from their resemblance to honeycomb, were in 1667 named cells by Robert Hooke. The delicate membranes which form them, the cell-walls as they are termed, are composed of a substance, or rather group of substances, known as cellulose. It contains the three elements, carbon, hydrogen, and oxygen, in definite proportions, which the chemist represents as $C_6H_{10}O_5$, that is, in a hundred parts by weight 44 are carbon, 6 are hydrogen, and 50 are oxygen. Cellulose, like starch and sugar, belongs to a group of compounds of carbon with hydrogen and oxygen in the proportions in which these two elements occur in water, which are known as carbo-hydrates. It has, in fact, the same percentage composition as starch, though differing from it in many properties. It is insoluble in water, flexible, slightly elastic, permeable, but only slightly absorbent, and does not readily undergo fermentation. When treated with acid it passes into a starch-like condition, as is evidenced by its then turning blue with iodine, and under certain conditions in the living plant it would seem capable of being formed from, or of passing into, sugar. Cotton-wool consists almost entirely of pure, unaltered cellulose. The viscid, semi-fluid substance contained in the cells is of far more complex chemical composition. It contains not only carbon, hydrogen, and oxygen, but also, though in far smaller proportion, nitrogen, with traces of sulphur, and, perhaps always also, phosphorus and other elements. It is probably a mixture in varying proportions
of some of those substances which, from their resemblance to albumen or white of egg, are known as albuminoid, and, from the readiness with which they undergo chemical change or decomposition, as proteids. Being the substance out of which all plant-structures originate, the sole constituent of the first germs of all living beings, it is known as protoplasm, from the Greek prótos, first, plasma, formed matter.

Any collection of similar cells or modifications of cells having a common origin and obeying a common law of growth is known as a tissue. These young cells at the apex of a stem, of nearly uniform size, and that extremely minute, with their delicate, as yet unaltered, cell-walls filled with protoplasm, form an embryonic tissue, one, that is, which will undergo change. Its uniform character causes it to be termed undifferentiated, while the various kinds of tissue to which by different changes it gives rise are known in contradistinction as permanent tissues. One change to which any cell is liable so long as it contains protoplasm is division into two, a partition wall of cellulose forming across it. The formation of this solid wall from material in solution in the protoplasm, and a correlative power, which, as we shall see, the living plant possesses, of dissolving a cell-wall, illustrate that interchangeability of sugar and cellulose of which we have spoken. A tissue the cells of which undergo division is termed merismatic or meristem, from the Greek merisma, division; so that the embryonic tissue at the apex of the stem is known as apical meristem.

Although its cells are all embryonic, they nevertheless at a very early stage commonly present such a degree of differentiation as to make it possible to distinguish three well-defined rudimentary tissue-systems (Fig. 2). First, there is a single layer of cells on the outside of the growing-point, with thickened outer walls and undergoing division only in planes perpendicular to the surface. If we trace this layer backwards down the surface of the shoot below its apex we shall find it continuous with similar cells which have lost their protoplasm and have even thicker outer walls. As this outer layer of permanent tissue is called the epidémis, from the Greek epi, upon, derma, skin, the embryonic layer in which it originates is termed the dermatogen (derma, skin, and gennáo, to produce). In the middle of the growing-point is a solid column-like mass of cells which are all somewhat elongated in the direction of the elongation of the stem. This is known as the plerome, and the central axis of tissues to which it gives rise as the stele (Greek for a column) (Fig. 3). Between the outer dermatogen and the inner plerome
there is a layer, or a series of layers, of cells which undergo division both in planes perpendicular to and in planes parallel to the surface of the stem. These are known as the periblem. On tracing them backwards down the shoot we find them continuous with tissues which immediately beneath the epidermis are com-

![Image](https://via.placeholder.com/150)

FIG. 2.—Growing-point of stem, showing apical meristem. _P_, plerome; _R_, periblem; _E_, dermatogen; _I_, rudiment of leaf. (After Leunis and Frank.)

monly green, and which often have their cells much thickened in the corners in herbaceous plants or shoots, whilst still further back, on older parts of woody shoots, the green layer is often buried under one or more layers of brown cork. These tissues

![Image](https://via.placeholder.com/150)

FIG. 3.—Terminal bud, showing growing-point of stem, overlapped by rudimentary leaves with buds in their axils, the whole covered by dermatogen. In the centre is the stele to which descend the midribs of the leaves. (After Prantl.)

which thus originate in the periblem are known collectively as the cortex.

It is with tissues originating from the central plerome or stele that we are mainly concerned. If we cut a young shoot across, a little below its entirely embryonic apex, we shall see that, whilst
there is a central whitish mass, which on being magnified exhibits a comparatively wide-meshed structure, there are round this a ring of patches of a greyer, closer tissue. These grey patches may be observed to be roundish or slightly wedge-shaped in outline, their longer diameter lying in one of the radii of the stem, and they are wider across their outer parts. They appear grey on account of the smaller diameter of their cells. Longitudinal sections show these patches to be cross-sections of long strands or bundles of cells, narrower and more elongated than those around them. The central mass of tissue is the *pith* or *medulla*, and these strands are known as *procambium* or *desmogen*.

Fig. 4.—Transverse section of the stem of Traveller's Joy Clématis (Vitúlba), showing relatively large central pith and large vessels.

The pith is relatively large in the stems of herbaceous plants or in young shoots (Fig. 4), but does not increase in bulk as the tree grows older. Its cells are at first full of fluid, and their walls often remain thin. Those of its outer portion, near the procambium strands, are smaller, and all its cells are often two or three times as long in the direction of the elongation of the stem as they are broad. Thus in shape they are short, polygonal, closely-packed prisms. In many cases, as in the Elder, the cells of the pith die, losing their fluid contents, shrivelling, and so completely disorganizing the entire tissue that the stem becomes hollow, or a mere line of dry powder in the centre of the innermost ring of wood marks this structural centre of the stem. In
other cases, as in the Oak, the cells of the pith have their walls thickened, and turn from white to brown; but even then its relatively minute width makes it difficult to detect in a stem several years of age.

The procambium strands extend, from the rudiments of leaves near its apex, right through the stem into the root. They get their name from a Latin word, *cambio*, to grow, being in a merely transitory or embryonic condition. In Monocotyledons the whole of their tissue passes into the condition of wood and bast; so that the bundle, as the strand in its permanent form is termed, being incapable of any further growth in diameter, is said to be closed. It is because it gives rise to a bundle (Greek, *desmos*, a bond) that

![Diagram](image-url)

Fig. 5.—Three stages in the early development of an exogenous stem. *m*, pith; *r*, cortex; *b*, primary xylem; *H*, secondary xylem; *b*, primary phloem; *B*, secondary phloem; *c*, cambium; *ms*, pith-ray.

the procambium is termed *desmogen*. In those trees, however, with which we are concerned, viz. Gymnosperms and Dicotyledons, whilst the inner portion of each strand becomes *wood* or *xylem* (Greek, *xylon*, wood) and the outer part *bast* or *phloem* (Greek, *phloios*, bark), a band between these two parts remains embryonic. This layer is called the *cambium*, or more precisely, for a reason we shall see presently, the *fascicular cambium*, the cambium, that is, within the bundle. Such a bundle, possessing such a cambium-layer, is termed an *open* one.

Between the bundles, connecting the pith in the centre with the cortex on the outside of the ring of bundles, are parts of the original or *ground-tissue* of the stem, which are known as *primary medullary rays* or *pith-rays* (Fig. 5). In Dicotyledons they are
often broad and conspicuous; but in Gymnosperms they are so narrow as not to be visible to the naked eye. From the cambium-layer in one bundle to those in the bundles on either side of it the formation of cambium extends, across the primary pith-rays, so that instead of mere strips of cambium running longitudinally down the stem between the xylem and phloem of each bundle, there is now a cylindrical sheath of cambium extending from the embryonic tissue of its terminal bud downwards over the whole stem. In transverse section this sheath appears as a ring, and is accordingly sometimes called the cambium-ring. Those parts of it that extend between the bundles are termed \textit{interfascicular cambium}, in contradistinction to the precisely similar tissue within

![Diagram of exogenous stem with six bundles, during the first year, at the beginning and at the close of the second year's growth, the last showing the wedge-shaped masses of primary xylem projecting into the central pith, and the formation of the first ring of secondary wood during the second year by the activity of the cambium ring.](image)

the bundles. This cambium-sheath is familiar to us all as the layer of delicate thin-walled cells, full of sticky protoplasm, through which we easily tear when we peel a stick. Having what has been termed the quality of perpetual youth, it remains recognizable in a stem many years of age, and with the pith furnishes us with a convenient rough classification of all the structures of such a stem.

As we have seen, the pith, not having grown since its earliest condition, remains as a mere central line in such a stem. From this pith to the cambium-sheath is \textit{wood} or \textit{xylem}; outside the cambium is the \textit{rind}, or, as it is commonly but somewhat misleadingly termed, \textit{bark}, made up of the outer and often corky \textit{cortex} and the inner, largely fibrous, \textit{phloem} or \textit{bast}.
In the first year the xylem and phloem are formed directly by the modification of the inner and outer parts respectively of the procambium-strand; but subsequently all wood, bast, and pith-rays originate in the cambium. Accordingly the xylem and phloem of the first year are termed primary, and that formed from the cambium secondary (Fig. 6).

The pith of trees seems mainly a structure of temporary utility to the plant, and the function of the cortex is chiefly protective; but as the main function of the stem is to convey liquid nourishment from the root to the leaves, and to carry back, also in a diffusible form, the material elaborated in the leaves to growing parts, it is one of the most noticeable characters of the bundles that they are largely composed of vessels, elongated tube-like structures formed by the absorption of the transverse, or top and bottom, walls of rows of long cells placed end to end. For this reason they are often spoken of as vascular bundles. They also contain, however, cells which have not been thus fused into vessels,
such cellular tissue, when its constituent cells are not more than three or four times long as they are broad, being technically known as parenchyma.

As we have already seen, in addition to its function of conducting liquids, which necessitates these vessels or other conducting tissue, as it is termed physiologically, the stem has to perform the mechanical function of bearing up a considerable weight—its own, its branches, leaves, etc. To enable it to do this, both xylem and phloem are commonly accompanied by elongated elements, of which the chief characteristic is that their walls are much thickened and hard. The elements of this mechanical tissue are known as fibres, and from containing them the bundles are often termed fibro-vascular bundles (Figs. 7 and 8).

The walls of cells, fibres, and vessels in the xylem acquire mechanical strength or resistance by undergoing a change known as lignification. This consists in their impregnation with a substance known as lignin. Lignin consists of the same three elements as cellulose, viz. carbon, hydrogen, and oxygen, but in different proportions, its percentage composition being 49 per cent. of carbon, 6 of hydrogen, and 44 of oxygen. Its chemical constitution is, however, as yet unknown. It is harder and more elastic than cellulose, readily permeable by water, but not absorbent, that is, retaining the water. It is more soluble in acids, such as chromic acid, than is cellulose, and is recognised by turning brown when treated with Schulze's solution, a mixture of zin
chloride, potassium-iodide, and iodine which turns unaltered cellulose blue.

The elements of the phloem, with which we are less concerned than we are with the xylem, though often variably thickened, are not lignified. They consist of *bast-parenchyma*, *sieve-tubes*, *companion-cells*, and *bast-fibres*, besides the medullary rays which traverse xylem and phloem alike. *Bast-parenchyma* consists of slightly elongated cells in vertical rows of four or six, of which the terminal cells taper. This arises from each row having been formed by several transverse divisions of a single procambium or cambium cell. They generally contain protoplasm and sometimes grains of starch or crystals. *Sieve-tubes* are the vessels of the bast, long tubes with transverse partition-walls, and retaining their protoplasm but communicating through these transverse walls by the *sieve-plates* from which they take their name. The sieve-plate is a thin portion of the wall perforated by numerous pits close together. The sieve-tubes are the chief channel by which protoplasmic matter manufactured in the leaves is conveyed through the stem. *Companion-cells* occur only in angiosperms. In longitudinal section they appear as narrower cells alongside the sieve-tubes filled with granular protoplasm and with unperforated transverse walls adjoining those of the sieve-tubes. In a transverse section they appear like small corners cut off the larger sieve-tubes, and they have their name from the fact that each of them originates in this way, a longitudinal wall dividing the original cell into two unequal parts, of which the larger contributes to a sieve-tube, the smaller remains a cell. *Bast-parenchyma*, sieve-tubes, and companion-cells are known collectively as *soft bast* in contradistinction to bast-fibres or *hard bast*. *Bast-fibres* are extremely elongated structures, tapering at each end, containing only water or air, and with their walls so thickened as sometimes to almost obliterate the cavity or *lumen*, as it is termed. Their walls are generally at least partially lignified and give a reddish colour with Schulze's solution, and the thickening is absent from some spots on their walls. These unthickened spots are known as *pits*. Pits, which are important as occurring also on some of the elements that make up wood, are of two main classes, *simple* and *bordered*. A *simple pit* is a spot at which a cell-wall is left unthickened, generally on both sides, each successive thickening-layer leaving the same space uncovered. It appears accordingly as a bright spot on the wall; or, if in section, as a canal, the length of which depends upon the thickness of the wall. A *bordered pit* is so called because the bright spot appears surrounded by, or crossed by, a second circle or ellipse. The structure will
be best understood from the diagrams (Fig. 9). In the thickening of the cell-wall the area of the outer circle is at first unthickened, but successive layers of thickening overlap this unthickened area more and more so as to make a short canal broad at the end near the original cell-wall and narrow at the end towards the centre of the cell. Subsequently a slight thickening termed the *torus* forms in the centre of the unthickened area. Pressure of liquid on one side of the pit-membrane often forces it against the "border," in which case the torus does not completely occupy the opening in the border or inner circle. The whole mechanism has been compared to a laboratory filter, the border being the funnel that acts as a support, the unthickened membrane, which is permeable, corresponding to a filter-paper and the torus to the small platinum cone sometimes placed in the middle of the filter to protect it from direct pressure of liquid. The bordered pits on xylem vessels in Oak have been compared to screw-heads, discs traversed by an elongated mark like the groove for a screw-driver, and the structure has been explained by the following imaginary model:

"Imagine a pair of watch-glasses each pierced by a narrow slit, and imagine them united face to face with a delicate circular piece of paper between them, and then fixed into a hole cut in a thick piece of card. The outline of the screw-head is the outline of the united watch-glasses where they are let into the card; the groove in the screw-head is the oblique cleft which leads into the space between the glasses." In some cases, under pressure from the cell-contents on the other side of it, the unthickened membrane in a pit bulges into the cavity of the adjoining vessel. Such projections, which are known as *tyloses*, may undergo cell-division and may even form a mass of tissue blocking up the entire lumen of the vessel. This is the case in some of the vessels of Oak and still more strikingly in the Locust

or Acacia (*Robinia Pseudacacia*), in which the wood consequently appears non-porous, but, their cell-walls being thin, the tyloses appear in transverse section as light yellow spots on the dark heartwood. In Letterwood (*Brösinum Aublétii*), on the other hand, the tracheae are filled up with tyloses, the cells of which have their walls very much thickened so that they appear dark.

We come next to the tissues which are of the greatest importance in our present study—those of the *xylem* or wood,
developed on the inner side of the procambium strand and subsequently on the inner side of the cambium sheath. The development of xylem in a procambium strand begins with the conversion of one or a few cells, or vertical rows of cells, of the inner part of the strand into spirally, or occasionally annularly, thickened tracheids or tracheae, known as the protoxylem or first-formed wood. This conversion consists in the loss of their protoplasmic contents, the lignification of their walls, the deposit of a spiral thickening band internally, or of a series of rings, and, in the case of tracheae, the absorption of the transverse walls of the vertical rows of cells. Whilst tracheids are elongated cells, losing their contents, generally becoming lignified and having thickened walls, so as to be adapted for the conveyance of air or water, tracheae or true vessels differ from them only in being formed by the fusion of vertical rows of cells. In a transverse section the protoxylem is recognizable by the relatively small diameter of its tracheae or tracheids; and, where there is a distinct pith, they may be seen projecting into the outer part of the pith in a discontinuous ring known as the medullary sheath. In longitudinal section the loose rings or spirals of their thickening are usually conspicuous, since, being the first vascular elements to form, they are considerably stretched by the growth in length of the adjoining fundamental tissue. The spiral or annular thickening permits, by an uncoiling in the former or a separation of the rings in the latter, a considerable amount of such stretching (Fig. 10).

The differences between the wood of coniferous trees and that of broad-leaved trees show themselves in the protoxylem and the rest of the primary wood, though they are even more important in the secondary xylem, i.e. that formed after the cambium-ring is complete. We will, therefore, now deal with them separately, taking the simpler type, that of the conifers, first (Fig. 11).

The xylem of conifers, both primary and secondary, consists mainly of tracheids; but tracheae, or true vessels, occur in the protoxylem. In addition to the protoxylem the primary wood, i.e. that which is formed direct from the inner cells of the procambium strand, contains other wider tracheids with bordered pits between the turns of their spiral thickening.

A cross section of a Pine or Spruce shows distinct annual rings each made up of an inner, softer, light-coloured portion, the spring wood, and an outer, firmer, darker-coloured portion, the summer wood. The outer zone of the wood, that next to the bark, comprising from 30 to 50 of the most recently formed of these
annual rings and from one to three or more inches across, is of lighter colours and is known as the sap-wood or alburnum. Many of its cells are still in a sufficiently active state of vitality to store up starch, at least in winter, though growth is confined to the outermost layer of all, the cambium. The inner rings are darker and constitute the heart-wood or duramen, the cells of which are physiologically dead and serve only the mechanical function, of supporting the weight of the tree and resisting the lateral strain of the wind. The darker colour of this heart-wood is due to infiltration of chemical substances into the cell walls, but not, in pine, as is sometimes supposed, to any greater thickening, lignification, or filling up of the cells than there is in the sap-wood. The proportion of sap-wood to heart-wood is always considerable, but it varies in width even in different parts of the same tree, the same year's growth being sometimes sap-wood in one part and heart-wood in another. The width of the annual rings varies from half-an-inch or more near the centre of very quick-grown trees to one-eighth or one-sixth of an inch (3-4 mm.), common widths for the twenty innermost rings in deal, one-twelfth of an inch, a general average width, one-thirtieth (0.7 mm.), an average for the twenty outermost rings, and even
a minimum of one two-hundredth of an inch (0.2 mm.). Many local causes, especially exposure to wind, produce excentricity of growth, few trees presenting a truly circular cross-section or a truly central pith, though this is more common among pines than among other trees. Branches almost always present an excentrically oval section, the pith nearer to the upper surface. The summer-wood in each ring being darker, heavier, and denser,

its relative proportion to the spring-wood largely determines the weight and strength of the wood, so that colour becomes a valu-

1 Poplars grown in moist ground may reach a diameter of 14 inches in 8 years. Laslett records (Timber and Timber-trees, ed. 2, pp. 44-5) exceptionally fine English Oak and Elm, and an average drawn from several specimens of Canadian Oak and Elm which gave the following number of rings at 6, 12, 18, and 24 inches diameter:

<table>
<thead>
<tr>
<th>Type</th>
<th>6 in.</th>
<th>12 in.</th>
<th>18 in.</th>
<th>24 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Oak,</td>
<td>13</td>
<td>19</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Canadian Oak,</td>
<td>40</td>
<td>105</td>
<td>160</td>
<td>216</td>
</tr>
<tr>
<td>English Elm,</td>
<td>10</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Canadian Elm,</td>
<td>80</td>
<td>156</td>
<td>252</td>
<td>—</td>
</tr>
</tbody>
</table>
able aid in distinguishing heavy, strong pine wood from that which is light and soft. Whilst on a cross-cut or transverse section the annual growths appear as rings, on a longitudinal radial section they are represented by narrow parallel stripes alternately light and dark, and on a longitudinal but tangential section by much broader alternating and less parallel stripes with some V-shaped lines (Fig. 12).

Under the microscope a transverse section of coniferous secondary wood presents regular straight radial rows of apparently four-sided meshes or openings, the transverse sections of tracheids. These are as broad in a radial as in a tangential direction in the spring wood, but much narrower radially in the summer wood of each ring. The cell-walls also are thicker in the summer wood. The radial walls have bordered pits, and in some cases such pits also occur on the tangential walls. Scattered through the summer wood are numerous irregular greyish dots, which on being magnified are seen to be the cross sections of relatively large spaces, the resin-passages, each surrounded by a layer of thin-walled cells, the resin-epithelium (Fig. 13). These resin-passages are not cells or vessels, but intercellular spaces, into which the resin oozes from the surrounding epithelium (Fig. 14). They generally occur singly, though sometimes in groups, and are most readily detected on a very smooth surface, or are often more easily seen on radial or tangential sections. On these they appear as fine lines or scratches.
running longitudinally. The whole mass of xylem is traversed radially by *pith-rays*, most of which appear in the transverse sec-

![Fig. 14.—Resin-duct in coniferous wood, in transverse section, highly magnified, showing the epithelial cells surrounding the duct.](image1)

...tion of the stem as only one cell in width and made up of cells elongated radially. In a longitudinal and radial section (Fig. 15)

![Fig. 15.—Radial section of Silver Fir (Abies pectinata), showing a medullary ray, with simply pitted, parenchymatous cells, crossing wide tracheids of spring wood, and narrower ones of autumn wood, with bordered pits. Magnified 100 times. (From Hartig's Timbers and how to know them, by permission of Dr. Somerville and Mr. David Douglas.)](image2)

...it appears that the tracheids are from $\frac{1}{20}$ to $\frac{1}{5}$ inch long, 50–100 times as long, that is, as they are wide; that they have their
bordered pits in a single row down their radial walls; and that they are closed at their ends by a tapering to one side like the cutting edge of a carpenter’s chisel. The pith-rays in longitudinal sections are seen to extend only a short way longitudinally, each appearing on radial sections as a band of 8 to 10 rows of cells elongated at right angles to the elongation of the tracheids like bricks in a wall 8–10 bricks high, with bordered pits on the cells of the upper and lower rows, in Pines and Spruces, and simple pits on the others. On tangential sections the rays appear as vertical series of 8–10 pores tapering above and below. In Pines there are some larger pith-rays containing horizontal resin-passages.

The development of this comparatively simple type of wood from the cambium can be readily traced. The cambium is a cylindrical sheet of very thin-walled cells, each of which is rectangularly prismatic, broader in a tangential direction and tapering above and below to a radially-directed chisel-edge. These cells contain protoplasm. After they have grown somewhat in a radial direction, partition walls form across them in the longitudinal tangential direction, so that each cell gives rise to two radially placed towards one another, and, this process being then repeated in one or both of the resultant cells, a radial row is formed (Fig. 16). After several such divisions the innermost and earliest-formed of these cells ceases to divide, and uses up its protoplasmic contents in lignifying and thickening its walls, except at certain spots which

Fig. 16.—Diagram illustrating merismatic tissue. I, a merismatic cell ABCD; II, a cross-wall ab has appeared; III, AabbB has grown and again equals ABCD in size, whilst aCDb has also grown; IV, Aabb has been divided by a cross-wall cd; V, AeddB has again grown; it equals ABCD in size and is ready again to divide. Meanwhile cabd and aCDB have increased in size considerably. (From The Elements of Botany, by Mr. Francis Darwin, by his permission and that of the Syndicate of the Cambridge University Press.)
become pits. It has, in fact, become a water-and-air-conducting tracheid. A cambium cell in the same radial row as a pith-ray undergoes transverse division into 8-10 superposed cells which elongate radially and retain protoplasmic contents, thus continuing the pith-ray (Fig. 17). In spring, when there is little heat, light, or activity of root and leaf to supply material, and when the bark, split by winter, may exert but little pressure, tracheids are produced with relatively thin walls and wider radial extension, constituting the spring wood; but in summer heat, light, and physiological activity, thicker walls are produced, whilst increased pressure of new bark allows less radial extension. As winter comes on, the active growth and division of the cambium cells ceases, and its recommencement to form large thin-walled tracheids in the following spring, after being dormant for several months, produces the sharp contrast between compressed summer tracheids and larger spring ones that marks a new annual ring.

The simple uniformity of structure in coniferous wood contributes largely to its great technical value.

Space does not permit any detailed discussion of the physiological uses of the different parts of such a stem as that of a conifer to the growing tree. The following recapitulation must suffice. The vitality of the pith of trees is generally confined to the very earliest stages of their existence, and the spirally-thickened elements of the protoxylem also only serve as conducting tissue when all the xylem is young. Heart-wood has ceased to have any active functions, serving merely for strength. Whilst cortical tissue serves to protect from external action, damp, etc., and to check transpiration, the sieve-tubes of the phloem appear to be the chief carriers of the food-materials elaborated by the leaves to the growing parts of the stem; and the formation of new phloem and xylem is the one function of the cambium. In the sap-wood

![Diagram of transverse section of Scots Fir (Pinus sylvestris).](image-url)
of conifers, consisting, as it does, so largely of tracheids, it is these tracheids, communicating as they do by the bordered pits on their radial walls, that convey water and air from the roots to the leaves, though they also store up starch in autumn and winter. The pith-rays being elongated radially, retaining their protoplasm, forming

![Fig. 18.—Transverse section of part of young stem of Oak, highly magnified.](image)

starch, and communicating through their pitted walls with phloem and even cortex as well as xylem, undoubtedly play an important part in the transfer of formative material from one part of the stem to another.

When we examine the stem of a broad-leaved tree, such as an
oak, we find, with the same general exogenous arrangement of pith, bark, heart-wood, sap-wood, and annual rings, considerably greater complexity in the variety and grouping of the elements of which the tissues are built up (Fig. 18). The pith presents considerable variety among broad-leaved trees, so as to be used to some extent in discriminating woods seen in complete cross-sections. Thus in its proportion to the area of the wood in cross-section it may vary from equality, i.e. being as wide as the xylem, as in three-year-old shoots of Elder, to $\frac{1}{2}$, as in shoots of the Cork-Elm of the same age. In outline it may be pentangular or hexagonal, as in Oak, Spanish Chestnut, Black Poplar, or White Willow; triangular, as in Birch, Beech, and conspicuously in Alder; ovoid, as Linden, Plane, Holly, Ash, and Maples; or nearly circular.
In the last-mentioned case the projections of the primary xylem into the pith may give the pith a wavy or *crenate* outer margin, as in Hawthorn, Rowan, Laburnum, Horse-Chestnut, or Elder; or this margin may appear even, as in Elm, Hazel, and Dogwood (*Cornus*). In the Walnuts the pith has an interrupted or chambered structure: in the Elder it soon dies and disintegrates, leaving the stem hollow; whilst in young stems of Elm the inner portion of it has thin walls and loses its protoplasm, whilst the outer part becomes thick-walled but retains its cell-contents.

The pith-rays of broad-leaved trees are in general far more conspicuous than those of conifers. In Oak the large primary pith-rays extending from pith to cortex are often twenty or more cells in width, appearing as long, clearly defined, greyish lines in a transverse section of the stem (Fig. 19). The secondary pith-rays are much narrower as well as shorter (Fig. 20). In a tan-
gential section (Figs. 21 and 22) the primary rays may be several hundred cell-rows, *i.e.*, upwards of an inch, in height, and, however wide at the middle, taper to one cell at each end. On a radial section they appear as broad, shiny bands, the "mirrors," "felt," or "silver grain," so that they are conspicuous on any section, in whatever plane it may be. In Oak they constitute 16–25 per cent. of the wood (Figs. 23 and 24).

The protoxylem of broad-leaved trees differs from that of conifers mainly in that its spirally-thickened elements are *tracheae* or true *vessels*, owing to the absorption of the transverse walls of a vertical row of tracheids. But it is in the elements of the secondary xylem
that we find the greatest complexity and variety. This may contain from three to five of the following six kinds of elements: tracheids, vessels, woody fibres, fibrous cells with thick or with thin walls, and wood-parenchyma. The *tracheae* or true vessels vary considerably in transverse diameter, some of them being the widest pores seen in a transverse section of wood and being some-

times specially conspicuous in the spring-wood. Some of them, in young wood, have net-like thickening, but most of them have bordered pits, as have also the tracheids. The chief differences in fact between these two kinds of elements are the smaller diameter and lesser length of the tracheids. As they are each formed from a single cambium-cell, these *tracheids* have no transverse divisions;
whereas in the vessels there are much-perforated or partially absorbed partitions inclined towards the pith-rays, indicating the origin of the vessels from the fusion of a chain of cells. Woody fibres may be as long as, or longer than, the trachee, and are often more pointed, but their distinctive characteristic is their much-thickened, lignified walls, marked with few simple pits, often oblique and narrow. This thickening of their walls sometimes almost obliterates the cell-cavity or lumen, and, together with their early loss of all contents but water and air, serves to indicate their main function to be that of mechanical support. Fibrous cells only differ from fibres in retaining their protoplasmic contents. Their walls sometimes remain thin. Both thick-walled fibrous cells and woody fibres sometimes become chambered by the formation of delicate transverse walls. Wood-parenchyma consists of vertical groups of short cells, the upper and lower cell of each group tapering to a point, each group originating, in fact, from the transverse division of one cambium-cell. They retain their protoplasm and become filled with starch in autumn. Their walls are not much thickened, but are lignified and pitted, having bordered pits where in contact with trachee or tracheids, but simple pits elsewhere. Wood-parenchyma is commonly grouped in narrow circles round the vessels, appearing in longitudinal sections as cloudy margins to them. It may expand from such circles laterally into wings forming a spindle-shaped patch with the vessel in the centre, and these wings may widen until they meet others, so forming straggling oblique lines, long wavy streaks, or concentric circles ("false rings"). These transverse lines of tissue may be very narrow, as in Ebonics, or broad and conspicuous. Wood-parenchyma much

Fig. 24.—Two annual rings of wood and the bark of the Oak, the upper surface in transverse section, part of the inner ring (unshaded) in tangential, and the front view of both rings in radial section. The medullary rays are shown black in transverse, shaded in radial section. (After Hough.)
WOOD OF BROAD-LEAVED TREES

resemlhes the pith-rays, especially in tangential longitudinal sections; but its walls are not elongated radially.

As has been said, the wood of broad-leaved trees may contain from three to five of these different elements. Vessels are always present, but in some cases tracheids are absent. The wood of Plane, Ash, and Citrus (Orange, Lemon, etc.), for example, consists of vessels, woody fibre, thin-walled fibrous cells and wood-parenchyma only. That of Holly, Hawthorn, and Pyrus (Apple, Pear, Rowan, etc.) is made up of vessels, tracheids, and wood-parenchyma; that of Maples, Elder, Ivy, Euonymus, etc. contains also thick-walled fibrous cells. The wood of Berberis (Barberry) consists exclusively of vessels, tracheids, and thin and thick-walled fibrous cells; and that of Oaks, Hornbeams, Plum, and Buckthorn of vessels, tracheids, woody fibre, and wood-parenchyma (Figs. 25 and 26). The most common type of structure, however, occurring in Willows, Poplars, Alder, Birch, Walnut, Linden, Magnolia, Ailanthus, Robinia, etc., contains vessels, tracheids, woody fibre, thin-walled fibrous cells, and wood-parenchyma.

The distinctive features of woods, however, depend rather upon the proportions in which these elements are present, and upon their arrangement, than upon the absence of any of the six kinds of elements. There is, as a rule, among the woods of
OF WOOD IN GENERAL

broad-leaved trees no such regularity of radial arrangement of elements as characterizes the simple wood of conifers. In the cambium region, it is true, owing to the repeated regular tangential divisions, the cells not only appear rectangular in a transverse section, but are also in regular radial rows; but in the xylem itself this regularity is disturbed by the different diameters attained by the various elements as they become fully formed. In Oak, for example, the annual rings are marked in a cross-section by the large and conspicuous pores, or sections of the vessels, which occupy the greater part of the spring wood of each ring (Fig. 27). On a radial section the layers appear as parallel

Fig. 26.—Transverse section of Beech (*Fagus sylvatica*). Magnified 100 times.

 stripes, and on a tangential one as broader and less parallel stripes; but, whilst in coniferous woods the dark bands were denser summer wood, in this case the darker parts are produced by the vessels in the spring wood, the more uniform fibres of the summer wood appearing lighter. Vessels, tracheids, and fibres formed in spring have larger diameters and thinner walls than those formed in autumn, which fact produces much of the distinctness of the annual rings. In timbers with well-marked rings the distinctness of these rings may either be due, as in Oak, Ash, Teak, etc., to the contrast between wood with numerous large vessels and that with fewer or smaller ones; or, as in Birch, Maple, Horse-chestnut, etc.,
to the fibres being smaller across and thicker-walled in one part of each ring, whilst the vessels may be evenly dispersed through the whole wood. Woods differ widely as to the circularity of their rings. In not a few cases they are distinctly wavy; and, whilst in Beech and Hornbeam the crests of the waves—as seen in a cross-section—bend inwards at the primary pith-rays, in the Barberry they bend outwards. In evergreens, to which type belong the bulk of tropical broad-leaved timbers, where there is not the check to physiological activity produced by the "fall of the leaf." we do not, as a rule, find such well-marked annual rings. Sometimes, however, the annual rings are replaced by less completely
concentric zones, often stretching as wavy, pale, bar-like markings from one primary pith-ray to another, and sometimes running into one another. These "false rings," as they have been termed, which are seen in the wood of Figs, She-oaks (Casuarina), Poon (Calophyllum), etc., will be found on microscopic examination to be mainly produced by zones of wood-parenchyma.

The grouping of the vessels also affords some useful distinctive characters. Thus in Box and in Quince they usually occur singly; in Hazel and Holly in groups of from 5 to 12; in Hornbeam in long sinuous radial lines between the pith-rays; in Elms in concentric bands like false rings; and in Oaks, Chestnut and Buckthorn, from 20 to 50 together, in flame-like groups (Fig. 28).

The elements of the wood are generally parallel in direction to the axis of the stem or limb in which they occur—i.e. the wood is straight-grained; but they may be spirally twisted round the stem, or oblique, in which latter case if successive layers lie in opposite directions the wood is cross-grained. A slightly wavy longitudinal course in the elements of the wood produces the condition known as curly grain, frequent in Maple; whilst slight projections or depressions repeated on the outer surface of successive annual layers produce the bird's-eye and landscape varieties in the same wood. The presence of undeveloped buds or knots,
as in "burrns," produced on many trees by the attacks of mites (*Phytóptus*), causes similar ornamental wavings of the grain.

One main cause of the elements not being vertical is their growth in length and in diameter after leaving the cambium stage. Such growth in length causes the tips of the fibres to crowd in between those above and below, and become interlaced and oblique in direction. This adds to the toughness of the wood and makes it less easy to split, and may produce a visible twisting of stems or branches.

Up to a certain age the segments or chambers (original cells) of the vessels, the tracheids and the fibres, gradually increase each year both in length and diameter.

The pith-rays—as seen in cross-section—afford a very useful distinctive character, varying much, as they do, in number and in width. In Willow, Horse-chestnut and Ebony, as in Conifers, they are either only one cell in width, or are at least so inconspicuous as to require a lens for their observation, whilst in Oak and in the so-called She-oaks (*Casuarina*) they are conspicuous to the naked eye. They vary in width from 0.005 millimetre to a millimetre; and in number from 20 or less in a breadth of 5 millimetres, as in *Labúrnum* and *Robinia*, to 64 in the same space, as in Oak, or even 140 in the case of *Rhododéndron méxínum*.

Another character of some value in discrimination is the occurrence of *pith-flecks*, or *medullary spots*, dark rust-like patches, which occur in Alder, Birch, Hazel, Hawthorn and some species of Willow, Poplar and *Pýrus*. They are supposed by some authorities to originate in passages bored by the larvae of a species of *Típula* (wire-worm) which live in the cambium, these passages becoming filled up immediately with cellular tissue; but their origin requires further investigation. We will postpone the consideration of such characters of woods as weight, hardness, colour and odour—characters that depend little, if at all, upon structure—to a subsequent chapter. It may be noted here that, while it is the lignified elements of woods, especially their tracheids and fibres, that give them their chief technological value, it is the stored up nitrogenous and other more complex, and therefore more chemically unstable, substances that are the most combustible, *i.e.* the most readily oxidized, and also the most readily decomposed by the attacks of fungi. It is these substances, therefore, that have to be eliminated, or at least taken into account, in the processes of seasoning or preserving timber, and it is their presence which renders sapwood generally less durable than the physiologically inert heart-wood.
CHAPTER 11

THE RECOGNITION AND CLASSIFICATION OF WOODS.

Not only carpenters and other workers in wood, but engineers, surveyors and timber-merchants at present recognize the timbers with which they are familiar as to kind, and even largely as to quality, by methods obviously and confessedly empirical, mere "rule of thumb." From this it results that, though woods may be accurately discriminated generically, as oak, ash, birch or pine, the species are seldom correctly distinguished, and, as a consequence, the best wood for any particular purpose is very often not obtained.

In these empirical identifications such more obvious but variable, and therefore less trustworthy, characters as weight, hardness, colour and odour are often more used than most of the structural characters described in the previous chapter. In attempting a more thorough-going discrimination we cannot ignore these more obvious characters; but it is important to recognize their variability and consequently merely secondary importance. Details as to the testing of weight and hardness will form the subject-matter of a subsequent chapter: we are here only concerned with rough approximations.

Weight of wood.—The weight of wood depends mainly upon two things, its compactness and its moisture. Compactness signifies the amount of woody or other solid matter in a given bulk, and this will generally be greater in slow-growing than in quick-growing species, greater in heartwood than in sapwood. Moisture is so far more variable in amount in the same wood, according to the extent to which it has been naturally or artificially seasoned, that no comparison of the weights of different woods can be of any value unless the samples have been kiln-dried, and even by this method it is difficult to secure a uniform elimination of moisture. If finely powdered and completely dried, all woods have a density or specific gravity—a weight, that is, as compared to that of water—of approximately 1.5. Many tables have been published giving the density or specific gravity of various woods to three or even four
places of decimals. A more useful form of statement, however, is perhaps the weight of a standard cube, either that of a cubic foot in pounds or that of a cubic decimetre in grams.\(^1\) Thus, while water weighs 62.321 lbs. per cubic foot, timbers range from 13 to 85 lbs. per cubic foot.

They may be grouped from this point of view in the following six grades:

<table>
<thead>
<tr>
<th>Approximate weight of 1 cubic foot in pounds.</th>
<th>Specific gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Very light, Spruce, Willow and most Poplar.</td>
<td>(\frac{26}{29})</td>
</tr>
<tr>
<td>2. Light, Northern Pine, Hemlock Spruce, Linden, Chestnut.</td>
<td>(\frac{45}{50})</td>
</tr>
<tr>
<td>3. Medium, Pitch-pine, Douglas Spruce, Sycamore.</td>
<td>(\frac{56}{60})</td>
</tr>
<tr>
<td>4. Heavy, Most Birch, Beech and Walnut.</td>
<td>(\frac{67}{70})</td>
</tr>
<tr>
<td>5. Very heavy, Hornbeam, Hickory and good Ash and Elm.</td>
<td>(\frac{78}{80})</td>
</tr>
<tr>
<td>6. Heaviest, Some Oak, most Teak, Mahogany, Jarrah, Mora and Greenheart.</td>
<td>Above (\frac{82}{85})</td>
</tr>
</tbody>
</table>

Whilst such kiln-dried weights as those employed here range from a specific gravity of \(\frac{26}{29}\) in \(Ficus\) \(aurea\), or 13 lbs. to the cubic foot in \(Erythrina\) \(suberosa\), to 1.3 in Black Iron-wood (\(Con-dária\) \(férrea\)), or 85 lbs. to the cubic foot, as in Anjan (\(Hardwickia\) \(binátä\)), none of the native woods of temperate latitudes are, when dry, as heavy as water.\(^2\) Most of the woods in grade 6 of the above table grow within the tropics.

Hardness of wood.—Though in testing woods for engineering purposes various resistances, such as stiffness or elasticity and compressibility, have to be ascertained, hardness, or resistance to indentation, is often estimated roughly. It may be expressed with precision by the number of kilograms required to sink a punch one centimetre square to the depth of 1.27 millimetres (\(\frac{1}{16}\) of an inch) perpendicularly to the fibres of the wood, or by the number of pounds per square inch to produce such an indentation. Here too we may, perhaps, group all woods roughly into six grades:

1. Hardest, such as the Iron-wood of India, \(Mésua\) \(férrea\), which turns the edge of almost any tool, and Lignum-vitæ (\(Gwáiacum\)), which requires 793 kilograms to produce the standard indentation.

\(^1\) To facilitate the conversion of one measure into the other it may be noted that 1 cubic foot = nearly 28\(\frac{1}{3}\) (28.315) cubic decimetres, and 1 pound avoirdupois = 453\(\frac{1}{2}\) (453.592) grams.

\(^2\) This is true when the contained air is not eliminated. For more precise estimates see Chapter VII.
2. Very hard, requiring more than 3200 lbs. per square inch, such as Hickory and good Oak and Elm.

3. Hard, requiring from 2400 lbs.–3200 lbs., such as Ash, Walnut, Beech, Holly, Sycamore, and Sweet Chestnut.

4. Medium, requiring from 1600 lbs.–2400 lbs., such as Douglas Spruce.

5. Soft, requiring less than 1600 lbs., such as the majority of coniferous woods, Pine, Spruce, Cedar, Poplar, Linden and Horse-chestnut.

6. Very soft, such as the so-called Cotton-tree of India (Bómbax malabárícum), which is so soft that a pin can be readily driven into it with the fingers.

Hardness and density or weight to a great extent vary together. They also increase from the base of a stem up to its first branch, and decrease from that point upward.

Colour of wood.—The colour of the heartwood affords in many cases a useful aid in identification, while mere differences of tint are often indicative of quality or soundness. The black duramen of the Persimmon (Diospyros virginiana), of other species of Diospyros known as Ebonies, and of Laburnum (Cýtisus Labúrnum), the dark brown of the Walnuts, the purplish-red of Logwood (Hæmatóxylon campechíánun), the lemon-yellow sapwood and bluish-red heartwood of the Barberry (Bérberis vulgaris), the narrow yellow sapwood and greenish heart in Lignum-vitæ (Guáiacum officinálé), or the mottling of dark and light browns in the Olive (Ólea europáea), are obvious distinctions.

The Northern Pine (Pinus sylvéstris) presents numerous variations in the colour of its wood, as well as in its mode of branching, dependent probably in part upon the conditions under which it is grown, and the superiority of "red deal" to the more resinous honey-yellow varieties is well known in trade. Northern hill-grown wood is commonly redder than that of the south grown in plains, the finest being that of the Riga pines, with a close pyramid of ascending branches, including the timber from Smolensk, Vitebsk, Tchernigov, and Volhynia.

The Locust or False Acacia of the United States (Robinia Pseudacácia) includes at least four varieties of wood. The most durable, most beautiful, and most valuable is the red: the commonest, the green, a greenish-yellow wood (apparently the only kind imported), is next in value; the black is only recorded in the Western States; and the white is the least valuable.

In West Virginia three varieties of the Tulip-tree (Liriodéndron tulípifera) are distinguished as "White," "Blue," or "Yellow Poplar," of which only the last named is commonly shipped to
this country. Grown only for ornament in Europe, in America this tree is largely used for rafters, wainscots, roof-shingles, boxes, furniture, and turnery, and increasing quantities now arrive at Liverpool from New York under the names of American or Yellow Poplar, American Whitewood or Canary Whitewood. These names and that of "Tulip-wood" are nearly all objectionable, as previously applied to very different woods, or as suggesting a connection between the tree, a member of the Magnolia family, and the Poplars. The yellow variety of its wood comes from moist low-lying ground, and is valued for staining or polishing, by cabinet-makers, shop-fitters, and coach-builders.

Exposure to air or light darkens the colour of most wood, as is well seen in freshly felled, as compared to seasoned, Mahogany. Moisture carries this darkening deeper into the wood, whilst the black of Oak and the dark brown of Yew after prolonged immersion in bogs are well known. The translucency of all sound timber when in thin slices gives it a characteristic lustre, whilst incipient decay renders it dull and opaque. Any local departure from the natural colour peculiar to the species is an indication of incipient decay. The deterioration that sets in directly growing timber passes maturity generally shows itself first by a white colour at the centre of the butt-end of the leg. This is not a serious defect; but the yellowish-red tinge subsequently assumed indicates a loss of toughness and tenacity, and suggests that the log is not well fitted for constructive work. So too spots of discoloration scattered through a log, especially at its butt-end, are liable to prove centres from which serious decay, caused or accompanied by parasitic fungal moulds, may spread. This remark does not apply, however, to the so-called pith-flecks or medullary spots, which are often numerous in woods when perfectly sound. The reddish-brown tinge known as foxiness is a clear sign of advanced decay, unfitting wood for any purposes requiring strength; but Oak is very often much prized by cabinet-makers when in this condition, merely on account of its colour, it being then known as "Brown Oak."

Odours and resonance of woods.—The odours of woods, such as the resinous smells of Deal or Teak, the fragrance of Cedars, Toon, or Sandal-woods, the characteristic perfume of Camphor-trees and the unpleasant smells of the Stinkwood (Ocotéa bullíita) of South Africa and the Til (Oreodáphné játens) of Madeira, may sometimes be of use in discrimination, as, to an educated ear, may the notes given out by different woods when struck by a hammer. In the manufacture of musical instruments the wood must be of uniform structure, even-grained, free from knots, well
seasoned, and unbent, so that each fibre may vibrate freely. The notes emitted will vary in pitch directly with the elasticity, and indirectly with the weight of the wood.

Spruce (Picea excelsa), imported as "Swiss Pine," "Violin-wood," or "Bois de resonnance," is employed for the sounding boards of pianos and the belly of violins, whilst Maple, a dense wood, is used for the back and ribs of the latter instrument.

Classification of woods.—Obviously these "rule of thumb" characteristics are generally made use of in practice, not separately, but together. This will also be the case in the classification which we are about to propose, which refers mainly to the appearance of transverse sections, including both heartwood and sapwood.

For ready identification and comparison of timbers, considering even the great variety that are used in the arts in various parts of the world, it is obviously necessary to have some system of classification. Botanists group trees, as they do other flowering plants, in accordance with the characters of their flowers, fruit, and leaves, a method which is undoubtedly the best for the purpose of indicating the genetic affinities of the various species. As we have seen, for instance, timber-yielding trees fall naturally into two main groups, conifers and dicotyledonous angiosperms, of which the first is generally distinguished by needle-like leaves and seeds borne exposed on the inner surfaces of scales arranged in a cone, whilst the second group has generally broad leaves and the seeds enclosed in a fruit. For the practical study of timber, however, we require a scheme of grouping based upon the wood itself; and, having often to deal with converted timber it is well to be as independent as we can of characters derived from bark, or even from pith. Speaking of this problem in his excellent work, Timber and some of its Diseases, Professor H. Marshall Ward writes: "It may be doubted whether all the difficulties are likely to be surmounted... In any case, while allowing that it is as yet impossible so to arrange a collection of pieces of timber, that all the kinds can be recognized at a glance, it must be admitted that the attempt to do so at least aids one in determining many kinds."

In describing the many valuable timbers of India, Mr. J. S. Gamble makes use of eight classes of characters: (i) the size of the trees; (ii) whether they are evergreen or deciduous; (iii) the bark; (iv) the wood, its colour, hardness, and grain; (v) the annual rings; (vi) the pores or vessels; (vii) the pith rays; and (viii) other miscellaneous characters, such as concentric markings or false rings. Of these, the first three are not available to the
DISTINCTIVE CHARACTERS

student of converted timber. The annual rings by their width indicate the rate of growth, a character of great importance as to quality, if not of great distinctive value. More than 12 rings to the inch, giving, as it does, 6 feet of girth in 134 years, may be termed slow growth; from 12 to 6 rings to the inch, which would mean 6 feet of girth in from 134 to 67 years, moderate; and less than 6 rings to the inch, or 6 feet of girth in 67 years, fast growth.

The absence of pores or vessels is characteristic of coniferous woods. As to the size of pores, Mr. Gamble classifies them in 7 groups: extremely small, as in Box; very small, as in Acer píctum; small, as in Haldu (Adína cordífolia); moderate-sized, as in Mahwa (Bássia latífolia); large, as in Siris (Albízia Lébbek); very large, as in Erythrina suberósa; and extremely large, as in many climbers (Fig. 4, for instance).

So too the pith-rays, as distinctive characters, are grouped under seven types: extremely fine, as in Euónymus lácérus; very fine, as in Ebony (Diósipýros Mélanóxylon); fine, as in Siris (Albízia Lébbek); moderately broad, as in Dilléniá pentágynea (Compare Fig. 34, p. 48); broad, as in Plane (Plítanús orientális), in which case they measure 1/2 mm.; very broad, as in some Oaks, in which they reach 1 mm.; and extremely broad, as in Simára robusta. The number and distance apart of the pith-rays are also distinctive characters of consequence. When further apart than twice the diameter of the pores they may be termed distant.

There are some of these microscopic characters that are eminently distinctive of large groups, such as the Natural Orders into which botanists group plants. The Cupuliíferæ, for instance, that great group to which the Oaks, Beeches, Chestnuts and Hornbeams belong, have their pores in wavy radial lines or queues: in the Ebenácæ, or Ebony tribe, and the Sapotácæ, a closely-allied tropical Order, including the Bullet-woods (Mímusops), the pores are in short, wavy lines, and there are wavy false rings; but whilst the Ebenácæ have white, grey or black wood, that of the Sapotácæ is reddish. So too the tropical Order Anonácæ, or Custard-Apple family, which includes the Lancewood of the West Indies, has regular ladder-like transverse bars on its woods that are very characteristic.

Several of the characters used in the classification of woods, such as weight per cubic foot, hardness and amount of ash left on combustion, not only vary together, but also differ according to the age of the tree and the distance of the sample from the root. Weight, for instance, increases from the butt to the lowest branch, and decreases from the latter point upward.
OF WOOD IN GENERAL

Among minor characters sometimes of use in discriminating woods may be mentioned the colour of a solution obtained by boiling the wood in water or in alcohol, its reaction when treated with a solution of iron sulphate or perchloride, and the colour of the ash produced in burning. Jarrah, for instance, yields a black cindery mass, whilst the only less valuable paving wood Karri gives a white ash.

Unfortunately trees of the same Order, or even of the same genus, by no means always have similar woods. Mr. Gamble, for instance, cites the important genus *Dalbergia*, three Indian species of which—the Blackwood (*D. latifolia*), Sissoo (*D. Sissoo*), and *D. lanceolária*—have hard, dark-coloured, heavy woods; whilst other species have only white and often soft sapwood, not forming any 'duramen,' or heartwood. When, however, we compare heartwoods microscopically they do as a rule resemble one another in allied species.

In many cases a knowledge of the locality from which a timber comes may aid us in identifying it. Thus, save by this means, it is apparently impossible to distinguish the woods of *Cuprésus Lawsoniana* from Oregon, *C. thyóides* from the Eastern States, *Thuja gigântea*, the Canoe Cedar or Red Cedar of the West, and *T. occidentális*, the Arbor-vitae of the North-east, all of them being known to American timber-merchants as White Cedar.

The following table is by no means exhaustive, few Asiatic or Australian woods being, as yet, classified in it. It has seldom been possible to carry the discrimination further than genera. Though obvious naked-eye characters have been largely employed, use is also made of those seen only in microscopic sections. For

Fig. 29.—Transverse section of Linden, a ring-porous wood, showing three annual rings. (After Van Tieghem, from *The Elements of Botany*, by permission of Mr. Francis Darwin and the Syndicate of the Cambridge University Press.)
this purpose it is only necessary to take a single shaving, across
the grain, with a well-sharpened plane, put it at once into methyl
blue or some other die, and then mount it as an ordinary micro-
scopic slide. The first character to be observed is the presence
or absence of "pores" or the transverse sections of large tracheae.
If they are absent, which practically means that the wood is
coniferous, we next look for conspicuous resin-canals, and for the
presence of heartwood defined by a distinct colour. The out-
lines of the annual rings, the hardness, colour, weight, taste and
smell of the wood then afford further means of identification;
whilst such microscopic characters as the presence of tracheids
in the pith-rays, or of spiral thickening in the tracheids, are only
requisite as a last resource. Where, on the other hand, the
presence of "pores" indicates that the wood is that of a broad-
leaved tree, we first note whether there are, or are not, distinct
annual rings, or whether "false rings" of wood-parenchyma are
present; then whether the "pores" are so collected in the
inner or spring portion of each ring that we should class the
timber in question as "ring-porous" (Fig. 29), or whether they are
so scattered that we may call it "diffuse-porous." The grouping
of the pores, the prominence of the pith-rays, the weight, hardness,
and colour here again furnish subsidiary characters.

I. CONIFEROUS OR NON-POROUS WOODS.

No visible or conspicuous pores on a transverse section, even
when magnified, the wood containing no tracheae or true vessels,
except immediately round the pith. Resin-canals often present
in the autumn wood. Annual rings generally sharply marked
by denser, dark-coloured autumn bands. Pith-rays very fine and
numerous, invisible to the naked eye.

A. Without conspicuous resin-canals.

1. No distinct heartwood: rings well rounded.
 a. Yellowish-white, soft: no tracheids in the pith-rays.
 Abies. The True or Silver Firs, e.g. A. pectinata of
 Central Europe, A. Webbiána of the Himalayas, A.
 balsámea, the Balsam Fir of the North-Eastern United
 States, and A. grándis, A. cóncolor, A. amábilis, A.
 nóbilis, and A. magnífica of the Western States.
 b. reddish, soft, brittle: pith-rays with tracheids. Tsúga.
 The Hemlock Spruces, including T. canadénsis of North-
 east, and T. Mertensiána of North-west America.
2. Heartwood present and contrasting in colour.
 a. Heavy, hard, non-resinous, dull. Heartwood brownish
 or orange-red: sapwood lemon-colour. Rings excentric,
 wavy and sinuous. *Taxus*. The Yews, including *T.
 baccata* of Europe and Northern Asia, and *T. brevifolia*
 of North-west America.
 b. Light, soft to medium hard, usually aromatic. Heartwood
 rose, yellowish or brownish red: sapwood yellowish
 white. Rings wavy and sinuous. Pith-rays very fine. The
 " Red Cedars," *Juniperus*.
 Heartwood rose to brown red. *J. virginiana*.
 Heartwood yellowish-brown. *J. communis* and *J. Oxycedrus*.
 c. Very light, very soft, odourless. Heartwood light-red,
 turning brownish: sapwood narrow, amber-coloured.
 Rings regular. Pith-rays very distinct, especially on
 the radial section. Resin-canals in a single row, or
 absent. " Redwoods." *Sequoia*.
 d. Medium heavy and hard, often camphor-scented. Heart-
 wood rich brown, often mottled with darker brown
 or yellow: sapwood narrow, white. Rings wavy.
 " Cypress Pines," etc. *Callitris*.
 e. Light, moderately hard, or soft, fragrant. Heartwood
 yellowish or reddish-brown. Rings well rounded.
 Resin-ducts few and narrow. *Cedrus*.

3. Heartwood present, but differing only in shade from the sap-
 wood, of a dull yellowish or greyish brown.
 b. Light, soft, with slight resinous odour, tasteless. Rings
 finely and coarsely wavy. Pith-rays very fine but
 distinctly coloured. " White Cedars," including *Thuya
 occidentalis* and *T. gigantea*, *Cupressus thyoides* and *C.
 Lawsoniana*.
 c. Light, soft, with resinous smell and peppery taste. Incense
 Cedar, *Libocedrus*.

Near here belong apparently the Huon Pine and allied species, *Dacrydium*, etc.

B. Resin-canals present, at least in autumn wood.

1. Heartwood not distinctly coloured, white: resin-canals few,
 very narrow: rings imperfectly rounded; tracheids in pith-
 rays. Spruces, *Picea*.
2. Heartwood distinct.
 a. Resin-canals not numerous, nor evenly distributed.
(i) Canals solitary or here and there in pairs; tracheids without spirals. Heartwood reddish-brown, sapwood yellowish. Knots irregularly distributed. Larches or Tamarack, *Lárix*.

(ii) Canals in groups or lines of 8–30; tracheids with spirals, otherwise resembling Larch. Douglas Spruce, *Pseudotsúga*.

Fig. 30.—Radial section of Scots Fir (*Pínum sylvístris*). Magnified 100 times.

a. narrow tracheids of autumn wood with small bordered pits on their radial walls;

b. broad spring tracheids;

cd. resin-duct lined with epithelium; e. parenchyma of pith-ray with large simple pits;

f. tracheids of pith-ray with small bordered pits and dentate projections. (From Hartig's *Timbers and how to know them*, by permission of Dr. Somerville and Mr. David Douglas.)

(i) Wood tolerably hard and firm; transition from spring to autumn wood abrupt; resin-canals more numerous in autumn wood; heartwood reddish; tracheids of pith-ray with dentate projections, when seen in radial section (Fig. 30). Hard Pines.

* 1 or 2 simple pits on radial wall of each tracheid of pith-ray. "Norway pine" of U.S.A., *Pínum resínósa.*

** 3 to 6 such pits.

† Wide rings. Loblolly and Short-leaf Pines of U.S.A., *P. tæđa* and *P. echínítá*; Northern,
Black Austrian, and Cluster Pines of Europe, *P. sylvestris*, *Laricio*, and *Pináster*.

** Rings broad: wood redder. Weymouth and Sugar Pines, *P. Stróbus* and *P. Lambertiána* of U.S.A.; and probably the Aleppo Pine, *P. halepénisíns*.

II. LEAF-WOODS, HARD-WOODS, OR POROUS WOODS.

Pores visible on transverse section, either to the naked eye or when magnified, often characteristically grouped, especially in spring-wood. Pith-rays either all fine or some broad.

A. Without distinct annual rings, though sometimes with false-rings or partial zones of wood-parenchyma. Mostly tropical.

1. With false rings.
 b. All pith-rays narrow.

 (i) False rings very distinct.

 ** Dark heavy heartwood. *E.g.* the very hard, tough purplish-brown Jhand, *Prosópis spícígera*.

CLASSIFICATION OF HARD-WOODS

compact, yellow wood, characteristically mottled with brown, with uniformly scattered vessels, may, perhaps, be classed here.

2. Without false rings.
 a. Soft, with no distinct heart. Silk-cotton, Bombax, Mango, Mangifera, etc.
 b. Harder, denser, usually with distinct heart. Siris, Albizzia Lébbek, Eng. Dipterocárpus tuberculáitus, etc. (Compare Fig. 33, p. 47.)

B. With distinct annual rings.

1. Ring-porous: vessels in spring wood large or numerous, those in summer wood small or few and scattered.
 a. Vessels in the spring wood larger.

Fig. 31.—Transverse section of Common Ash (Fráxínum excílís), photographed from nature.

(i) Vessels in tree-like or dendritic groups, or in circles, often scattered in the inner part of the rings.
* Slightly dendritic or concentric: pores in summer wood minute, regularly distributed, singly or in groups, or in short peripheral, but never radial lines
‡ Pith-rays minute, scarcely distinct.
§ Wood heavy and hard: vessels in summer wood not in clusters, or 2–4 together.
 (a) Heartwood not yellow in radial section; continuous zone of pores in spring wood. Ash, Fráxínum.
 Vessels in summer wood in peripheral lines.
OF WOOD IN GENERAL

White and Green Ash, *F. americana* and *F. viridis*.

Vessels in summer wood not united in peripheral lines. English, Black and Red Ash, *F. excelsior* (Fig. 31), *F. sambucifolia*, *F. pubescens*.

(b) Heartwood yellow, very heavy and very hard. Osage Orange, *Maclura*.

+++ Pith-rays very fine, but distinct: heartwood reddish brown: sapwood yellowish white: vessels

in summer wood single or in short lines: odour. *Sassafras*.

+++ Pith-rays fine, but distinct.

§§ Heavy: moderately hard or hard.

(a) Vessels in summer wood very minute, usually in small clusters of 1–8, open: heartwood yellow to light orange-brown, reddening on

Fig. 32.—Transverse section of Bastard Bullet-wood (*Humiria floribunda*).

(b) Vessels in summer wood small or minute, usually solitary: heartwood cherry-red. Coffee Tree, *Gymnocladus.*

+++ Pith-rays fine, but very conspicuous to the naked eye: heartwood rose-red to brownish: sapwood pale lemon or greenish white; vessels open. Honey-Locust, *Gleditschia.*

++++ Pith-rays rather coarse, lustrous: heartwood brownish or greyish orange: sapwood broad, yellowish: broad zone of very large open pores in spring wood: vessels in autumn wood 1–5 together in segments of circles. *Ailanthus.*

** Strikingly dendritic: pores in summer wood minute or small, appearing as finely feathered hatchings on tangential sections.

† Vessels 1-8 together: pith-rays fine, but distinct.

‡ Heartwood yellowish or greenish brown to black, hard: sapwood narrow, yellowish. *Laburnum.*

+++ Heartwood greenish or yellowish white, hard, heavy: sapwood not differing. Hackberry. *Celtis.*
†† Vessels 1 to several dozen together, in wavy peripheral lines in autumn wood: heartwood brown, hard, heavy: sapwood yellowish-white. Elm, *Ulmus*.

‡ Pores of spring wood forming a broad band of several rows. English, Scotch and Red or Slippery Elm, *Ulmus campestris, montana* and *fulva*.

+++ Pores of spring wood in a single row, or nearly so. White, Rock, Winged and Cedar Elms of U.S.A. *Ulmus americana, racemosa, alita* and *crassijolia*.

*** Vessels in radial lines or queues, wavy or branched, the branches often uniting.

† All the pith-rays very broad.

‡ Wood beset with large pores: heartwood reddish-brown. Vine, *Vitis*.

‡‡ Pith-rays so narrow as to be hardly perceptible: heartwood oak-brown: zone of vessels very broad and vessels large, but less crowded than in Oak. Chestnut, *Castanea*.

![Image](image-url)
††† Some of the pith-rays very broad and easily visible to the naked eye. Oaks, Quercus.

‡ Pores in summer wood very fine, numerous and crowded: heartwood light brown. White Oaks, Q. álba, bicolor, palustris, obtusilóba, etc., in U.S.A. and Róbur in Europe.

‡‡‡ Pores few, gradually but slightly diminishing across the entire ring: wood very dense and heavy. Live Oaks, Q. virens of U.S.A., Ilex and Súber of Europe.

**** Vessels in summer wood mostly but little smaller than those of the spring wood, scattered, solitary, or few together. Mostly hard, heavy woods.

† Fine peripheral lines of wood-parenchyma: pith-rays fine: zone of vessels interrupted: summer wood reddish nut-brown. Hickories, Hicória.

†† Similar, but with blackish heartwood. Persimmon, Diospéryros virginiáná.

††† Vessels distinct and large, sometimes filled with white phosphate of lime: pith-rays fine, distinct, light-coloured: wood brownish-red. Teak, Tectóna.

†††† Vessels equally distributed: pith-rays fine, distinct: wood a warm red brown, often beautifully figured. Mahogany, Szwéténia Mahágoni.

††††† Vessels very large, open or partly filled with a brown resin: pith-rays distinct: heart-wood cin namon brown, very soft, fragrant. Honduras Cedar, Cedréla odoráta.

b. Vessels in the spring wood not larger, but generally more numerous and crowded than in the autumn wood.

(i) Pith-rays distinct.

* Heartwood reddish-brown, zone of vessels in spring wood lighter coloured: vessels 1–4 together: hard, heavy. Plum, Prúnus doméstica.

(ii) Pith-rays not at all, or scarcely visible.

* Heartwood orange-red: sapwood yellow: vessels about 50 together in branching flame-like groups: hard, heavy. Buckthorn, *Rhámnnus cathárticus* (Fig. 28).

** Similarly coloured; but vessels 1–7 together, not in flames, but equally distributed and minute: soft. Berry-bearing Alder, *Rhámnnus Frángula*.

Fig. 35.—Transverse section of Sumach (*Rhús Cútinus, L.*).
**** Heartwood greenish to golden: sapwood narrow, white: vessels 1-7 together: harder. Venetian Sumach, or Wig-tree, *Rhûs Cotinus* (Fig. 35.)

***** Heartwood light brown, touched with red or violet: sapwood narrow yellowish-white: hard, heavy. Lilac, *Syringa vulgaris*.

2. **Diffuse-porous**: vessels numerous, usually minute, but neither larger nor more numerous in the spring wood: rings sometimes rendered distinct by closer texture of the elements of the autumn wood.

 a. Vessels large, open, but few.

(i) Wood soft and light: heartwood light reddish-brown. Butternut or White Walnut, *Juglans cinerea* (Fig. 36).

b. Vessels minute.

(i) Broad pith-rays present.

* Pith-rays numerous, mostly broad, crowded: rings bending outwards at the rays: reddish-white or light brown:

Fig. 36.—Transverse section of Butternut (*Juglans cinerea*).
hard, moderately heavy. Plane, Buttonwood or Sycamore, *Plátanus occidentális*.

** Only some of the pith-rays broad.

‡ Broad rays numerous: rings bending inwards at the rays: reddish-white or light brown: hard. Beech, *Fágus*.

+++ Broad rays few, light-coloured: rings very sinuous, bending inwards at the rays: yellowish-white: hard, heavy, tough. Hornbeam, White or Blue Beech, *Carpínus*.

++++ Broad rays few: rings almost circular: reddish-white, soft. Hazel, *Córylus*.

(iii) No broad pith-rays.

* Pith-rays narrow but quite distinct to the naked eye.

† Wood hard.

¶ Wood white, hard and heavy: pith-rays straight: Sycamore or Plane. *A. Pseudo-plátanus*.

|| Similar; but with winding pith-rays. *A. opúlifólium*.

++ Rings slightly wavy.

|| Wood reddish, very hard, sometimes with curled, bird’s-eye or blister figures.

(a) Sometimes with pith-flecks. Field Maple, *A. cam-péstré* and Moose-wood, *A. pennsylvánicum*.

(b) Without pith-flecks. Rock or Sugar Maple, *A. bar-bátum*.

||| Wood reddish, but lighter, hard, with very fine but conspicuous pith-rays.

(a) With distinct, dark-coloured heartwood. Red Maple, *A. rúbrum*.

(b) Without distinctly coloured heartwood. Norway or Plane Maple, *A. platanóides*.

||| Wood light-coloured, reddish, or yellow, lighter and softer.

(a) Red-tinged, sometimes curled. Silver or soft Maple, *A. saccharínun*.

(b) Yellowish, with very broad rings: vessels minute, numerous. Box-elder, *A. Negundo*.
§§ Pith-rays very fine, but distinct, not markedly satiny; rings circular; wood white or greenish; vessels minute. Holly, Ilex.

†† Wood soft or very soft.

§ Pores crowded, occupying nearly all the space between the pith-rays.

‡ Yellowish-white, often darker or greenish in the heartwood. American White-wood, Yellow-wood or Yellow Poplar, *Liriodendron tulipifera*, and Cucumber-tree. *Magnolia acuminata* and allied species.

‡‡ Sapwood greyish-white; heartwood light to dark reddish-brown, heavy, but soft. Sweet Gum, Bilsted or Red Gum of U.S.A., *Liquidambar styraciflua*.

§§ Pores not crowded, occupying not more than one-third of the space between the pith-rays: brownish or reddish-white to light brown; only slightly silky; pith-rays less distinct and less lustrous than in the Maples: light. Linden, Lime or Basswood, *Tilia*.

** Pith-rays not distinct to the naked eye.

† Wood hard: distribution of vessels uniform, or sometimes in wormlike lines.

§ Vessels 1–3 together.

‡ Wood flesh-coloured, with pith-flecks. Hawthorn, *Crataegus Oxyacantha*.

§§ Vessels 1–4 together.

‡ Without pith-flecks.

† Heartwood flesh-coloured. Dogwood, *Cornus sanguinea*.

‡‡ With pith-flecks.

§§§§§ Light yellow, very compact and fine-grained, almost horny: rings scarcely visible: heavy. Box, *Búxus*.

†† Wood soft.

§ Creamy white, yellowish or reddish, light: vessels 1–7 together, indistinct: rings wide. Horse-chestnut or Buckeye, *Æsculus*.

§§§§ Rings circular: vessels 1–7 together.

‡‡ With white pith-flecks: white, with no distinct heartwood. Aspen, *Pópalus trémula*.

Further details as to the main types of structure are given and illustrated in Appendix IV.
CHAPTER III

DEFECTS OF WOOD.

In every stage of their growth trees are liable to mischances, from defects of soil or climate, from accident, or from the attacks of fungi, of insects, or of other animals. Some of these mischances have permanent and important effects upon their wood. Although, in healthy surroundings and in the absence of external injury, there is no very definite limit to the longevity of any species of tree, after it has reached maturity a certain deterioration generally shows itself at the centre of the trunk, which will subsequently manifest itself as decay. After felling, shrinkage in the process of drying and the attacks of species of fungi, mostly differing from those that injure growing trees, develop further defects in timber of the very gravest practical import to the consumer.

The attacks of insects or of fungi upon the leaves of trees, though they may prove fatal to seedlings, have generally in later stages of growth merely the effect of injuring the nutrition of the plant. They may thus diminish the amount of wood formed in the season, and may, therefore, be of first-rate importance to the forester or timber-grower, but do not in general concern the timber-user.

Cup-shake.—When, however, the caterpillars of some moths, such as Tórtrix viridána, entirely destroy the young leaves of the Oak in June, though the tree may put out new leaves in July and August, it will only do so at the expense of wood-forming reserve-materials, and there may possibly result so complete a check to the nutrition of the tree that the wood of one year may fail to cohere to that of the preceding season, a cup-shake or ring-shake being produced (Fig. 37).

Such a separation between successive annual rings—a defect seriously interfering with the conversion of timber into planks—is, however, undoubtedly produced for the most part by various other causes, and may be briefly here described. It occurs in various species, such as Hazel, Oak, Poplar, Pitch Pine, and Lignum-vitæ, and seems to some extent local. The Oaks of Sicily, for instance, a variety of our British species, Quércus Róbur, and those
of the Forest of Dean (Q. Róbur, var. sessiliflóra), are peculiarly subject to this defect, which in the latter case has been doubtfully ascribed either to the rocky character of the soil or to the swaying to and fro of the tall trees by strong winds. This action of wind bending the rings of wood alternately in opposite directions, in a manner obviously calculated to tear them apart, may well explain the occurrence of this form of shake in Poplars. Cup-shake has also been attributed to frost, the rings of sapwood and heartwood in a living tree containing varying proportions of water and the outer layers being most likely to freeze first. The explosive rending of trees by frost, the noise of which disturbs the stillness of night in the forests of North America, may in this way be sometimes concentric in its action. This may explain the prevalence of this defect in the swamp-loving Pitch Pine (Pinus austrális) of Vir-

![Fig. 37.—Cup- and heart-shake.](image)

ginia. Frost cannot, however, be the cause of the frequency of cup-shake in the tropical Lignum-vítæ; but in this case the sun may have produced an effect similar to that which sometimes occurs when part of the cambium ring at the base of a stem is injured by a forest fire. Lastly, in some Pines this defect is the result of the attacks of certain fungi (Tramétés), the "spawn" or "mycelium" of which spreads as a felted mass of colourless mould especially in the cambium. Cup-shake occurs most frequently at the base of the stem: when of long standing, it is often accompanied by traces of rot, and in many cases it is also associated with star-shake.

Star-shake.—Star-shake consists in clefs radiating from the pith along the planes of the pith-rays and widening outwards (Fig. 38).

It occurs in many species and in trees of all ages. The clefs may only extend a small distance and be so slightly open when the
tree is newly felled as to be scarcely perceptible. In such a case they generally widen during seasoning, from the more rapid drying of the outer layers, their sides becoming darker in colour than the rest of the wood. In other instances the clefts may have extended to the circumference of the stem, in which case they may have been so overgrown by new wood as to form a longitudinal rib down the exterior of the bark, a sure sign of the defect to the experienced timber surveyor. Such extreme cases at least seem to be always the result of frost or sun, the latter being specially frequent in the case of smooth thin-barked species, such as Beech and Hornbeam, in which lines of the cortex are killed by sun-burn.

Heart-shake.—More common than either cup-shake or star-shake is heart-shake, one or two clefts crossing the central rings of the stem and widening towards the centre (Fig. 39).

This may occur in almost every kind of timber, whether coniferous or broad-leaved, and seems to be quite independent of soil or situation. Among species least affected by it Mr. Laslett mentions the so-called African Oak or Teak (*Oldfieldia africana*), Sabicu, Spanish Mahogany, Common Elm, Dantzic Fir or Redwood (*Pinus sylvestris*), Canadian Red Pine (*Pinus resinosa*), and, somewhat less free from it, Canadian Yellow Pine (*Pinus Stróbus*); whilst as exceptionally liable to the defect he mentions the true Indian Teak (*Tectóna grándis*), the Australian Tewart (*Eucalýptus gomphocéphala*), the Riga and Swedish varieties of *Pinus sylvestris*, and *P. australis*, the Pitch Pine of the southern United States.

1 *Timber and Timber-trees*, d. ii., p. 54
Greenheart (*Nectandra Rodiaei*) commonly develops two crossing heart-shakes for two or three feet up the butt-end of the log. One of the worst forms of this defect is when, owing to spiral growth, the shake shifts its direction as we trace it up the stem. It may in this way sometimes be nearly at right angles at one end of the tree to its direction at the other, thus rendering the conversion of a log into plank wellnigh impossible.

It is this hindrance to the conversion of timber into plank that constitutes the main practical importance of all forms of shake, as they do not at first involve any decay, and consequently do not much interfere with the employment of the logs in bulk. Heart-shake, however, is probably in itself an indication of that incipient decay that comes when timber has passed its maturity and the older layers shrink more than the outer.

![Heart-shake](image)

Fig. 39.—Heart-shake.

Rind-gall.—Somewhat allied to cup-shake is the local defect known as *rind-gall*. This originates from the destruction of part of the bark of a growing tree, whether by another tree falling against it, the scorching of a forest-fire, the gnawing of an animal, or even the cutting of initials by some misguided youth. If the cut has penetrated to, exposed, and destroyed the cambium, there may, in spite of the gradual overgrowth of layers of new wood from the margins of the injury, be a local want of cohesion between the exposed wood and that subsequently formed over it. This defect may entirely escape detection from the outside of an unconverted log.

Decay.—Bright-looking wood is generally of better quality than that which is dull; while any departure from the usual colour of the timber of the species is commonly, as we have
already stated, an indication of at least incipient local decay. Discoloured patches, such as occur on the exterior of the butt-ends of some masts of the Kauri (or Cowdie) Pine of New Zealand (Agathis australis), will generally be found to be relatively brittle. They are usually white at first and are then of small extent or consequence; but when they are yellowish-red, the mischief has gone further; and a decided red or foxy colour indicates a widespread decay so serious as to disqualify the timber for purposes of construction. Oak, however, in an advanced state of foxiness and decay is in request for cabinet-work. In old Beeches, and other trees, decay appears to begin in the pith and spread outwards, such wood being known in France as bois rouge; but it very frequently originates in a broken branch, a rind-gall, or a star-shake reaching the surface, so that air, damp and fungi find access to the wood of the tree. It is this decay spreading from the pith that gradually hollows out old trees; but this hollowing occurs much earlier in pollards where water and rotting leaves may accumulate in the fork of the crown, or in trees in which broken limbs or other injuries have been neglected. The breaking of a small branch may set up decay, and yet such a druxy knot, as it is termed, may gradually be covered up with sound wood, so that only a slight swelling may indicate the defect at the surface of the stem. Any such excrescence should be removed directly a tree is felled; as, though the healing over, by excluding further damp, may have checked the mischief, there is no telling from the outside how deep it may have extended, and such a patch of decayed wood, if left to itself, is certain on being laid bare in the process of conversion to absorb more atmospheric moisture and so enlarge itself.

It is now clearly understood that the pure lignified cellulose of seasoned wood is practically imperishable. It may be splintered and pulverized by mechanical action, but neither air nor moisture have per se any destructive effect on it. Originally secreted by the protoplasm of the vegetable cell, it is, however, liable to be redissolved or digested by this powerful natural solvent, or, perhaps, rather by the ferments which it contains. This protoplasmic fermentative action may affect wood in two ways. When wood is "green" or imperfectly seasoned, it may be set up by the nitrogenous matter remaining in the tissues of the wood itself. On the other hand, after seasoning, if proper ventilation is absent, and if the tissues of the wood have not been refilled with some preservative, it may originate in the action of the living protoplasm of some other plant, such as a "mould" or saprophytic fungus, or the cellulose-bacteria of the soil.

Fungal attack.—Fungi excrete ferments, which, in the presence
of moisture, air, and some degree of heat, exert a solvent action, some on cellulose, some on lignin. The fungus feeds on what it dissolves, and specially flourishes in the living nitrogenous matter of sapwood. As no fungal growth takes place without water and air, neither absolutely dry wood, nor completely submerged wood, will decay. Some fungi confine their attacks to living trees, others to timber after it is felled; and of the first-mentioned class some are true parasites, attacking the roots of living and otherwise healthy trees, whilst others are wound-parasites, the minute spores or reproductive germs finding their way into the tree through some wound not produced by the fungus. Holes bored by insects, excoriations of the bark by animals of any kind, and branches broken by wind or badly pruned, afford wounds suitable for the attacks of these last. When the disease caused by a wound-parasite manifests itself first in the cortical and cambium tissues it is termed a canker. Some fungi are confined to single species of trees, others attack conifers only, others hard woods only, whilst some seem capable of attacking trees of all kinds alike. The fungi most destructive to timber belong to the more highly organized subdivisions of the class, the Peziza, which produces the canker in the Larch, being, for instance, one of the Ascomycetes, whilst many others known as "wet rot," "dry rot," etc., are members of the order Hymenomycetes, that to which the mushrooms belong.

One of the most generally destructive of these last is the toadstool Agarius (Armillaria) melleus, clusters of the yellow fructifications of which are often seen near the base of unhealthy Beech, Spruce, Oak, or other trees in autumn. The upper surface of its tawny cap is shaggy with hair; the gills on the under surface run down on to the stalk, round which there is a well-marked torn ring; and the spores, when ripe, are white. Underground, instead of the delicate white "spawn" or mycelium, resembling cobweb, which is common among fungi, this species produces stout, purplish-black strands, which may extend, at a depth of six or eight inches below the surface, to a distance of several feet. These strands are known as rhizomorphs, from their root-like appearance. They have growing points capable of penetrating the cortex of living tree roots, and, when they have done so, extend into the cambium and send off branches into the pith-rays and the wood. When this parasite attacks a resinous tree, such as Spruce, a quantity of the resin flows from the pierced root, and the fungal threads travel partly along the resin-passages. In these cases the fungal threads commonly exude a fermentative secretion, by means of which they soften and dissolve the walls of cells or vessels: on penetrating cells containing protoplasm, starch, etc., they readily absorb such
substances; but they also destroy cellulose and lignin itself, at first producing various discolorations of the wood, and ultimately reducing it to the condition of "touchwood" or "punk." It will readily be understood that all these progressive changes are accompanied by a decrease in the specific gravity of the timber, for the fungus decomposes the substance much in the same way as it is decomposed by putrefaction or combustion, i.e. it causes the burning off of the carbon, hydrogen, and nitrogen, in the presence of oxygen, to carbon-dioxide, water, and ammonia, retaining part in its own substance for the time being, and living at its expense.

Another true parasite, *Tramètes radicipérdu*, only attacks conifers. Its spores, which can be readily conveyed in the fur of mice or other burrowing animals, germinate in the moisture around the roots: the fine threads of "spawn" penetrate the cortex and spread through and destroy the cambium, extending in thin, flat, fan-like, white, silky bands, and, here and there, bursting through the cortex in white oval cushions, on which the subterranean fructifications are produced. Each of these is a yellowish-white felt-like mass, with its outer surface covered with crowded minute tubes or "pores" in which the spores are produced. The wood attacked by this fungus first becomes rosy or purple, then turns yellowish, and then exhibits minute black dots, which surround themselves with extending soft white patches.

The many pores in the fructification of *Tramètes* indicate its kinship with the genus *Polýporus*, many species of which are well known as "shelf-funguses," projecting like brackets from the stems of trees, and having their pores on their under-surfaces. Most of these are wound-parasites. One of the commonest, the yellow cheese-like *Polýporus sulphýreus*, occurs on Oak, Poplar, Willow, Larch, and other standing timber, its spawn-threads spreading from any exposed portion of cambium into the pith-rays and between the annual rings, forming thick layers of yellowish-white felt, and penetrating the vessels of the wood, which thereupon becomes a deep brown colour and decays.

The ravages of such wound-parasites are often the result of neglect, broken branches being left untrimmed as a lodgment for the spores of the fungus. We have known an Elm-tree to be divided in this way by a broad zone of touchwood, originating from the attack of a *Polýporus* on a snag, so that, though sound timber both above and below, the tree snapped readily in half in a slight gust of wind.

1 *Timber and some of its Diseases*, by Prof. H. Marshall Ward, F.R.S., to which work I am particularly indebted in the present chapter.
Another species of *Polyporus, P. vaporarius*, though it acts as a wound-parasite on coniferous trees, frequently develops and does its chief mischief in stacked timber. It is then commonly confused with the true dry rot, of which we shall speak presently. Its spores (which are, as in most fungi, extremely minute and produced in myriads) fall into cracks of wood, whether the result of injuries to timber when standing, or "shakes" developed after the tree is felled and barked. As their spawn-threads develop in the timber and gradually decompose and absorb its substance, the wood shows deep red or brown streaks, warps and cracks up, and becomes thoroughly rotten, and is penetrated by thick snowy-white ribbons of the felted fungus. In stacked timber this rot frequently develops mainly in the lower, less ventilated, layers of a stack.

Some of the diseases that show themselves conspicuously in the cortex and are known as *cankers* may be set up by frost, by sun, or by insect attack; but in Oak, Beech, Maple, Hornbeam, Alder, Lime, and Larch, canker is mostly the result of wound-parasite fungi. The spores of most, if not all, of these fungi are incapable of penetrating sound cortex; but how many are the chances that bring about small ruptures of this layer! In the case of that most destructive of cankers, the Larch disease, it has been shown that the fungus which produces it, *Peziza Willkómmii*, is far less common and less deadly in the drier colder air of Alpine heights where the Larch is indigenous; but that late frosts attacking the more advanced and sappy trees in the moist air of the lowlands kill many a shoot and form wounds by which the spores can enter. The moister and warmer air at the same time is more favourable to the growth of the fungus. Its spawn-threads ramify in all directions through the wood, turning it brown and drying it up; while resin flows out at the wound in the bark, which enlarges yearly as the tissues surround it with successively wider-gaping lips of cork in the futile effort of the tree's vitality to heal it over. Round the margins of the wound appear the little orange cup-shaped fructifications of the *Peziza* scattering their spores so as to infect other trees; whilst the ultimate effect is that each tree is ringed by the destruction of its cortex and then generally succumbs.

Many of the fungi which attack standing timber are so ruinous in their action that the wood of the affected trees will never reach the hands of the timber-merchant; but the wood-worker is more seriously interested in those diseases which attack converted timber. Of these the most important is "dry rot" (*Merulius liérymans*). The spores of this fungus germinate on damp wood, provided some alkali is present, such as the ammonia fumes in stables. Then, under the influence of warm, still air (*i.e.* the
absence of ventilation) its spawn-threads spread not only in all
directions through the wood, forming greyish-white cords and
flat cake-like masses of felt on its surface, but even over surfaces
of damp soil or brickwork, and thus to other previously uninfected
timbers. Feeding upon the elements of the wood, getting its nitrogen
from cells which retain their protoplasm, such as those of the pith-
rays, but its carbonaceous and mineral substances from the walls
of the tracheids and other fibrous elements, the fungus destroys
the substance of the timber, lessening its weight, and causing it to
warp and crack; until, at length, it crumbles up when dry into a
fine brown powder, or, readily absorbing any moisture in its neigh-
bourhood, becomes a soft, cheese-like mass. At an earlier stage
the affected timber appears dark-coloured and dull; and, long
before its total disorganization, it will have lost most of its strength.
Imperfectly seasoned timber is most susceptible to dry rot; the
fungus can be spread either by its spawn or by spores, and these latter
can be carried even by the clothes or saws of workmen, by currents
of air, by rats, mice or insects, and are, of course, only too likely
to reach sound wood if diseased timber is left about near it; but
on the other hand dry timber kept dry is proof against dry rot,
and exposure to really dry air is fatal to the fungus. If only the
ends of properly seasoned beams which are inserted in brick walls
are previously creosoted, it will prove a most effective protection.

Burrs.—Another class of malformations of considerable interest
to the timber-merchant are the gnarled and warty excrescences
known as burrs or knausers. These are sometimes due to some
mechanical injury to the cortex, at other times apparently to the
sudden exposure of a previously shaded stem to the light, as by
the felling of a neighbouring tree. They consist of a number of
dormant buds, capable of growing in thickness and putting on
wood, but insufficiently nourished to grow in length. In course
of years they may grow several feet across, their wood being very
irregular, and, owing to its slowness of formation, very dense.
The cross-sections of these bud-axes, as in the "bird's-eye" variety
of the Hard Maple (Acer barbárum), the Elm, the Yew, the Walnut,
the Oak, and other species, furnish beautiful veneers.

Injurious animals.—Brief mention must be made here of three
classes of enemies to both living and converted timbers, viz.,
the ship-worms or Teredos, the termites (erroneously known as
"white ants"), and various insect-larvae known generally as
"worms." Terédo navális, the ship-worm, and its allies, are
bivalve mollusks, which bore into most kinds of timber when
immersed in sea-water, some very dense species, and especially
those with pungent resinous secretions, being proof against them.
On the other hand, creosoting is by no means always sufficient to keep off their attacks. Shipworms occur in all seas: they generally bore with the grain, lining their burrows with a layer of calcareous matter, and carefully avoiding one another's burrows. They will sometimes completely riddle timber within four or five years. In Australia they are known as "cobra."

The termites belong to the Neuroptera, an entirely distinct Order of the insect class from that to which the true ants belong. They occur in a great variety of species throughout the Tropics, but especially in South America, living in societies of prodigious numbers, and, no doubt, fulfilling a useful function in the economy of nature, by disintegrating, removing, and destroying wood that is already decayed, just as the ship-worms rid the seas of much derelict timber. The termites will, however, attack most species of wood after conversion, sometimes eating their way upward from the foundations of a house to its rafters until all its timbers are reduced to a mere shell, or completely destroying wooden articles of furniture. The pungent resinous secretions which repel the teredo seem also generally effective as a protection against termites.

The large and voracious larvae of some moths are most destructive to growing trees, and sometimes attack converted timbers. Very generally their eggs are laid in the bark, and the grubs generally bore downward through the sapwood. The Goat-moth (Cóssus lignipérdæ), for instance, specially attacks aged and already unsound Willows, Ash, Elm, Cork Oak, etc.; but will attack converted as well as living wood. The Wood-leopard (Zeuzera aesculi) specially attacks living fruit-trees and Horse-chestnuts, and its Australian congener, the Wattle Goat-moth (Z. eucalypti), frequents the various species of Acacia. Such insects are most destructive: but their large galleries are only too obvious in converting timber. Of the wood-boring beetles, on the other hand, many only attack unhealthy trees: others, such as Scólytus destrúctor, the Elm-bark beetle, tunnel in and under the bark, especially of fallen logs, only occasionally penetrating a small depth into the outer wood. Others are far more destructive, in many cases mainly attacking sound converted timber. The widespread Death-watch beetles, for instance (Anobium domesticum, A. tessellatum, and allied forms), the chief cause in England of the familiar "worm-holes" in Oak, frequently entirely destroy the timbering of roofs, and still more commonly riddle our smaller articles of furniture. In the Tropics and warmer Temperate regions their place is largely taken by the numerous family Bostrýchidae, some of which attain far larger dimensions.
CHAPTER IV

SELECTION, DURABILITY, SEASONING, AND STORAGE OF WOODS

Selection of wood. — The wood-worker must, of course, determine first what kind of wood is best suited for his purpose, and then take steps to secure that the wood he obtains is a sufficiently good sample of its kind.

It cannot, unfortunately, be at all assumed that the botanical determination of the species will prove a guarantee of the quality of a timber. Experience shows that Pinus sylvestris or Quercus Robur from different parts of Europe, or even from different situations in one country, or Tectona grandis from different districts of India, may be a very different thing from the same species of Pine, Oak, or Teak from elsewhere. Botanical identification, therefore, though a most important preliminary, will not obviate other tests. For many purposes, such as mere temporary hoardings, crates, packing-boxes, or the carcasses of low-priced furniture, cheapness may be a consideration paramount to all others.

Speaking generally, warm countries, sunny exposures, and dry, elevated land produce heavier, harder, and stronger timber.

It is important that timber should be selected for felling when mature, when the quantity of sapwood is small and the heartwood nearly uniform, hard, compact, and durable. After this stage, wood may become brittle, inelastic, discoloured, and perishable, while before maturity, when the sapwood is in excess, it will seldom be durable. Oak, for instance, for building, should not be less than 50 nor more than 200 years old, and Teak not less than 80 years of age.

Autumn or winter felled wood, owing to the lower temperature, splits less in drying, and for this reason, and on account of the season being less favourable to fungus-growth, is generally more durable than that felled in the spring or summer.

Shakes, knots, especially if disposed in a ring round a stick, upsets, i.e., fibres crippled by compression, or cross-grain are all defects which reduce the strength of timber. Both butt and top should be close, solid, and sound, any sponginess near the pith,
discoloration at the top, rind-gall, worm-holes, or splits produced in seasoning being indications of weakness. Bright-coloured and smooth-working wood is generally better than any that is dull or works with a rough surface; and heavier wood is in all respects stronger than lighter wood of the same species.

Where lightness and stiffness are desirable, coniferous wood is generally preferable; and, where a steady load has to be supported, the denser coniferous woods equal those of broad-leaved trees, which are costlier and heavier. Where, however, moving or jarring loads have to be sustained, the tougher hard woods should be used.

Conversion of timber.—Split wood is straighter in grain and more easily seasoned than sawn timber; and, when sawn, timber will prove stronger and more durable, will season better and will warp less if sawed as nearly as possible along the radii of the annual rings, or, as it is termed, "quarter" or "rift" sawed. This method is more expensive than tangent sawing; but a little consideration will show how it secures—in flooring boards, for instance—a more even exposure of the grain—i.e., the hard bands of summer wood—on the surface. It must be borne in mind that in a squared beam with the pith in its centre, whilst we have some complete annual cones of wood appearing as rings at the butt end and tapering to a point or to smaller rings at the top, we shall also have other imperfect cones represented by rings at the top but presenting tangent or "bastard" faces on the sides of the beam and not represented at the butt. These different "structural aggregates" differ materially in strength, the central cone, with its numerous knots, being the weakest part, whilst the strongest is the hollow cylinder formed of cones that occur as rings both at butt and top (Fig. 40). Quarter-sawing secures the most advantageous uniformity in the proportion of each of these aggregates in every plank.

In ordinary tangent-sawed timber it is, as pointed out by Mr. Laslett, important to notice that there is an outside and an inside to every board, and that it is desirable in construction to leave the outside exposed, as shown in Fig. 41, since otherwise (Fig. 42) the inner rings of wood soon shell out.

Durability of wood.—All wood when first felled contains a large quantity of moisture, and this, together with the readily decomposable organic or protoplasmic matter also present, furnishes (especially at temperatures between 60° and 100° F.) the most favourable conditions for the growth of those fungi which are the main causes of decay. If completely submerged, or buried, or when once dried and kept so, timber may last indefinitely. The piles in the Swiss lake-dwellings must be many centuries old; and
ancient Egyptian objects in the British Museum must be several thousand years; wood of *Juniperus Oxycedrus* buried in the island of Madeira has remained undecayed and fragrant for 400 years; and Spruces 3 to 4 feet in diameter have been observed in the moist forests of North-West America growing on the prostrate but still sound trunks of *Thuya gigantea*.

Speaking at the Surveyors' Institution in 1905, Mr. H. J. Elwes said: "Last April he was in a house in Massachusetts which was built of White Oak in 1704, and had never paint or tar or preservative on it, and yet stood sound and water-tight to-day. He had lived in Switzerland in a house built of Larch logs which dated back more than 400 years. He had also lived in a timber house in Norway said to be 160 years old, and still perfectly sound, although the much-despised Spruce was the timber used."

Seasoning.—By girdling standing timber the process of season-

![Diagram](image)

Fig. 40.—A beam, showing structural aggregates. 1, central or pith cone; 2, cylinder of rings continuous throughout; 3 and 4, partial cylinders, making "bustard faces" on the sides. (Modified from Roth.)

![Diagram](image)

Fig. 41.—Plank well laid, with inside, or inner rings, downward. (After Laslett.)

ing is to a great extent anticipated. Thus, in order to float the timber, which in its green state is at least as heavy as water, it is the general practice in Burmah to cut a complete ring through the

1 "There is probably no one to-day who does not believe that timber preservation in one form or another pays. Treated timber in almost every respect is cheaper in the long run than untreated timber; furthermore, the better treatments, although more expensive at first, are much cheaper in the long run."—Hermann von Schrenk (1905).
bark and sapwood of the Teak three years before it is intended to fell it. This stoppage of all ascending sap kills the tree in a few weeks: the heat of the climate helps the seasoning process; and, as usually about a year elapses between the felling of the timber and its delivery in England, it is then fit for immediate use. It is recommended that the dense Australian timbers should, like Teak, be ringed while standing. This should be done a year or more before felling, and between April and August, when the sap is quiescent. The tree is most thoroughly drained of its sap when thus left vertical. It has, however, been objected to this process that it causes or intensifies heart-shake, and, by drying the wood too rapidly, renders it brittle and inelastic.

Seasoning of some kind is, in all other cases, rendered imperative by the changes in volume, irregular shrinkage, or warping, that all green woods undergo under the influence of changes in atmospheric temperature and moisture, especially in their cross sections. So important is it to avoid this warping in furniture, wheelwright's work, etc., that it is a common practice to block out work roughly and let it season a little longer before finishing.

Seasoning is ordinarily understood to mean drying; but, in addition to the evaporation of water, it implies other changes, such as the drying out or partial decomposition of the albuminous substances in the wood, rendering it more permeable and less fermentable.

The strength of many woods is nearly doubled by seasoning, hence it is very thriftless to use it in a green state; as it is then not only weaker, but is liable to continual change of bulk and form. The longitudinal fibres of the wood being, as it were, bound together by the radiating pith-rays, as the wood shrinks it finds relief by splitting radially from the centre along the pith-rays. When a log is sawn into four quarters, by passing the saw twice through the centre at right angles, the outer annual rings shrink the most, so that the two flat surfaces of each quarter of the log cease to be strictly at right angles to one another. In tangent-sawn timber,
AIR AND HOT-AIR SEASONING

however, the same shrinkage causes the centre plank to contract in thickness at its edge, whilst planks cut from the outside will shrink in breadth, their edges curving away from the centre of the tree.

The many methods of wood-preservation may be classified as seasoning methods, either "natural"—i.e., slow or accelerated—surface carbonization, or impregnation methods. Of these it is generally believed that natural or air seasoning gives the best results. Firewood should be dried rapidly; but in other cases slow drying in cool air and in the shade—a process difficult to effect in the tropics—is most desirable in order to reduce the amount of cracking. The timber should be squared as soon as cut, and even halved or quartered, for the rate of drying depends largely on the shape and size of the piece, an inch board drying more than four times as fast as a 4-inch plank, and more than twenty times as fast as a 10-inch timber. The wood is then piled in the seasoning yard so as to be protected as far as possible from the sun and rain, but with air circulating freely on all sides of each log. Bad ventilation is sure to cause rot; but at the same time exposure to high wind is likely to cause unequal drying, and is, therefore, to be avoided. One of the most fertile causes of decay is the leaving of logs to sink into soft ground where they are felled, often in the immediate neighbourhood of rotting stumps or dead twigs, the most fertile source of infection by fungus-spores that can be imagined. Timber should therefore be stacked, or at least skidded a foot off the ground, as soon as possible and protected by a roof. Experience is against the stacking of timber vertically or at an angle, as this only produces unequal drying; but planks may be stacked flat or on edge. Laslett gives the following table of the times required for seasoning Oak and Fir in a shed:

<table>
<thead>
<tr>
<th>Pieces 24 ins. and upwards square, Oak about 26</th>
<th>Months.</th>
<th>Fir, 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 24 ins. to 20 ins.</td>
<td>20, 16, 12, 8, 4</td>
<td>22, 18, 14, 10, 6</td>
</tr>
<tr>
<td></td>
<td>20, 16, 12, 8, 4</td>
<td>11, 9, 7, 5, 3</td>
</tr>
</tbody>
</table>

For planks half or two-thirds of these times would be requisite, according to their thickness. Too prolonged seasoning will cause an undue widening and deepening of the shakes that open at the surface during drying.

The chief methods of accelerated seasoning are kiln drying, or hot-air seasoning, and steam-drying processes. Of these the former is a rapid but expensive method. It is a common practice
to first steam the timber, which reduces its hygroscopicity and, therefore, its warping. This, however, is said to reduce the strength, if not also the durability, of the wood. If not steamed, the ends of boards should be clamped before kiln-drying to prevent splitting and warping. Neither hygroscopicity nor shrinkage of wood can be altogether overcome by drying at temperatures below 200° F.; but as a rule only the first shrinking is likely to cause splitting, so that any timber which has had from three to six months' air-drying may be safely kiln-dried. Too rapid kiln-drying, however, is apt to produce "case-hardening" in Oak and other hard woods, the drying and shrinking, that is, of an outside shell followed by "honey-combing," or splitting of the interior along the pith-rays (Fig. 43). Previous air-drying or steaming will obviate this. Various temperatures are employed in kiln-drying; but it is stated that at 100° to 120° F., Oak, Ash, and other hardwoods can be seasoned in dry kilns without any of the loss of strength often alleged to result from artificial heat. Poplar planks are dried in kilns in America at 158° F. to 180° F.; but Oak, Ash, Maple, Birch, Sycamore, etc.,

Fig. 43.—"Honeycombed" board, splitting along the pith-rays. (After Roth.)

are first air-seasoned for three to six months, and are then exposed to these temperatures for six to ten days for 1-inch stuff. Pine, Spruce, Cypress, and Cedar of the same dimensions are dried for four days immediately after being felled and sawn up. Such temperatures are more than sufficient to kill and prevent fungus growth, and the fact that well-ventilated seasoned wood is seldom attacked shows that the amount of moisture then left in the wood is insufficient to support fungus growth. Walnut gun-stocks are desiccated in the rough by a current of air at 90° or 100° F., passing over them at such a rate as to change the whole volume of air every three minutes, and it is found possible in this way to save a year of seasoning. Temperatures of 250° to 300° F. are almost certainly detrimental to the wood. Such desiccated timber must not be exposed to damp before being used or it will re-absorb moisture, and coloured woods are said to lose colour and lustre under this treatment.

Seasoning by passing the smoke-laden products of combustion from the furnace through the timber pile has been found successful,
and has an important preservative effect. A modification of this, known as M'Neile's process, consists in exposing the wood to a moderate heat in a moist atmosphere charged with the products of the combustion of fuel.

Boiling timber in water has much the same effect as steaming, but is costly, and probably weakening in its effects.

Seasoning by immersion in water is a slow method that answers well for wood to be used in water or in damp situations. It reduces warping, but renders the wood brittle and less elastic. It is important that the submergence be total, as otherwise there is great danger of fungus attack along the water-line. Two or three weeks' water-seasoning is often a good preparation for air-seasoning, and it must be remembered that foreign timbers have often had some weeks or months of such treatment while being transported by water to the port of shipment. It is important that wood seasoned in this way be thoroughly dried before use, otherwise dry rot will set in. In Mauritius, Ebony, which is perfectly sound when freshly cut, is immersed immediately for 6 to 18 months, and then, on being taken out, is secured at both ends of the logs with iron rings and wedges. Soaking timber or burying it under corn were methods of seasoning practised by the ancient Romans, who also steeped wood in oil of cedar to protect it against worms.

Salt water makes wood harder, heavier, and more durable; and the rules of Lloyd's add a year to the term of classification of a ship if she is "salted" during construction, having her timbers, that is, packed with salt. Salt water cannot, however, be applied to any timber intended for use in ordinary buildings, as it gives the wood a permanent tendency to attract moisture from the air.

Boiling in oil is an effective and strengthening, but costly, method of seasoning, employed in making wooden teeth for mortice gears. The wood is roughed out in blocks little more than the size of the finished work, and the oil kept at a temperature not exceeding 250° F.

In Australia the abundance of hardwood, its great weight, and the high price of labour, has led to a general total neglect of seasoning, which has had a very deleterious effect upon the reputation of Australian timbers in the markets of the world. Though admittedly too costly for general use, the modification of the oil process adopted by Mr. J. H. Maiden, curator of the Technological Museum of New South Wales, for museum specimens of timber is interesting. The logs are stood on end and the upper end is soaked with boiled linseed oil, and a day or two later covered with a cream of white lead. Iron bands are then put round each end of the logs and
hammered to their outline, the ends of the bands being turned out at right angles and bored for a screw bolt, by means of which the bands can be tightened up every few days.

The various steaming processes justly claim that the high tempera-
tures employed destroy disease germs and coagulate the albuminous constituents of the sap. The two most important methods are, per-
haps, the Erith and the Haskin. The former consists in the circu-
lation of warm but very moist air round the timber, so as to avoid ease-hardening and to remove the moisture from the centre out-
wards. Haskinizing consists in submitting the wood to circu-
lating superheated air under considerable pressure, "causing the constituents to organize into an oleaginous compound, saturating the fibre, and filling the pores." This process is costly, and the drawbacks to all such methods are the danger of a deterioration of the wood by a separation of its fibres and the removal of some of its substance without any replacement.

Carbonizing, or charring the outer surface of wood, destroys all fungus-germs at the surface; and, charcoal resisting the solvents of fungi, this process renders the wood little liable to subsequent infection. It also dries the surface, destroys any tendency to fer-
mentation, and distils such antiseptic substances as acetic acid and creosote out of the surface wood, leaving them free to act as pres-
ervatives. Thus it is stated that the stakes found in the bed of the Thames, near Weybridge, and supposed to have been used to oppose the invading Romans, and the piles upon which the city of Venice was built, had alike been charred. M. de Lapparent, who introduced this process into the French dockyards forty years ago, held that the durability of carbonized timber is secured by the absence of fermentation in the juices of the interior of the wood. The results are satisfactory, but care must be taken not to cause surface splitting. M. de Lapparent's process is carried out by means of a jet of gas.

The most important series of methods of seasoning are those which may be termed *impregnation methods*, which all depend upon the principle that the sap may be replaced by some substance that is antiseptic or poisonous to fungus-germs. The most primitive of these is merely to paint the substance, such as tar, as thickly as possible over dry wood and leave it to soak in, and this un-
doubtedly has a great preservative effect, even on sapwood or wood very imperfectly dried; but the chief drawback to this, and the chief difficulty in several other impregnation processes, is the very small distance that the liquid soaks, so that slight cracks expose unprotected wood to fungus attacks. Whilst it is comparatively easy to inject sapwood in a longitudinal direction, it is far more
difficult to inject heartwood; and it is vastly easier to force liquids through wood tangentially than radially.

An improvement on any painting process is to submerge the timber in a bath of the preservative, which may be tar, sulphate of iron, copper, zinc, lime, or magnesia, chloride of zinc, borax, creosote, or sugar, and in these processes the replacement of the air and sap in the wood by the liquid will generally be hastened by heat. Penetration is, however, slight, and long submergence renders the timber brittle.

The main desiderata in a preservative are that it should be antiseptic or incapable of supporting fungal life, easily injected, but remaining in the wood when injected, and cheap.

Of the materials employed for impregnating timber, the most effective is corrosive sublimate (mercuric chloride), the use of which is known, from its inventor, Kyan (1832), as kyanizing. It forms insoluble compounds in the wood, and is, therefore, permanent, except in sea-water; but its costliness and dangerously poisonous character are against it. Zinc chloride, mainly introduced by Sir William Burnett in 1838, is cheap and effective against both insects and fungi, but less so than creosote. It is claimed that, in Burnettizing, as the process is termed, the salt enters into a permanent chemical combination with the fibre of the wood, and, without discolouring it, renders it proof against mould and termites, and less flammable; that wood may be treated when green; that it will not corrode nails embedded in it; and that it will take paint or varnish. Copper sulphate, sometimes used for sleepers in France, is cheap; but is deposited in crystals in the wood, rendering it brittle, and, owing to its solubility, is as easily washed out as it is injected. In the Hasselman or Xylosote process a compound solution of iron and copper sulphates and kainite (potassium and magnesium sulphate and chloride) is employed. Creosote, originally suggested by Bethell in 1838, and now very largely employed in various ways, is cheap, lasting in its effects, and useful in rendering the wood damp-proof. The more expensive carbolic acid and ferric tartrate have also been used.

To force the antiseptic solution into the wood, M. Boucherie, who first employed copper sulphate, proposed placing it in an elevated reservoir connected by a pipe with the lower end of a log; but this requires the log to have its bark on, and is thus a wasteful process.

A more complicated and costly, but very successful, process consists in the use of air-tight chambers, in which the converted timber is placed. The air is then partially exhausted, so as to draw out some of that in the vessels of the wood, and the anti-
septic solution is then forced in by pumps, preferably with steam or heat, the whole process occupying less than an hour. About 75 lbs. of creosote, however, are required for the impregnation of an ordinary railway sleeper, and various attempts to reduce this quantity by the use of some liquid solvent have failed. Though it is very difficult either to secure the penetration of the creosote or to determine the amount absorbed, it is usually specified that from 8 to 13 lbs. of creosote shall be injected per cubic foot. Herr F. Seidenschnur proposes that the timber be first steamed under pressure, the air then exhausted by reduced pressure, and then an emulsion of 15 per cent. of creosote, in a resin soap to which water is added, forced in under a pressure of seven atmospheres. The latest process of this class, known as the Nodon-Bretonneau method, is electrical. The timber is placed on a lead plate, connected with the positive pole of a dynamo, in a tank filled with a solution, a second lead plate, connected with the negative pole, being on top. The circuit is completed through the wood; and, within from 5 to 8 hours, the sap rises to the surface of the bath, the aseptic solution replacing it in the pores of the wood. Artificial drying, or a fortnight's natural seasoning in summer weather, will then complete the process. Solutions of magnesium or zinc sulphate or of borax are employed.

Some recent trials undertaken by the United States Government show that all injection under pressure tends to lessen the cohesive strength of the wood.

Powellizing consists in boiling the wood in a saccharine solution without pressure, so as to expel air and moisture and coagulate the albumen, and then drying it at a high temperature. Green wood, and some species, such as Spruce, which cannot readily be creosoted, can be treated by this process; and the wood is not only seasoned within a few days of being felled, but small cracks are closed up, the porosity of the wood is much diminished—a very important point in connection with wood-paving—and its strength, toughness, resiliency, and durability are enhanced. The process need not discolour the wood, but may be made to bring out figure, and thus, in more ways than one, render it possible to substitute a lower grade timber for the more expensive grades now in use. The processed wood will take paint or varnish, and is completely immune to the attacks of dry rot. Having no unpleasant odour, powellized wood is adapted for furniture as well as for paving or railway sleepers; whilst a slight modification of the treatment protects it from the attacks of termites.

Such impregnation methods double or treble the life of railway sleepers. On the other hand, it should be remembered that paint
prevents not only the entrance of moisture, but also its exit; so that if applied to imperfectly seasoned wood it merely protects the dry rot which finds a sufficiency of moisture in the wood. Even perfectly seasoned wood, if not protected by tar or paint, requires good ventilation if it is to last. Warm, moist, stagnant air or draught, and partial contact with moist earth or water are the most unfavourable conditions for the durability of timber.

Flame-resisting wood.—In connection with building, and still more with railway rolling-stock, it is important that wood, though it can hardly be made absolutely fire-proof, should be rendered so fire-resisting that it will only smoulder and not burst into flame. Several substances have been injected for this purpose, and others have been used as surface paints. Of the former, the more important are sodium tungstate, ammonium sulphate with boric acid, and ammonium phosphate, the last-mentioned being the most efficacious, but requiring to be injected under a high pressure. Of the paints, asbestos and soluble glass are, perhaps, the best.

Storage.—For the storage of seasoned timber much the same precautions are requisite as for that which is undergoing air-seasoning—viz., thorough ventilation, absence of contact with moist earth, and preferably some protection from rain and sun. If logs are stacked with their butt-ends outward and slightly lower than their tops, if every log or scantling be so separated by small packing billets that it can be removed without disturbing the remainder, and if each tier of timber is set back a few inches so as to obviate the use of a ladder, it will render the stock not only safe but accessible.
CHAPTER V

THE USES OF WOODS.

So multifarious are the uses to which wood is applied that it is wellnigh hopeless to attempt to classify or enumerate them. Still less is it possible here to mention all the different kinds of wood locally employed for each purpose, or to describe the methods in which they are treated. We must be content with a rough catalogue mainly confined to species widely used or known in general commerce, with occasional mention of less known kinds of timber for which we believe there may be a demand in the near future.

The term “timber,” from the Old English “timbrian,” to build, is strictly applicable only to felled and seasoned wood fit for building, as distinguished from “fancy” or furniture-woods, dye-woods, etc. Undressed trunks without branches are termed “round timber”; or, if of young trees, “spars”; hewn logs are called “square timber”; or when quartered, “billets”; when split, “staves” or “lathwood”; or when sawn, “deals,” “battens,” “planks,” “boards,” and “scantling.”

Some very strong timbers, such as Teak, Sal, and Padouk, are specially designated as “Ordnance woods.”

Shipbuilding.—There is, perhaps, no purpose for which timber has been, and requires to be, more carefully tested and selected than for shipbuilding. From this point of view we have a full account of most timbers so employed in the late Mr. Thomas Laslett’s Timber and Timber-trees, originally published in 1875, of which a new edition by Professor Marshall Ward appeared in 1894. The requirements of the dockyard are, however, very varied, durability being generally necessary; but great strength, even if accompanied by weight, and freedom from decay on contact with metal, being important for armoured vessels; resistance to ship-worms or termites for those not metal-sheathed; lightness for boats; freedom from splintering for planks; extreme toughness for blocks; evenness of growth and great resistance to strain for masts; flexibility for oars. For general purposes, among the heavier woods, Teak (Tectona grandis) is taken as a standard, and
is far more used than the Oaks, whether European or American, of former days,\(^1\) valuable as these are, however, especially for exposed and compass timbers. The Indian Jarul (Lagerstràemia \textit{Flos-reginæ}) and Thingan (\textit{Hópea odoràta}), the Greenheart of Demerara (\textit{Nectàndra Rodièi}), the Angélique (\textit{Dicorýnia quianén-sis}), African Oak or Teak (\textit{Oldfièldia africàna}) from West Africa, Stinkwood (\textit{Ocotéa bullàta}) and Sneezewood (\textit{Pterôxylon útilé}) from the south of the same continent, the Rata or Ironwood of New Zealand (\textit{Metrosidéros robústa} and \textit{M. lúcida}), and probably the Billian (\textit{Eusiderôxyylon Zwágeri}) of Borneo, are but little inferior.

Lloyd's Register, classifying shipbuilding timbers in 17 lines, places Teak alone in the first; in the second, English Oak (\textit{Quércus Róbur}), African Oak (\textit{Oldfièldia africàna}), Live Oak (\textit{Quércus virens}), Adriatic, Italian, Spanish, Portuguese, and French Oak (\textit{Q. Cérris, ÁEsculus, pyrenáica, Ílex, Súber, and Róbur}), Morung Saul (\textit{Shórea robústa}), Greenheart (\textit{Nectàndra Rodièi}), Morra (\textit{Móra excélsa}), Iron-bark (\textit{Eucalýptus siderôphólía}), and probably \textit{E. leucóxylon}, and \textit{E. sideróxylon}, and White Ironbark (apparently \textit{E. crébra, amygdalína, and paniculátà}); in the third, Cuba Sabicu (\textit{Lysiólôma Sabicu}), Pencil Cedar (\textit{Juníperus Bermudiána}, or perhaps \textit{Dysóxylon Muëlleri}, and \textit{D. Frascriánum}), Angelly (\textit{Artocárpus hirsútà}), Vanatica (\textit{Pitheco-libiúm sp}), Jarrah, (\textit{Eucalýptus marginátà}), Karri (\textit{E. diversícolor}),

\(^1\) "SHIPBUILDING IN 1805.

"The oak was very costly, for the service required the very best wood. It could not be, or should not have been, used for a year after cutting, for it needed to be seasoned before being handled by the shipwrights. On coming to the yards it was stacked for some months in sheds, in various positions, according to its future use, to allow it to season. In times of stress much of it was used green—not properly seasoned.

"The ships were built in the open air, and it was the custom to allow the frame or skeleton of every ship to stand exposed 'for a twelvemonth or a little more' before any timbers were placed across her ribs. It was thought that this exposure seasoned the Oak of the frame. As a matter of fact, the constant wettings and warpings from rain and sun set up decay in the exposed wood, so that many ships had begun to rot 'before a plank was put on.' Some, indeed, were as green as grass with mildew and fungus before the timbers were fitted. The general life of a ship of those days built under these conditions was only eight or nine years. Few lasted so long 'without great repairs equal almost to their first cost.' Many rotted to pieces after a few months at sea. In 1812 a fine three-decker, which had seen no hard sea service, was condemned as rotten a year after she was launched.

"In those ships in which American Oak had been used, the decay set in more quickly than in other cases. These ships used to strain their seams or timbers open, ever so slightly, in heavy weather, admitting water to the cracks. The wood so wetted began to develop dry rot or fungus from the moment the water penetrated its fibres. Both fungus and dry rot spread with strange rapidity when once it had established itself, and a ship so attacked had either to be pulled to pieces, so that the rotting oak could be removed, or broken up as useless."—Macefield, \textit{Sea-life in Nelson's Time}.
Blue Gum (E. Glóbulus), Red Gum (E. rostráta), Box (E. hemiplóia ?),
Thingan (Hópea odoríta), Puhutukawa (Metrosidéros tomentósa),
Molave (Vitex geniculáta and V. alíssima), Dungan (Stercéúía
cymbifórnis), Yacal (Shórea reticuláta), Mangachapuy, (Shórea
Mangáchapoi), Betis (Payéna Bétis), Ipil (Afzélia biýúga), Guijo
(Shórea robústa), Narra (Pterocárpus pállidus and P. santalínus),
Batítínan (?), and Palomaria de Playa (Calóphyllum Inóphyllum ?);
in the fourth, those of the first and second line when second-hand;
in the fifth, Stringy Bark (Eucálýptus oblígua, etc.), Red Cedar
(apparently Cedrélá Toóna), Banaba, which is the Jarul of India,
and Philippine Islands Cedar (probably chiefly Cedrélá Toóna);
in the sixth, Danish and other Continental White Oak, Mahogany
(Swieteñia Mahóñani), Spanish Chestnut (Castáñea satíva), Flooded
Gum (Eucálýptus salínga), Spotted Gum (E. maculáta), Grey Gum
(E. vimínídis), Turpentine (E. Stuartiána, chiefly), Black Butt (E.
piluláris), Tulip-wood (Harpállía péndula ?), Tallow-wood (Eucálýp-
tus microcórys), and Mulberry(?) in the seventh, North American
White Oak (Quércus álba); in the eighth, Pitch Pine (Pinus rígida),
Oregon Pine (Psuedotsúga Douglassii), Huon Pine (Dácrydium Frank-
linii), Kauri Pine (Ágathis austrális), Larch (Lérix européa), Hack-
matack or Tamarac (L. americaná), and Juniper (?) in the ninth,
Dantzic, Memel, and Riga Pine (Pinus syléstris), and American
Red Pine (P. resinósa); in the tenth, English Ash (Fráxinus ex-
císior); in the eleventh, foreign Ash (F. sambucifólia americaná,
etc.), and Rock Maple (Acer barbátum); in the twelfth, American
Rock Elm (Úlmas americaná and racemósa), and Hickory (Hicória
ováta, álba, glábára, mínima, Pécan, etc.); in the thirteenth, European
and American Grey Elm (Úlmas campéstris and others); in the
fourteenth, Black Birch (Bétula léná) and Black Walnut (Júglans
nígra); in the fifteenth, Spruce Fir (Pícea excísior), Swedish or
Norway Red Pine, and Scotech Fir; (Pinus syléstris); in the six-
teenth, Beech (Fágus sylvéctica); and in the seventeenth, Yellow
Pine (Pinus Stróbús).

The Turpentine-tree (Syncárpia laurífólia), White Box (Trístánía
confértá), Box (Eucálýptus hemiplóia) and Spotted Gum (E. macu-
láta) of New South Wales are also generally useful. The Securípa
and Guarabu of Brazil, the latter of which may be Terminália
acumináta or Pellogyné macrólobíum, though little known, are
employed locally; but the Stringy-bark of Tasmania (Eucálýptus
oblígua) and the Blue Gums (E. Glóbulus in Tasmania, and E.
botryoídes in Victoria) have been proved suitable both for beams
and planks. Other dense timbers are employed mainly for beams and
keelsons, such as the Mora of Demerara (Dimorphándra Móra,
or Móra excísora), Tewart (Eucálýptus gomphocéphala) of West
Australia, Iron-bark (E. siderophloia) of Queensland and New South Wales, and Sabieu (Lysiloma Sábicu) of Cuba. Chow, or Menkabang Penang (Casuarina equisetijólia) from Borneo, the “Cédre” of the Seychelles, though a heavy wood, is mainly employed for masts, as are also the Poon, Tatamaka, or Alexandrian Laurel of India (Callophyllum Inophyllum), which is known as “Phlung-nyet” in the Andaman Islands, as “Domba” in Sīn-halese, and as Penago, Panagah, Pingow, or Borneo Mahogany in Borneo, the Peroba branca (Sapóta gonocárpa) of Brazil; and, still more, such soft woods as Riga Fir (Pínus sylvéstris), Yellow Pine (P. Stróbus), Oregon or Douglas Fir (Pseudotsúga Douglási), the unequalled Kauri Pine of New Zealand (Agathis australís), and the Huon Pine of Tasmania (Dacrydium Franklínii). For this purpose a certain elasticity is requisite, resistance, that is, to wind. Other coniferous woods are of more general use, such as Dantzic Fir (Pínus sylvéstris), the Totara (Podocárpus Tótara) and Tānakaha (P. asplenijóliaus) of New Zealand, the Moreton Bay Pine (Aracária Cunninghamhámi), mostly for spars, Red Pine (Pínus resinósa) and Pitch Pine (P. palústris), which serve equally for spars and for planking. Other species, mainly on account of their dimensions, are chiefly employed in boat-building, such as the Black or Cypress Pine (Cállitris robústa), the Oyster Bay Pine (C. rhomboidea) and the Bermuda “Cedar” (Juníperus bermudíána) among conifers; and European and American Elm, Jarrah (Eucályptus marginálata) and Red Gum (E. rostrátâ), Pynkado or Pyengadu (Xýlia dolabríformis), which is the Ironwood of Pegu and the Acé of the Philippines, Aná (Faqréa frágrians), Gumbar (Gmelína arbórea), Sundri (Heritiéra littorális), and the Brazilian Camara (Geissosérmum Vellósii) among hard woods. Some timbers are more valuable for compass timbers, such as the Angelim vermelho (probably Andíra fraxínijólia) of Brazil and the Puriri (Vítex littorális) and Pohutukawa (Metrosidéros tomentósâ) of New Zealand; whilst others are used almost exclusively for decks and planking, such as the Turpentine Tree or Stanthorpe Box (Eucalýptus Stúár-tiana) and White Beech (Gmelína Leichhardtíi) of Eastern Australia, the Canella pretá (Nectándra átra) of Brazil, and the Lauan (Diptérocárpus thúrtífer) of the Philippines. Exceptionally hard and tough woods, such as Lignum Vitæ (Guaiácum officinálé) and the Ironwood of Tasmania (Notedéea ligustrína), are required for blocks; whilst tough but flexible kinds, such as the Ash of Europe or America and the Silver Wattle (Acácia dealbátâ), are employed for oars. For the internal fittings of ships almost any species can obviously be used which is employed in ordinary civil architecture or joinery.
Submerged structures.—Passing next to timbers used for piles or other submerged structures, such as locks and water-wheels, Elm, Larch, Chestnut (Castânea), Live Oak (Quercus vírens), Sal (Shórea robústa), Totara (Podocárpus Tótara), Eucalýtus glóbulus, E. rostráta, and Rassak (Vática Rássak) of Borneo, may be specially mentioned. Greenheart, Jarrah, Pynkado, Chow, Kapor (Dryobálánanops aromática), another Bornean timber, Alder, and Beech are also used for these purposes. For the strouds of water-wheels and for paddle-boards Willow is employed; and for water-conduits, Pine.

Strength timbers.—For such engineering purposes as require considerable strength, and resistance to definitely calculable strain, for bridges, piers, or baulks of timber, Teak, Jarul, Sal, Sissoo (Dalbérgia Síssoo) and Anan (Fagráea frágrans) among Indian timbers, the Locust of Trinidad (Hymenæa Coúrbaril), Oak, and the superior kinds of Pine may be mentioned.

Sleepers.—Railway sleepers absorb enormous quantities of timber, which requires to be durable when in contact with the earth and with metal.¹ Creosoted Red Deal (Píinus sylvéstris) is the chief wood employed for this purpose in Britain; but treated Oak and Beech are largely used in France. Deodar (Cédrus Deodára), Sal, Blackwood (Dalbérgia latífólia), Poon (Calóphyllum Inóphyllum), Nagesar or Ironwood (Mésua jérréa), and Chilauni (Schíma Wállichii) among Indian timbers; the Box of New South Wales (Eucalýtus hemíphóia); Puriri (Vitéx littóralis), Hinau (Eláécarpús dentátus) and Totara (Podocárpus Tótara) in New Zealand; when creosoted, the Upright or Real Yellow-wood, Geel Hout, or Umceya (Podócárpus latíjolíns or P. Thunbérquíi) in Cape Colony; and the Chilian "Roble" (Fágus oblíqua) in Argentina, are employed for this purpose; and one of the most important industries of the future in the colony last mentioned is the cultivation of the European Cluster Pine (Píinus Pináster) and of Eucalýtus for the same use.

Mining timber.—Less care is exercised in the selection of pit-props for mines. Larch and pine, both home-grown and of Baltic origin, are largely used in English mines, and Píinus Pináster is imported from Bordeaux to the Welsh collieries and Cornish mines. In French mines the order of durability has been found to be Spanish Chestnut, Oak, Scots Fir, Alder, Ash, Píinus Pináster, Acacia. It has been said that for every ton of coal taken out of a mine we should put back a cubic foot of timber.

¹ "As yet no substitute has been devised for wood ties that is economical or desirable. They maintain the alignment of the railroad, so essential to safety, better than any metal substitute, and give an elasticity to the road-bed most important for the preservation and maintenance of the rolling-stock."—C. F. Manderson in What Forestry Means to Representative Men: U.S. Bureau of Forestry, Circular 33.
Telegraph poles.—For telegraph poles much the same characters are requisite as for masts, in addition to durability underground. Besides Larch and European Pine and Douglas Fir, the Black or Cypress Pine of New South Wales (Cupressus robus), being proof against termites, is in request for this purpose, and, in the United States, Chestnut (Castanea vulgarity, var. americana) is used.

Building.—Less durability is essential in scaffold-poles and ladders, for which Spruce (Picea excelsa) is largely used. For joists, rafters, and flooring, no wood is so much used with us as Dantzic Fir (Pinus sylvestris), though the somewhat shaky and cheaper Swedish Fir of the same species is also largely used, whilst that of Norway is imported in the form of ready-made flooring and match-boarding. In the West of England Baltic Pine is largely replaced by American White Pine (Pinus Stróbus). The Pitch-Pine of the United States (Pinus palustris) is now largely employed in match-boarding and other internal work in English buildings, and Larch is much used for flooring, as also are both Baltic and American Black Spruce (Picea excelsa and P. nigra). Since the importation of these coniferous timbers from the Baltic and from America, which dates mainly from the beginning of the eighteenth century, Oak, till then the chief building-timber in North-west Europe, has been but little used, though, of course, old oak beams, floors, and panellings are still abundant. From its not splintering, Willow is still occasionally used for flooring. In the United States, whilst White Oak (Quercus alba) is very largely employed for the main timbers of houses, the Pines, especially the soft White Pine (Pinus Stróbus), the Long-leaf Pine (P. palustris), the Loblolly Pine (P. tóda) and the so-called Norway Pine (P. resinósa), with other species in the west, are (under a confusing jumble of popular names) the timbers most used. In Northern India, the Bhotan Pine (Pinus excelsa) and Himalayan Cypress (Cupréssus torulósa) are important coniferous timbers, and there are several valuable species of Oak—viz., Quercus somripifólia, Q. dilatáta, Q. pachyphólla, Q. lamel-ólósa, Q. fenestrátá, Q. spicátá, and Q. Griffithii. Among the other hardwoods important in building are Champa (Michélia Chámpaca), Redwood (Adénanthéra pavonina), Sal, Ironwood (Mésua férrea), the Myrobalans, Babela, and Harra (Terminália belérca and T. Ché-bula), Shoondul (Ajélía biújgu), Illupi (Bássia longijólia), and Ironwood or Pyengadu (Xyliá dolubrijórmis). In Australia, the Pepper-mint (Eucálýptus amygdaína) and the White Stringy Bark (E. capítellá); in New Zealand, the Totara (Podocárpus Tótará) and Tanakaha (Phyllocládus trichomanóides); the Yellow-wood (Podocárpus elongátus and P. latijólius) in South Africa; Mora and
OF WOOD IN GENERAL

Angélique in Guiana; Canella preta (Nectandra átra and N. móllis) in Brazil; and Cagüeyran (Copaífera hyménæifólia) in Cuba, are all timbers valuable to the builder.

Wood-paving.—The consumption of wood for paving in our large towns, already enormous, is rapidly increasing, although the comparative advantages of soft wood, in England mainly Pine, with its greater cheapness, and hard woods, with their greater durability and the chance of their becoming slippery, are not yet decided. The chief hard woods as yet used in England are Jarrah (Eucalyptus marginátā) and Karri (E. diversícolor) from Southwestern Australia. In Paris Pinus Pináster and Larch are employed. Black-butt (E. píluláris) and Crow’s Ash (Flindersia austrális), from Eastern Australia, were laid experimentally in Wellington Street, Strand, in 1895; and Tallow-wood (Eucalyptus microcórýs), from New South Wales, Bloodwood (E. corýmboása) and Ironwood (Tarrietia argyrodéndron), from Queensland, and Blue Gum (Eucalyptus glóbulus) and Stringy Bark (E. oblíquá), from Tasmania, have also been tried. Little can be said in favour of the Red Gum of the Eastern United States (Liquidámbar styráctíflua), a large quantity of which was ordered for use in Westminster in 1901. “Cedar,” often spoken of in this connection in Western American cities, is probably mostly the wood of Thúya gigántea (T. pícítá) and Cupríssus lawsoniána.

Shingles and fencing.—Wooden shingle roofs, for which Oak used to be employed, are of much less importance in England than in the United States, where White Cedar (Thúya gigántea and T. occidentális, Cupríssus lawsoniána, and C. Thyoides and Libocédrus décúrrens) is largely used for this purpose, which requires a straight-grained wood, easy to split. In all countries enormous quantities of split and sawn timber are consumed for fencing purposes; more especially Oak, Larch, and Spanish Chestnut with us; “Cedar” in the United States; the so-called “Birch,” really a Beech (Fágus Solándri), in New Zealand; and Beechwood or Swamp or Forest Oak (Casuária equsísetífloria) and allied species, together with various species of Eucalyptus, in Australia, of which, perhaps, E. amygdalína, E. rostráta, and E. vîmínális are the chief.

Carpentry.—The work of the carpenter and joiner links that of the builder to that of the cabinet-maker. In Europe, in addition to much Baltic and American Pine, chiefly Pinus sylvéstris, P. Stróbús, and P. palástris, he uses much Spruce (Pícea excélsa), Bordeaux Pine (Pinus Pináster), and Swiss Pine (Abies pectinátá), besides Oak, Ash, and Chestnut. To give additional strength, Elm is used for the ends of ammunition-boxes, whilst their sides are of Pine. So also in the United States and Canada, the Hemlock
Spruce (Tsúga canadénsis), White and Black Spruces (Pícea álba and P. nígra); and in the West Indies, Fiddlewood (various species of Citharéxylum) may be specially mentioned as carpenters’ woods. In South Africa the Cedar Boom (Widdringtónía juníperúdes), though not very durable, is a useful wood, as the allied species, W. Whitei, from the kloofs of the Shíre Highlands, may probably prove; and in Eastern Australia the Moreton Bay Pine (Arau-cária Cunninghamí) may be mentioned in this group. The carpenter requires cheap wood, easily worked, and of moderate strength.

Carriage-building.—We may class here the various woods employed in the many branches of the wheelwright’s, waggon and carriage-builder’s trade. Hornbeam (Carpínus Bétulus), Elm, and Australian Blackwood (Acócia melanóxylon) are peculiarly fitted for the hubs; Oak, Robínia, Ash and Eucaílúptus crebra and E. goniocályx for spokes; Hickory (various species of Hicória) for axle-trees and shafts; Poplar, American White-wood (Líriódendrón tulíphiéra), Birch and Maple (Acer barbatum) for panels; the dense Pyengadú (Xiála dolabrijórmis) and Padouk (Pterocárpus indicus) of Burma, for gun-carriages or the frames of railway-waggons, and the Bastard Peppermint of New South Wales (Trístánía suavéolens) for somewhat similar purposes, in which tough hard wood is needed. About 1750, Satinwood, upon which Cíprianí and Angelica Kauffmann executed their paintings, became fashionable for coach-panels; whilst for the humbler purposes of wheelbarrows Willow is useful from its freedom from splintering.

Furniture.—An immense variety of woods have been employed in the making of furniture, susceptibility to polish, beauty of colour or grain, and durability being their chief requisites, together with freedom from shrinkage, whilst they are variously employed either planed, carved, turned, or bent. Thus some wood known as “Cedar” seems to have been largely used in ancient Assyria and Egypt, forming the beams of the temple of Apollo at Útica, said by Plíny to have been sound 1,200 years after their erection; employed alike in Solomon’s temple, in Greek sculpture, and in carpentry, as for the chest in which Cypselus of Corinth is said to have been concealed about 550 B.C. As Vitruvius speaks of that of Crete, Africa, and Syria as the best, it is probable that then, as now, the wood of several species was confused under one name, probably the Lebanon Cedar (Cédrus líbání), that of Mount Atlas (C. atlántica) and the ‘Arár (Tetrácinís articulátá) of Morocco. This last sweet-scented wood, known also as Atlas Cypress, was the much-vaunted “Citrus” or “Citron” Wood of the Romans and probably the “Thyine Wood” of the Apocalypse. The roof of the cathedral at Cordova, originally a mosque, is built of it, it being

6—2
there known as "Alerce." The true Cypress (Cupressus sempervirens) was, no doubt, largely used, not only, as is related, for Alexander the Great's Babylonian fleet or Semiramis' bridge over the Euphrates, but owing to its durability and resistance to moth, for clothes-chests. An Italian chest of this wood of the fourteenth century is preserved at South Kensington, and John of Gaunt bequeaths one in his will in 1397. The Certosina work, or inlaying of this wood and walnut with ivory, so called from the choir fittings of the Certosa between Milan and Pavia, an art practised at Florence in the fifteenth century, was perhaps brought by the Venetians from Persia, from which country it also reached Bombay. Sissoo (Dalbéria Sissoo), possibly the Chittim of Holy Scripture, and other species of Rosewood, Ebony, Teak, and Walnut, may have reached Assyria, Syria, and even more western lands from India; but the Corsican Ebony used by the Romans for veneers was probably the Laburnum, the "Faux Ébénier" of the French. Lotos-wood, said to have been used in Greek sculpture, may have been that of the Nettle-tree (Céltis australis), still much used in Southern Europe. We read of the Romans using Box and Beech for chairs and for veneers; Beech for chests; Olive, both wild and cultivated, for veneers; Fig, Willow, Plane, Elm, Mulberry, Cherry, and Cork-Oak, as ground for veneers; Maple, especially Bird's-eye Maple (probably Acer campestre), for tables; and Syrian Terebinth (Pistácia Terebínthhus), and Poplar for various other purposes. Though Norway Pine was imported by Henry III., in the thirteenth century, for panelling at Windsor, throughout the Middle Ages, Oak was the main furniture wood as it was the chief building material. As in the timber-frame houses of the Chester rows, the fourteenth-century roof of Westminster Hall, or the marvellously carved one of the Palais de Justice at Rouen in the sixteenth; so in the great bed of Ware and other English and Flemish furniture during the Tudor period, Oak alone is employed. It was used as a bed wood for veneering by Boule under Louis XIV., and was painted white and gilt in the time of Louis XVI. Italian Walnut (Júglans régia) was much used in Italy for carving and gilding from the fifteenth century, and it was at Venice and Florence that the use of the soft white woods of Willow, Linden, and Sycamore for carved and gilt frames for mirrors originated in the sixteenth. A beautiful cabinet of English sixteenth-century workmanship in the Victoria and Albert Museum is adorned with high-relief carvings in Pearwood; and a South German one in the same museum of seventeenth-century date is of Pine and Oak veneered with Hungarian Ash and Walnut. The use of Ebony, especially for inlaying Walnut wardrobes, became more general after the Dutch settlement in Ceylon in 1695; Grinling
Gibbons, who was partly of Dutch descent, employed Linden and other white woods for his inestimable carving; and the work of Thomas Chippendale in the eighteenth century gave Mahogany the popularity in England that Satinwood enjoyed at that time in France. Heppelwhite and Sheraton employed Mahogany not only for chairs, but for small articles such as tea-caddies, whilst in the inlaid work of the period it was used, not only with other dark woods, such as Rosewood, Laburnum, and Purple-heart (*Copaífera pubiflóra*), but also with Holly, Maple, and Pear. At the present day Mahogany is used for dining-room furniture and veneers, though much Oak, some of which is the Canadian Red Oak (*Quércus rúbra*), is used for the same purpose, whilst large quantities of Walnut (*Júglans nígrá*), Ash (*Fráixinus americána*), Bass-wood (*Tíliá americána*), Maple (*Ácer barbátum*), and Birch (*Bétula lénta*) are imported from North America for library and bedroom furniture, stained or painted Deals being employed for yet cheaper goods. Fifty years ago American Walnut was only used in England for inferior purposes, such as framing for veneers; but now it has much advanced in popularity with cabinet-makers and shopfitters with a doubling of its former price. Another American wood of increasing importance is the American Whitewood, or Canary White-wood (*Líriodéndron tulípiéra*), used for the seats of American Windsor chairs, and, from its suitability for staining or polishing, rapidly becoming a favourite with wood-workers. Beech and Yew are the staple woods of our Buckinghamshire chair factories, Ash being used in bent wood-work; whilst bamboo work and cane-seats are somewhat outside our present scope.

Among furniture woods in use in other countries we can only enumerate a few:

In India:

- Ebony (*Díospýros* spp.),
- Rosewoods or Blackwoods (*Dalbérgia látífolía*, etc.),
- Sissoo (*Dalbérgia Síssoo*),
- Redwood (*Adénánthera pavónila*),
- Padouk (*Pterocárpus índicus* and *P. dalbergióides*),
- Bija Sál or Bastard Teak (*Pterocárpus Marsúpium*),
- Margosa or Neem (*Méliá* spp.),
- Siris (*Álbízzia* spp.),
- Chittagong wood (*Chickrássia tabulárís*),
- Chatwan (*Alstónía scholáris*), a soft wood, named from its use for blackboards in Indian schools,
- Gumbar (*Gmelína arbóréa*),
- Toon, Moulmein Cédar or Indian Mahogany (*Cedrela Toóna*); and Jack or Ceylon Mahogany (*Artocárpus integrifólia*).
In Mauritius and other islands in the Indian Ocean:—
Tatamaka or Rosewood, under which name are confused
Thespesia popúlneca and *Calophýllum Inophýllum*.

In South Africa:—
Sneezewood, Neishout, or Umtati (*Pteróxylon útilé*),
Stinkwood (*Ocotéa bulláta*),
Cape Ebony (*Eúclea pseudébenus*, etc.),
Cape Ash, Essen Boom, or Umgwenyuizinja (*Eckebérgia capénsis*),
Saffron-wood, or Umbomoana (*Elæodéndron cróceum*),
Assegai-wood, or Umguna (*Curtísia jagýnea*),
Salic-wood, or Unkaza (*Buddléia salviáefólia*), and
Red Cedar, or Rood Els (*Cunónia capénsis*).

In Yoruba Land, West Africa:—
Iroko (*Chloróphora excélsa*), resembling Satinwood.

In Borneo:—
Mirabow (*Afzélia palébmánica*).

In Australia:—
Blackwood (*Acácia melanóxylon*, etc.),
Jarrah (*Eucalýptus margináta*),
Shingle Oak (*Casuárina stricta*),
Queenwood (*Davidía arbóreá*),
Rosewood (*Dysóxylon Frasériánum*),
Beefwood (*Grevilléa striáta*),
Mulberry (*Hedyacráya angustífólia*),
Silky Oak (*Stenocárpus salígnus*),
Moreton Bay Pine (*Araucária Cunninghámia*), and
Pencil Cedar (*Podocárpus eláta*).

In Tasmania:—
Honeysuckle (*Bánksia margináta*) and
Huon Pine (*Dacryídium Franklinii*).

In New Zealand:—
Honeysuckle or Rewa-rewa (*Knightía excélsa*),
Kauri Pine (*Ágathís australís*),
Rimu (*Dacryídium cupressínum*),
Miro (*Podocárpus ferrugínea*), and
Totara (*P. tótara*).

And in Tropical America:—
Mahogany or Baywood (*Swieténia Mahóganí*),
Sabieú (*Lysilómá Sabieú*),
Santa Maria, or Galba (*Calóphyllum Cálaba*),
Green Ebony (*Brýa Ebenus*),
Zebra Wood (*Cónnarus guianénsis*, etc.),
Sapodilla (*Achrás Sapóta*), and
Brazilletto (*Caesalpínia brasíliénsis*, etc.).
Veneers.—Very choice ornamental woods are employed mainly as veneers. Such are, in addition to many of those just enumerated: Amboyna wood, the product, it is believed, of some species of *Pterocárpus*; the burrs of Yew, largely used for tea-caddies, etc., in the eighteenth century; those of Walnut; and the beautiful Lacewood or Honeysuckle wood of North America (*Plátanus occi-
dentalis*).

Turnery.—The turner requires a tough wood, which will often be also hard and susceptible of good polish. No wood is more generally useful to him than the Ash, as it does not splinter. Curiously enough, cankered Ash-wood, popularly known as "bee-sucken Ash," being apparently twisted in its grain, is extremely hard and tough, and, therefore, suitable for mallets. Beech is used for wedges, planes, and tool-handles; Hornbeam for the bearers of the cylinders of printing-machines; Pear for T-squares; and Elm, in former times Maple, for bowls; whilst the record of the demand for Walnut for the manufacture of gunstocks reads like a romance. In 1806 France required 12,000 Walnut-trees per annum; while in England, before the Battle of Waterloo, £600 was paid for a single tree. For cheaper gunstocks American Walnut is now used, whilst the American species of Ash, Beech (*Fágu*s ferrugínea), and Hornbeam (*Carpínus carolíniána*, known as "blue Beech"), are employed in the United States for purposes similar to those to which their European equivalents are put. The Hickories (*Hícóri*a), more especially for handles, the Persimmon (*Diospéryos virgíniána*) for shuttles, plane stocks, etc., and the Cherry (*Prúnus serótína*) are also important to the American turner. In Japan, Kizi (*Paul-
ómnia imperiális*) is the main basis for lacquer-ware: the so-called Cherry (*Exocárpus cupressíformis*) and the fragrant Musk wood (*Oléária argophílyla*) of Australia, and the Violet-wood (*Copaífera bractéíta*) of Brazil may be specially mentioned; whilst in South Africa the various species of *Oléa* known as Ironwood, the Silk-bark or Zybast (*Celástrus acuminátus*), Buffelsbal (*Gardéni*a *Thunbérqui*), Ladle-wood (*Hartógia capénsis*), and Umzumbit (*Millo-
létia Káfra*); and in India the Babul (*Acácia arábíca*), Ironwood (*Mésua fórrea*), Ebanies (*Diospéryos spp.*), calamander (*D. quésita*), Anjan (*Hardwickia bináta*), Tamarind (*Tamaríndus indíca*), Dhaura (*Anogeíssus latífólia*), Bullet-wood (*Mímurops littóralís*), Satin-wood (*Chlorócyton Swéténia*), and Sandal-wood (*Sántalum álbum*), are noteworthy.

Walking-sticks, etc.—A great variety of woods are used in the manufacture of walking-sticks. Not to mention Jersey Cabbages and the leaf-stalks of the Date-palm and a great variety of Canes, imported specially from Singapore, these include English-grown Oak, Ash, Blackthorn, Holly and Hazel, Whitethorn, Aspen, Birch,
Crab-apple, Furze, Maple, Hornbeam, and Rowan. Medlar (Mespilus germanica) and Chestnut (Castanea sativa) are imported from France; Cork Oak (Quercus Sùber) from Spain; Carob (Ceratónia Silíqua) from Algeria; Guelder-rose (Viburnum Ópulus), under the names of "Teazle" or "Balkan-rose," from the Balkans; Olive and Orange from Southern Europe, while "Black Orange" is a trade name for the common Broom (Cýtisus scopárius); Box, from Persia; Ebony, from Ceylon: and, from the West Indies, Cocos or "Flowered Ebony" (Brýa Ebenus), Partridge-wood (ándira inérmis), Pimento (Piménta officinális), and Letter-wood or Leopard-wood (Brósumum Aúbléitii). Edward IV. ordered all bows in Ireland to be made of Yew, Wych-hazel (Ulmus glábra), Ash, or Alder; and, in his time, much Yew was imported from Dalmatia via Venice. Lancewood and Hickory are now largely used for this purpose.

Engraving.—For wood-engraving, the Box (Búxus semper-vírens) of Turkey is unequalled, and the use of metallic blocks has diminished the urgency of the search for a substitute for, as wasteful consumption threatened exhaustion of the supply of, this species. The Cape Box (Búxus Macowánií), introduced in 1885, is now considerably used: Ebony is nearly equal in texture to Box, but its colour militates against its use; Hawthorn is probably next best to Box of any known wood, but cannot readily be obtained of sufficient size: Pear (Pýrus commánis), used for calico-printer's blocks, the Chinese T'eng li mu (Pýrus betuléfolía), and Pai'êcha (Euóynymus europáéus, var. Hamiltoniánius), the American Box or Dogwood (Córnum flórida) and other species are suitable for coarse work; but Jamaica Box (Tecóma pentáphylla) is on the whole the most likely successor to Box.

Musical instruments.—While any well-seasoned ornamental wood, such as Rosewood, Mahogany, or Walnut, is used for the cases of pianofortes, those parts of musical instruments in which resonance is produced must consist of wood of uniform texture, free from all knots or other defects or contrasts of grain. Ancient Etruscan flutes seem to have been made of Box; whilst at the present day the Green Ebony (Brýa Ébenus) of the West Indies is, when properly seasoned, the very best wood for this purpose. Evelyn writes that Cypress is a sonorous wood, and is employed in making harps, organ-pipes, and other musical instruments; but the Spruce (Pícía excélsa), known in the trade as "Swiss Pine," is now accounted the most resonant of all woods, and is used for the bellies of the violin and the sounding-boards of pianos, Sycamore (Acer pseudo-plátanus) or Hard Maple (A. barbátum) being employed for the back and sides of the former instrument.
Miscellaneous uses.—Even tobacco-pipes consume large quantities of certain woods, such as the Bruyère, commonly known as Briar (Erica arbórea), from Southern Europe, the Myall (Acácia homalopfylla) from Australia, and the Cherry (Prúnus áviúm, Mánhale, etc.), used for long pipe-stems and grown mainly in Austria. The light white woods of the Horse-chestnuts or Buckeyes (Ésculus) are used for artificial limbs, just as, judging by the writings of the comic dramatists. Linden-wood was employed in making corsets for male dandies in ancient Greece. Millions of cubic feet of Bermuda Cedar and of the Red or Pencil Cedar of Virginia (Juniperus bermudiana and J. virginiána) are cut annually for the manufacture of pencils alone. The quantities of Alder (Álnus glutinósa), Beech, Willow (Sálíx álba more especially), Spruce or White Deal (Pícce excélsa), Birch (Bétula álba), Linden, Poplars, and even Horse-chestnut (Ésculus hippocástanum) in Europe, and of Tupelo (Nýssa sylvática) and Canoe Birch (Bétula pappióíera) in North America, consumed for sabots must be immense, to say nothing of the quantities of these and other woods used for shoe-lasts, shoe-pegs, boot-trees, hat-blocks, etc. Soft white woods, such as Willow, Alder, Linden, Poplar, or “Cottonwood,” that of the Tulip-tree (Líriodendró) and the Cucumber-tree (Magnólia acumináta), confounded together as “Canary Whitewood,” and the Spruces (Pícce) and Soft Pines (Pínus Stróbús, etc.), are those chiefly in demand by the toy-manufacturer.

Cooperage.—The requirements of the cooper are more varied than might be supposed, different woods being needed for staves, for hoops, for head-pieces, and for dry, liquid, or volatile goods. Oak is largely used for staves, especially French Oak (Quércus Róbur), and American White Oak (Q. álbo), but in Australia the Black Wattle (Acácia mollíssíma) takes its place. Willow and Hickory are used for hoops and Ash for a great variety of purposes, but for dry goods the cooper employs cheap soft white woods such as those used for the manufacture of packing-cases.

Packing-cases.—Packing-cases made of inferior Silver Fir (Ábies pectínáta) are sent all over the world from Switzerland and the Tyrol: its cheapness causes Norway Spruce (Pícce excélsa) to be almost as universally employed; and on the continent of Europe the Black Austrian, Bordeaux Cluster, and Italian Stone Pines (Pínus austriáca, Pinásíer, and Pícce) are also largely used for this purpose. Their not splitting when nailed renders the Poplars admirable for this purpose, and the White, Aspen, and Lombardy Poplars (Pópolus canésíca, trémula, and fastigiáta) are accordingly largely used in France, as are Pópolus monilífera and other “Cotton-woods,” as they are there called, in the United States. Pícce
Smithiana, the Himalayan Spruce, is in common use in India; but for tea-chests, though Chir (Pinus longifolia), Chatwan (Alstonia scholarios), Chaplash (Artocarpus Chaplaska), Toon (Cedrela Toona), Shembal (Bombax malabaricum), and Maples, such as Acer Campbellii in the north-east, and A. pictum in the north-west, are employed, there is an inadequate supply of suitable native wood, which is being met by the importation of Birch veneers from Russia.

Crates, etc.—Ash, Alder, and Birch are largely used in the making of crates; and few persons probably, outside the trade, notice the variety of woods, in addition to Willow, which go to the making of our baskets. Enormous quantities of the Pine timber of Sweden (Pinus sylvestris) are consumed in the form of lucifer matches; while wood-shavings and wood-wool, as it is called, much used in packing, are little more than bye-products in the conversion of timber for other purposes.

Paper-pulp.—The manufacture of wood-pulp for paper, an industry belonging almost entirely to the last twenty-five years, has grown to such dimensions as to seriously affect the question of our timber supplies. It is carried on mainly in Scandinavia, Germany, the United States, and Canada. The Poplars, Alders, Buckeyes, and Spruces are the most suitable woods for this manufacture; but the coarser kinds of printing paper, packing paper, and paste-board are made from Pine, even the branches and chips, formerly wasted, being utilized. The refuse of Juniperus virginiana from the pencil factories yields a paper useful for underlaying carpets or wrapping articles liable to be injured by moth. Two methods are followed, the mechanical, yielding a granular inferior product, and the chemical. Of this last there are two principal modifications—viz., the soda or alkaline process, and the sulphite or acid process, according as the reagent employed is caustic soda or bisulphite of lime. The former produces softer, the latter harder and more transparent, paper. Cellulose, prepared by these chemical processes from coniferous wood, is also manufactured in Germany into an infinite variety of articles. As an illustration of the growth of the wood-pulp industry it may be stated that in 1891 the product of Norway was valued at 8,600,000 kronor (about £430,000), and that of Sweden at 10,400,000 kronor (£520,000), whilst in 1900 they were 27,400,000 and 33,200,000 kronor respectively. In 1892 there were already 600 paper-pulp factories in Germany and 200 in Austria-Hungary; by 1900 the value of the industry in Canada was estimated at 6½ millions sterling; and in the following year Dr. Schlich calculated that Norway was producing 1,400,000 tons a year, Canada 1,200,000, and Sweden 1,000,000, tons. British imports
of wood-pulp in 1899 exceeded 20,000 tons, valued at nearly two millions sterling. These amounts have undoubtedly at the present time been largely exceeded.

Fuel.—The heat-producing value of wood as fuel varies greatly, owing to the differing capacity that woods have for retaining moisture. Thus, while green wood may contain 50 per cent. of moisture, ordinary stack-wood may contain only 25 per cent., and kiln-dry wood only 2 per cent. With 25 lbs. of water, 100 lbs. of fire-wood will contain about 1 lb. of incombustible ash and 74 lbs. of the dry substance of wood. This last consists of 37 lbs. of carbon, 32 lbs. of oxygen and 4.4 lbs. of hydrogen; and in burning the whole of the oxygen combines with 4 lbs. of hydrogen to form water, so that only the 37 lbs. of carbon and 0.4 lb. of hydrogen—i.e., about half the weight of the dry substance of the wood—are available for heat-production. Every pound of water combined in the wood requires about 600 units of heat to evaporate it, the unit being the amount of heat necessary to raise 1 lb. of water 1° C.; so that 100 lbs. of stack-wood (25 per cent. moisture) only furnishes about 255,000 units, whilst if kiln-dry (2 per cent.) it would yield 350,000. The advantage of seasoning for firewood is, therefore, obvious. The resinous woods of the conifers produce most flame and are most useful accordingly in starting a fire; but the denser hard woods produce from 25 to 30 per cent. more heat.

Charcoal and distillation of wood.—When wood is heated to 200° F. without access of air, it remains unaltered, at 220° it becomes brown, and at 270° to 300° it suffers decomposition, torrefied wood or red charcoal being formed. At 350° it is resolved into volatile products and true or black charcoal. If the temperature is raised gradually, so that 600° F. is not reached for several hours, the process is called dry distillation. The first product of distillation is almost entirely water; but at 500° pyroligneous (crude acetic) acid, or wood-vinegar, wood-spirit and uncondensable gases pass off, charcoal and some tar remaining. In the primitive method of the charcoal-burner, or meiler, in which billets of wood are stacked horizontally or inclined round a central chimney opening, most of the volatile products are lost; but for charcoal this process is still largely employed on the Continent. If the fire is steady and regular, the slower the process the better the yield. For gunpowder-charcoal, however, and acetic acid, iron or brick ovens are mostly employed. The best gunpowder-charcoal is produced from light woods, such as Willow, Buckthorn, or "Dogwood" (Rhámnuus Frángula), and Alder. Charcoal is darker, heavier, a better conductor of heat and electricity, less easily ignited, and gives out greater heat in burning, the higher the temperature at which it has
been made. The proportion of charcoal yielded is greater (24 to 30 per cent.) with a slow process, that of the volatile products with a rapid one. From experiments with Hornbeam, Alder, Birch, Rowan, Beech, Aspen, Oak, Buckthorn, Silver Fir, and Larch, we find the yield of charcoal to range from 20 per cent. with slow, to 34-6 per cent. with quick distillation; the total distillate from 43 to 53 per cent.; the pyroligneous acid from 47-5 in the hardwoods to 38 in the conifers; and the tar from 2-9 in Beech to 9-7 in conifers. In practice only about 18 to 20 per cent. by weight of charcoal is obtained, or about half the volume of the wood. Pyroligneous acid is in England largely manufactured from spent dye-woods, such as fustic, logwood, etc., the charcoal obtained being largely used for packing the meat refrigerators in ships. The gas manufactured on the Continent by the distillation of wood consists, like coal-gas, of carbon-monoxide, hydrogen and hydrocarbons such as acetylene, olefiant gas, benzene, etc. That from Silver Fir (Abies pectinata), for instance, contains carbon-monoxide 22-3 to 61-8 per cent. by weight, hydrogen 18-4 to 48-7, heavy hydrocarbons 6-5 to 10-6, and light hydrocarbons 9-4 to 35-3 per cent. The products of distillation, under the most favourable circumstances, are stated as:

<table>
<thead>
<tr>
<th></th>
<th>Charcoal</th>
<th>Tar</th>
<th>Crude Pyroligneous Acid</th>
<th>Pure Acetic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birch,</td>
<td>22.4</td>
<td>8.6</td>
<td>45.0</td>
<td>4.47</td>
</tr>
<tr>
<td>Beech,</td>
<td>24.6</td>
<td>9.5</td>
<td>44.0</td>
<td>4.29</td>
</tr>
<tr>
<td>Oak,</td>
<td>26.2</td>
<td>9.1</td>
<td>43.0</td>
<td>3.88</td>
</tr>
<tr>
<td>Juniper,</td>
<td>22.7</td>
<td>10.7</td>
<td>45.8</td>
<td>2.94</td>
</tr>
<tr>
<td>Silver Fir,</td>
<td>21.2</td>
<td>13.7</td>
<td>41.2</td>
<td>2.16</td>
</tr>
<tr>
<td>Scots Fir,</td>
<td>21.5</td>
<td>11.8</td>
<td>42.4</td>
<td>2.14</td>
</tr>
</tbody>
</table>

Purer acetic acid is obtained by re-distillation, and, when mixed with certain essences, constitutes aromatic vinegar. Among the acetates prepared on a large scale from pyroligneous acid are those of lime, the brown containing from 60 to 70, and the grey from 80 to 85 per cent. of acetate. In the preparation of these naphtha is recovered; and from this, by neutralizing with lime and redistilling, wood spirit or methyl alcohol. Wood-tar, used for creosoting wood and in the manufacture of roofing-felts, is a thick, dark, viscous material, containing from 5 to 20 per cent. of acetic acid, from 30 to 65 per cent. of pitch, and from 20 to 45 per cent. of tar-oils. From these last, creosote, a colourless, highly refracting oil, with a specific gravity of 1.04, boiling at 406° F., and paraffin, used for candle-making, are obtained, by neutralizing with carbonate of soda and further distillation.
Dyeing and tanning. — Finally, somewhat apart from these other uses to which woods are applied, is the employment of certain species for dyeing and tanning. Of the former the most important are Logwood (*Hæmatóxyylon campechiánun* L.), which dyes red or black, and of which we import over 50,000 tons annually from Central America; Fustic, a yellow dye, obtained from the wood of the large West Indian trees, *Chloróphora tinctória* Gaud. (=Mac- lúra tinctória D. Don) and its varieties, *xanthóxylon* and *áffinis*; Sappan or Yellow-wood, from *Caesalpínia Sáppan* L.; the red dyes known as Brazil, Braziletto, Nicaragua, or Lima wood, from *Caesalpinia crísta* L., *brasiliénsis* L., *echináta* Lam., *C. bíjuga*, and *C. tinc- tória*; Camwood, *Báphía nilida* Aftz., from West Africa; and Red Sanders or Sandal-wood, *Pterocárpus santalínus* L. fil., and *Adénán- thera pavonína* L., from India.

Barks are more used for tanning than are woods; but the Que- brachos, the produce of several South American species, have been a good deal employed of late years.

The various methods employed consist essentially in a machine for grinding the dye-wood into a fine state of division, and a boiler or digester in which an extract is prepared by dissolving the grated wood in a suitable lye.
CHAPTER VI

OUR SUPPLIES OF WOOD.

In spite of the substitution of iron or other substances for wood in shipbuilding and other industries, with the increasing numbers of civilized man the consumption of wood increases at such a rate as to demand serious attention.

The clearing of forest land for the purposes of agriculture has been most recklessly carried out, especially during the last century in the United States and in Canada, much of the wood being wasted. Where, too, the timber has been cut for use, this has in general been done so completely without any provision for the regeneration of the forest-lands as to lead to their extinction. The floods and famines of China, the waste of the agricultural soil in Ceylon, the barrenness of Mesopotamia, Syria, Asia Minor, and Cyprus, the drying up of the springs and deterioration of the climate in South Africa, Mauritius, Turkey, and Spain have been attributed mainly to wholesale destruction of forest. The felling of the woods on the Atlantic coast of Denmark has exposed the country to sharp sea winds and drifting sand, forming lagoons and bogs and causing a marked deterioration of the climate: the disafforestation of the Apennines during the last two centuries has much increased the violence of the mountain-torrents; and even in Russia, which has not only the largest area of forest of any European state, but the largest percentage of her whole area under forest, a decrease in the waters of the Volga has been attributed to the same cause.

Whilst all woodland has disappeared from some lands, special species are threatened with extinction in others. The pine forests of Tunis have disappeared during the last hundred years: some districts of Australia already experience a scarcity of fire-wood and of mine-props: until Government regulations put a stop to the felling of saplings to act as rollers in transporting the larger logs, the valuable Greenheart of Demerara was in imminent danger of extinction; and the enormous drain upon the supply of White Pine (Pinus Stróbus) is a grave danger in North America.
Great Britain.—In Great Britain the abundance of coal renders us independent of wood as fuel, and our geographical position so facilitates the importation of timber that we have to a great extent neglected our woodlands as a source of profit, while our mild insular climate has enabled us to overlook the hygienic importance of forests. There is accordingly little more than 3 million acres of woods and forests in the United Kingdom, or only 4 per cent. of the entire area, a lower percentage than that of any other European state, except Portugal, while this country stands pre-eminent as the greatest importer of timber, exceeding 300 million cubic feet, or, including paper-pulp, gums, bark, and other forest produce, an annual value exceeding 35 millions sterling. No complete statistics are available as to our consumption of home-grown timber; but it probably does not exceed 2 million tons. Special local demand is to some extent met by local supply, as, for instance, in the case of the bobbin-wood in the cotton-mill districts, pit-props in the Scottish mining area, and the Beech of the Chilterns, from 12,000 to 15,000 loads of which are used annually in the Buckinghamshire chair-making industry, by which some 50,000 families are supported. Of our imports, over five millions sterling is the value of the timber received from Canada, and even greater amounts from Sweden and Russia.

The United Kingdom imported timber to the following values in the years 1898, 1899, and 1900 from

<table>
<thead>
<tr>
<th>Country</th>
<th>1898</th>
<th>1899</th>
<th>1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>£4,645,549</td>
<td>£4,957,001</td>
<td>£5,993,377</td>
</tr>
<tr>
<td>Sweden and Norway</td>
<td>6,600,283</td>
<td>6,889,857</td>
<td>6,681,274</td>
</tr>
<tr>
<td>Germany</td>
<td>606,446</td>
<td>606,230</td>
<td>727,812</td>
</tr>
<tr>
<td>United States</td>
<td>2,078,012</td>
<td>2,421,100</td>
<td>3,860,406</td>
</tr>
<tr>
<td>India</td>
<td>620,095</td>
<td>626,101</td>
<td>731,842</td>
</tr>
<tr>
<td>Canada</td>
<td>4,342,244</td>
<td>4,751,099</td>
<td>5,243,496</td>
</tr>
<tr>
<td>Other countries</td>
<td>1,000,050</td>
<td>1,277,568</td>
<td>1,478,759</td>
</tr>
<tr>
<td>Total</td>
<td>£19,946,679</td>
<td>£21,525,926</td>
<td>£25,151,104</td>
</tr>
</tbody>
</table>

Besides furniture-woods and veneers, 646,075 659,312 722,460
and Mahogany, 691,220 693,949 826,520

Sir J. F. L. Rolleston, M.P., in his presidential address to the Surveyors' Institution in November, 1901, said:

"Before leaving the subject of land and its future, I should like to say that of all its products the only one, the value of which appears to be in the ascending scale, is timber. In the midland counties I have been furnished with accounts of timber sales at which single Oak trees have realized up to £100, while other woods are commanding good prices, and poles and thinnings are readily sold. There is a reason for this. The great onslaught that has been made on the virgin forests of the world, from the
time of the Phœnicians onwards, without artificial reafforestation, must at length be appreciably felt.

The increase of population and the advance of civilization must also point to an increased use of timber of all kinds for works of construction, for articles of use and ornamentation, and for fuel. A rise in the value of home-grown timber seems possible; in any case a ready sale may be anticipated.

With the decline in the value of cereals it can hardly be doubted that a considerable portion of the land of this country (some of which is derelict, and some let at a very low rental) might be planted to advantage."

The forest area of Europe was estimated by Dr. Schlich in 1901 at 758,080,000 acres, i.e. 31 per cent. of the total area, or 2 acres per head of the population. That of the chief countries is estimated as follows:

<table>
<thead>
<tr>
<th>Country</th>
<th>Acres</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Russia</td>
<td>516,000,000</td>
<td>40</td>
</tr>
<tr>
<td>*Sweden</td>
<td>48,000,000</td>
<td>40</td>
</tr>
<tr>
<td>*Austria-Hungary</td>
<td>46,110,000</td>
<td>30</td>
</tr>
<tr>
<td>France</td>
<td>23,530,000</td>
<td>18</td>
</tr>
<tr>
<td>Spain</td>
<td>20,960,000</td>
<td>17</td>
</tr>
<tr>
<td>Germany</td>
<td>34,490,000</td>
<td>26</td>
</tr>
<tr>
<td>*Norway</td>
<td>17,000,000</td>
<td>21</td>
</tr>
<tr>
<td>Italy</td>
<td>10,110,000</td>
<td>14</td>
</tr>
<tr>
<td>Turkey</td>
<td>6,180,000</td>
<td>8</td>
</tr>
<tr>
<td>Great Britain</td>
<td>3,030,000</td>
<td>4</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2,100,000</td>
<td>20</td>
</tr>
<tr>
<td>Greece</td>
<td>2,030,000</td>
<td>16</td>
</tr>
<tr>
<td>Portugal</td>
<td>770,000</td>
<td>3</td>
</tr>
<tr>
<td>Belgium</td>
<td>1,250,000</td>
<td>17</td>
</tr>
<tr>
<td>Holland</td>
<td>570,000</td>
<td>7</td>
</tr>
<tr>
<td>Denmark</td>
<td>600,000</td>
<td>6</td>
</tr>
<tr>
<td>*Bulgaria</td>
<td>10,650,000</td>
<td>45</td>
</tr>
<tr>
<td>*Bosnia and Herzegovina</td>
<td>6,790,000</td>
<td>53</td>
</tr>
<tr>
<td>Servia</td>
<td>2,390,000</td>
<td>20</td>
</tr>
<tr>
<td>*Roumania</td>
<td>5,030,000</td>
<td>17</td>
</tr>
</tbody>
</table>

The asterisk indicates the chief exporting countries.

With civilization comes an increasing demand for timber for fencing, building, mine-props, railway-sleepers, and telegraphpoles, not to mention that for more valuable woods for furniture, etc., and the multitudinous other minor uses of timber. Thus American statisticians have estimated 3 million cords1 of wood as used annually in brick-burning, a million cords of Birch for tool-handles and boot-lasts, 100,000 cords of Soft Maple for shoe-pegs, and over 3,000 cords of Pine for lucifer matches in the United States alone.

In 1904 Dr. Schlich calculated from the returns of the five previous years the net annual imports and exports of timber by European countries in tons as:

1 A cord = 2^{3/4} loads, 2^{1/2} tons, or 125 cubic feet.
WOOD SUPPLY OF RUSSIA, SCANDINAVIA, ETC. 97

<table>
<thead>
<tr>
<th>Region</th>
<th>Imports</th>
<th>Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Britain</td>
<td>9,290,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Ireland</td>
<td>4,600,000</td>
<td>1,040,000</td>
</tr>
<tr>
<td>Germany</td>
<td>1,230,000</td>
<td>3,670,000</td>
</tr>
<tr>
<td>France</td>
<td>1,020,000</td>
<td>4,460,000</td>
</tr>
<tr>
<td>Belgium</td>
<td>479,000</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>420,000</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>210,000</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>180,000</td>
<td></td>
</tr>
<tr>
<td>Holland</td>
<td>170,000</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>35,000</td>
<td></td>
</tr>
<tr>
<td>Servia</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15,139,000</td>
<td>17,750,000</td>
</tr>
</tbody>
</table>

Russia.—In the well-managed forests of Germany the average yearly growth, and, therefore, the amount legitimately felled annually, is estimated at 2.3 cubic feet for every 100 cubic feet of standing timber, or 50 cubic feet per acre. But in spite of the enormous annual yield which this computation gives to the forests of Russia (viz., 23,475 million cubic feet), when we find nearly half that amount (10,000 millions) now used within the country for fuel alone, and 30 millions for house-building, it will be realized how little reliance can be placed in Russia as a permanent source of supply for Europe. Before reckoning for her increasing population we may recall the saying that Russia is burnt down every seven years. Of the total timber output from Russian Government forests in 1880 of 2,900,000 cubic fathoms, Spruce (*Picea excelsa*) constituted 37.5 per cent., Pine (mainly *Pinus sylvestris*), 27.8, soft woods (Birch, Linden, Aspen, etc.), 19.5, and hard woods (Oak, Beech, etc.), 8.8 per cent. Besides paper-pulp from the Aspen, and a certain amount of Walnut, Russia exports Box from Odessa, and a large amount of Deal from the White Sea and Baltic ports. The growing supply of timber at Archangel and the other White Sea ports is yearly drawn from a greater distance inland.

Scandinavia.—Sweden sends more than half of her exported timber to Great Britain. It consists largely of Pine, both as pit-props and in a manufactured form, as window and door-frames; Spruce or "White Deal," used for scaffolds, ladders, etc.; matches, of Pine and Aspen; and paper-pulp of Aspen, Spruce, and Pine. The exports of Norway are similar, a certain amount of Birch and Maple (*Acer platanoides*) also coming from this country to England. Both Norway and Sweden are apparently reducing their forest areas by cutting more than the annual increment.

France.—Though a well-wooded country, with carefully managed
forests in almost every department, exporting Oak and sending Bordeaux Pine (*Pinus Pinaster*) as mine-props to our Welsh collieries, France imports common building woods from Scandinavia, Russia, and America, as well as the more costly kinds used for furniture, etc., her imports exceeding her exports to the value of over five million sterling per annum.

German Empire, etc. — Spain imports, but does not export timber. Prussia has 23 per cent. of its area under forest, over 6 million acres, or 30 per cent. of the whole, being under Government administration. The yield is about 47 cubic feet per acre per annum, *i.e.* safely within the calculated annual increment of 50 cubic feet, the total expenditure about 1½ millions sterling, and the net surplus over a million, or about 3s. 6d. an acre for all ground in use. The chief species are Kiefer (*Pinus sylvestris*), exported as Dantzig or Riga Fir or Prussian Deal, and Fichte or Roth Tanne (*Picea excelsa*), forming between them three-fourths of the whole crop. Eiche (*Quercus Róbur*) is exported to England as Baltic or East Country Oak, and the Silver Fir, Edeltanne or Weissfichte (*Abies pectináta*) abounds in the Vosges and occurs in Schleswig-Holstein and Silesia. More than a quarter of the area of Bavaria is under wood, and, though there is a large local demand for fuel, the careful foresight of the administration is evidenced by the fact that in 1885 a government forester was sent to study the timber-trees of the United States, who frankly explained his mission by saying, "In fifty years you will have to import your timber, and as you will probably have a preference for American kinds, we shall begin to grow them now, so as to be ready to send them to you at the proper time."

Timber is the chief export of the country.

Saxony has over a million acres of forest, one-third of which belongs to the State, the annual cut being estimated at a million cubic feet. The Saxon forests include Oak, Beech, Ash, Birch, and Alder, as well as Pine, Spruce, Silver Fir, and Larch.

Wurttemberg has nearly 1½ million acres, or over 30 per cent. of its whole area under forest, comprising the Pine-wood districts of the Black Forest and the hardwoods of the Swabian Alps. Pine, Spruce, Silver Fir, and Oak are floated down the Rhine to the Dutch shipbuilding yards, whilst Beech furnishes the chief fuel of the country, and is used for ships’ keels, carriage-building, and chair-making, and Aspen is in demand for matches and paper-pulp.

Hesse-Darmstadt, the Fir-trees from which are in special demand in Holland, has one-third of its area under forest; whilst Baden has also over a million acres, or one-third of its area, so occupied.

Austria-Hungary. — The forests of the Austrian Empire occupy over 42½ million acres, those of Austria being 30 per cent., those
of Hungary 26·6 per cent., of the entire areas of the two countries. Beech, Spruce, Silver Fir, and Larch are the prevalent species, and the bulk of the timber is consumed, for building purposes or fuel, at home. Hungary has also some large forests of excellent Oak.

Switzerland. — From the 1,900,000 acres of the forests of Switzerland it is estimated that over 89 million cubic feet of timber are cut annually, but, in addition to considerable clearing, the demands of a growing population for building purposes, and the use of much wood as fuel, there has been considerable waste, as, for instance, in cutting young trees for fencing, so that the total cut has been estimated as in excess of the yield, and the export has accordingly declined. Spruce, Silver Fir, and Pine are the predominant species.

Italy. — Italy exports a certain amount of Oak of various qualities, but of ill-ascertained origin. The best, the Tuscan, Neapolitan, and Sicilian, would seem to be Quercus Róbur, Q. Áesculus, and Q. pyrenáica. Modena, Roman, and Sardinian Oak and Adriatic Oak (Q. Cérris) are inferior. The country is, however, deficient in timber, from the point of view both of climate and of demand. While with our moist climate we can manage with a far smaller proportion of forest, the countries bordering on the Mediterranean all suffer from the removal of their forests. Centuries ago the Karst region of Southern Austria was covered with magnificent Oak forests and furnished piles and shipbuilding timber to Venice in her palmy days. It was said that a squirrel could travel for miles along the Istrián coast from tree to tree. Reckless felling by the Venetians led to the washing away of the surface soil, until the country for twenty miles north of Trieste was reduced to bare rock. Forty years ago the Austrian Government began a costly system of reafforestation.

Asia. — Turning from Europe to Asia, we find undoubtedly a large supply of Larch (Lárix sibírica), Pine, Spruce (Pícea cepha-lónica), Birch, and other species in Siberia; but, unless the Amoor can, to some extent, play the part of the St. Lawrence, the difficulty of transport will be insuperable. Neither China, the interior of which probably suffers much from the effects of disafforesting, nor Japan, holds out any prospect of any large export either of common or of choice woods, whilst, except perhaps in the remote future to western North America, cost of freight would put the former class of timber out of the question.

In Japan, where forest conservancy dates from the third century A.D., half the area of the country, or about 47,000,000 acres, are stated to be forest, yielding more than 120 species of valuable timbers, of which the Nikko Silver Fir (Ábies homolépis S. and Z.)
and Saghalien Fir (A. sachalinensis Masters) are the cheapest, and Hi-no-ki (Cupressus obtusa Koch) and Ke-ya-ki (Zelkówa acuminátá Planchon) are the most expensive.

India.—Taking British India as 480 million acres, 40 millions, or one-twelfth of the whole area, are forest. In spite, however, of the enormous local consumption for fuel and the increasing demand for railway-sleepers, India produces such a variety of valuable ornamental and dense hardwoods that conservation is likely to enable her long to continue her exportation. Of some 2,500 species of timbers described from India the fourteen most important are Teak, Sal, Deodar, Sissoo, Babul, Juniper, Kheir, Blackwood, Sandalwood, Red Sanders, Pyengado, Nahor, Anjan, and Mahwa. In 1899-1900 she exported Teak to the value of over £600,000, besides Blackwood, Padouk, Satinwood, Ebony, and Sandalwood; but her supply of cheap softwood for tea-chests, etc., is hardly equal to the demand. At the same time many of her ornamental furniture woods might well be more largely used in Europe, especially Iron-wood, Saj, Toon, Thingan, and Eng.

Such woods as Pynkadoo (Xyilia dolabrijórnis), Kranji (Didlium índum), and Tampinnis (Sloêtia sideróxylon), in the Malay Peninsula, the Lauan (Dipterocárpus thúrífer) and Acle (Xyilia dolabrijórnis) of the Philippines, and the Rassak (Váctica Rássak), Billian (Eusideróxylon Zvágeri), and Compass (Kámpússia malaccénís) of Borneo, may well prove worthy of European attention, especially for density and durability, when they become better known, and the supply of them may be said to be as yet untapped.

Among 200 species thought worthy of trial in the arsenal at Manila, the essentially Malayan flora of the Philippines includes:

Acle (Xyilia dolabrijórnis),
Banaba (Lagerstrêémia Flos-Regínæ),
Bétis (Payéna Bé tí),
Bolongnita (Diospéros pilosánthera),
Cedar (Cédréla Toóna),
Dougon (Sterculia cymbiórnis),
Guijo (Shórea robústa),
Ipel (Aźéliá bíýuga),
Lauan (Dipterocárpus thúrífer),
Mangachapoi (Shórea Mangáchapoi),
Molave (Vítex geniculátus and V. altíssima),
Narr (Pterocárpus píllidus and P. santalínus),
Padouk (Pterocárpus indicus),
Palo María (Calóphýllum Inóphýllum), and
Yacal (Shórea reticulátá).
Australasia. — Australian timbers have, as we have already said, suffered in European repute by not being seasoned; and as, in spite of a vast area of scrub, the area of timber-producing forest is comparatively small, wholesale clearing for the purposes of agriculture, the use of wood for fuel, and the great demand for building, fencing, railways, and telegraphs, have sensibly affected the supply. The areas under marketable timber are stated to be as follows:—

<table>
<thead>
<tr>
<th></th>
<th>Acres.</th>
<th></th>
<th>Acres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queensland,</td>
<td>40,000,000</td>
<td>Tasmania,</td>
<td>11,000,000</td>
</tr>
<tr>
<td>West Australia,</td>
<td>20,400,000</td>
<td>Victoria,</td>
<td>5,000,000</td>
</tr>
<tr>
<td>New South Wales</td>
<td>20,000,000</td>
<td>South Australia</td>
<td>3,840,000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100,765,000</td>
</tr>
</tbody>
</table>

Conservation has begun; but mine-props and even firewood are locally scarce. Queensland exports Red Cedar (Cedrela Toóna), and Moreton Bay, Kauri and Cypress Pines (Araucária Cunninghámii, Ágathis robústa, and Càllitrí robústa). Among the chief other species of this State are Ironbark (Eucalýptus sideróphloïa), Peppermint (E. microcórys), Stringybark (E. acmenióides), Woollybutt (E. botryóides), Bloodwood (E. corymbósa), River Gum (E. rostráta), Blue Gum (E. tereticórns), Grey Gum (E. saligna), Gum-topped Box (E. hemiphloïa), Brisbane Box (Tristánía conférta), Swamp Mahogany (T. suavéolens), Moreton Bay Chestnut (Cas-tanospérmum austrálé), Paper-barked Tea-tree (Meláléuca Leuca-déndron), Gidgee (Acacia homóalphyllá), Beech (Gmelína Leichardtíi), Kauri Pines (Agathis robústa and A. Palmerstoní), She Pine (Podó-cárpus eláta), and the Pencil Cedars (Dysóxylon Frasériánum and D. Muelleríi). New South Wales sends Cedar (Cedrela Toóna) and Pine (Araucária Cunninghámii) to China and New Caledonia, and the area under the former species is now considerably reduced. Among other important woods of this State are most of those just mentioned as occurring in Queensland, together with White Ironbark (Eucalýptus paniculátá), Narrow-leaved (E. crébrá), and Red (E. Sideróxylon), Blackbutt (E. piluláris), Woollybutt (E. longi-fólia), Forest Mahogany (E. resiniýera), Grey Gum (E. propínqua), and Spotted Gum (E. maculátá), Turpentine (Syncárpia laurífólia), Silky Oak (Grevíllea robústa), Tulip-wood (Harpúllia pendlúla), and Coachwood (Ceratópétalum apétalum). Nearly half the area of the colony of Victoria (40,000 out of 88,198 square miles) was estimated as forest in 1878, most of it being in the hands of Government, and more than half of it consisting of Eucalýptus. Many Victorian timbers are extremely dense and hard, such as Red Gum, Blue Gum, White Gum or Peppermint, Messmate and Iron-bark (Eucalýptus rostráta, glóbulus, amygdalína, oblíqua, and leucóxylon), etc.;
and accordingly, though some of them may well maintain a more than local value for sleepers, wood-paving, etc., timber at present appears among the imports rather than among the exports of the colony. Other important species in this State are the Grey Box and Bairnsdale Grey Box (Eucalyptus hemiphóia and E. Bosis-
toána), the Yellow Box (E. melliodóra), the Stringybarks (E. macror-
RHÝNCA, E. capítelláta, E. píperíta and E. Muelleríána), the Silvertop Ironbarks (E. Sieberíána and E. virgáta), the Spotted Gum (E. goniocalyx), the Blackwood (Acácía melanóxylon), and the Cypress Pine (Cállitris verrucósá). The forest-area of South Australia, where Eucalyptus also forms the staple of the timber supply, is not large. It is West Australia, however, and especially its south-
western parts, from which we at present import the bulk of our Australian timber-supply. Besides Sandalwood (Sántalum cyg-
nórum or Fusánus spicátus) to the value of nearly £30,000 annually, sent mainly to China, West Australia is exporting timber to the value of half a million sterling; the chief species being Jarrah (Eucalyptus margináta), which is officially stated to be the pre-
dominant species over 14,000 square miles, Karri (E. diversícolor) occupying 2,300 square miles, Tewart (E. gomphocéphala) occupying some 500 square miles. Other species are the Red Gum (Eucalyptus calóphylíla), Wandoo (E. redúnca), Blackbutt (E. pátens), York Gum (E. loxóphléba), and Yate Gum (E. cornuáta).

The timber areas in West Australia are stated as:

- Jarrah (with Blackbutt and Red Gum), - - 8,000,000 acres.
- Karri, - - 1,200,000
- Tewart, - - 200,000
- Wandoo, - - 7,000,000
- York Gum, Yate, Raspberry-jam, and Sandalwood, - 4,000,000

This area is estimated to contain 62 million loads of mature timber worth £3 per load, a total value, deducting 1/₃ for waste in sawing, of £124,000,000.

Nearly one-half of the island of Tasmania (8,000,000 acres) is timbered, seven-eighths of the woodland being under Government, but the timber area is diminishing. The beautifully mottled, durable Huon Pine (Dacrydium Franklínii) has become scarce and high-priced. The bulk of the timber exported consists of Stringy-
bark (Eucalyptus oblíqua), sent in planks to Victoria, South Australia, and New Zealand; but the most valuable timber of the colony is the Blue Gum (E. glóbulus), which is abundant in the south of the island. Other leading species are the Peppermint (Eucalyptus amygdálina), Swamp Gum (E. régnans), Ironbark (E. Sieberíána), Myrtle (Fagus Cunninghamii), She Oak (Casuarína quadrválvis), and Blackwood (Acácía melanóxylon).
The forest-area of New Zealand, estimated at over 20,000,000 acres in 1830, was only 12,000,000 acres in 1874, when clearing was proceeding at the rate of 4 per cent. per annum; but conservation was then inaugurated and the many valuable species of timber thereby saved from extermination.

Of these the most valuable is the Kauri Pine (Agathis australis), which is confined to the North Island. This fine durable timber is the softwood of the country, and is extensively converted for export to Australia, the freight militating against it in competition with Baltic timber for the English market, though it is employed to some extent for the decks of yachts.

Africa.—Little can be said as to the timber resources of the African continent. Neither Atlas Cedar (Cedrus atlántica), resembling the Deodar, nor Atlas Cypress (Tetraclinis articulata), the Citron-wood of the ancients, are well known commercially, and the same must be said of Morocco Ironwood (Argánia Sideróxylon). Algeria, however, has nearly 5 million acres of forest, three-fifths of which are under State control, and its Evergreen Oaks (Quercus Ilex, Súber, bállota, etc.), its Kabyle Ash, said to be equal to English, and Maritime Pine (Pinus Pináster) should prove of value. From our West African colonies we did import small quantities of African Oak or Teak (Oldfeldia africana), a dense wood, shipped from Sierra Leone, and still obtain African Rosewood (Pterocárpus erinácus); but the trade in Mahogany from Lagos, Benin, Bathurst, Axim, Assini, and other ports has of late years assumed considerable dimensions. Several distinct species are undoubtedly imported under this name. But little is known of the timber-trees of tropical Africa, though several valuable species appear to extend right across the continent from east to west; while the south of the continent is one of the districts of the world which suffers most in climate from the want of timber, partly from reckless destruction.

Little is known as yet as to the botanical nature or abundance of the undoubtedly valuable timbers of Rhodesia. It is estimated that there are about 2,000 square miles of forest in Matabeleland, while Mashonaland is not so well timbered. Annual grass fires kill innumerable young trees: the natives are answerable for the destruction of many thousands; and the felling of large timber is attended with much unnecessary destruction of smaller trees. The Gwaai forest, which extends along the river of that name, fifty miles from Buluwayo, consists of Ikusi, or Native Teak, several kinds of Acacia, and Mopane. Large areas in Mashonaland also are covered with Ikusi, a handsome dark brown wood streaked with yellow, which is worked for building purposes. The Shangani river passes through a forest of Baobab, the largest tree
of the country; whilst the Mahobohobo, valuable as a mine-timber because it is termite-proof, abounds in the Selukwe and Belingwe districts. Katope, resembling Pine; Mbawa and Malombwa, resembling Mahogany; and Muwowa, used for native canoes, and stated to reach an immense height, are also valuable species.

Cape Box (Búxus Macowáníi) is far inferior to Turkey Box; but many of the cabinet-woods of Cape Colony, such as Stinkwood (Ocotéa bulláta) and Sneezewood (Pteróxylon útilé), deserve more than local repute. The remnants of the indigenous forests of “Pencil Cedar” (Widdringtónica juníperóides) will repay strict conservation, whilst one of the most important industries of the future will be the growth of the Maritime Pine (Pínum Píndster) for railway-sleepers. Natal has 165,000 acres of forest; but depends largely for firewood upon the rapid-growing Eucalúptus and Casuarína which have been introduced from Australia. Some of the indigenous timbers, such as Essenboom, or Cape Ash (Ecke-búrgia capénsis), Assegai-wood (Curtíssia jagínea) and Umzimit or White Ironwood (Todálía lanceoláta) may prove worthy of attention, especially by cart-builders. Like the as yet undetermined Pink Ivory, a singularly beautiful wood, they unfortunately grow mostly in kloofs or other somewhat inaccessible situations.

In 1898 Cape Colony imported over 3½ million cubic feet of rough timber, of which over 2,600,000 cubic feet came from Sweden, and 2 million cubic feet of planed timber, of which over 930,000 cubic feet came from Norway, and 691,000 from Sweden. In the same year Natal imported 1,687,000 cubic feet of rough timber, of which 1,292,000 were from Sweden, and 1,150,000 cubic feet in planks, 918,000 cubic feet of which were from the same country.

Three-quarters of the area of the island of Madagascar is stated to be forest, mainly as yet untouched. Its woods are as yet little known botanically. They include one or more Ebonies, a “Violetwood” (perhaps an Acácía) and a “Rosewood,” besides a valuable hard redwood suitable for joinery, known as “Lalona.”

South America.—Timber does not form an article of export from the southern or western portion of South America; but Argentina is now becoming a considerable exporter of timber, and Brazil resembles Australia in the extent and variety of its forests. At the Chicago Exhibition of 1893 no less than 440 different Brazilian timbers were exhibited; but unfortunately many of these have not yet been botanically identified. It is stated that some of the species vary much in durability according to the situation in which they are grown; that some of them are too hard and too heavy for many ordinary purposes; and that the absence of railway facilities for transporting the timber to the coast has much reduced
the exports. These, however, exceed £100,000 annually, comprising Mahogany, Logwood, Rosewood, and Brazilwood. Rosewood is *Dalbéria nigra*, shipped from Rio, whilst other species of the genus are known as Violet-wood and King-wood. Brazilwood, hard and heavy, but largely used as a dye, is *Cæsalpínia echinátata*.

French Guiana produces many valuable timbers, including Angélique (*Dicorynia paraénsis*), Cuamara or Tonka-bean (*Coumaroúna odoráta*), Courbaril or Locust (*Hyménéa Courbaril*), Balata (*Mimusops Bálata*), Lancewood (*Duquélia quitarensis*), and Crabwood (*Cárapa guianénsis*), several of which species grow also in Dutch and British Guiana. In all three colonies the forests cover almost the whole area. British Guiana, where forest conservation has been introduced, produces hundreds of species of timber, suitable for almost every purpose, growing, however, in a mixed virgin forest, though at present the exports amount only to about 170,000 cubic feet, valued at £11,000 a year. The most important species are Greenheart (*Nectándra Rodiáei*), Mora (*Dimorphándra Móra*), Crabwood (*Cárapa guianénsis*), Bullet (*Mimusops globósa*), and Locust. Trinidad grows Mora, Crabwood, Bullet, Locust, Lignum-Vitae (*Guáiacum officinále*), Galba (*Calóphyllum Cálaba*), the dye-wood Fustic (*Chloróphora tinctória*), and other valuable species; but its export is insignificant. Ecuador, Colombia, and Venezuela have extensive forest resources, but export little or no timber. Honduras, however, exports Mora, Mahogany, Fustic, and Zebra-wood (*Guettárdia speciósusa*), whilst British Honduras now only exports Cedar (*Cédruéla odoráta*), Mahogany, and Logwood. The annual British import of Mahogany from America has notably declined, being only 2 million cubic feet in 1906, as against 23 million of West African.

West Indies.—Though exporting little timber save Mahogany, and even employing Pine imported from the United States in its sea-ports, Cuba possesses extensive and valuable forests, yielding Cedar, Logwood, Fustic, Lignum-Vitae, Ocuje (*Calóphyllum Cálaba*), Roble Blanco or Jamaica Box (*Teçonía pentáphylla*), an Ebony (*Diospýros tetráspérna*), Cocus-wood or Granadillo (*Bríja Ébenus*), and the valuable Sabicu (*Lysilómia Sábieuc*).

In 1873 Jamaica was estimated to contain 800,000 acres of timber, of which 20,000 were in the hands of Government; but clearing was then proceeding at the rate of 30,000 acres a year. Dye-woods, such as Logwood, Fustic, etc., now form over 8 per cent. of the exports of the island, which exceed £1 ½ millions sterling; but the forests contain many valuable cabinet-woods, the Mahogany being harder and richer in grain than that of Honduras.

While Barbadoes and some others of the Windward Islands are
wholly dependent, even for fuel, upon imported timber, Grenada, Tobago, St. Lucia, and Dominica produce Cedar, Galba (Calophyllum Cálabá), Angelin (Andirá inérmis), Bullet-wood (Mímusops globósoa), and Bois Riviere or Water-wood (Chimárhrhis cymósa), and have a small export.

North America.—In the United States and Canada during the last twenty years, timely, if somewhat alarmist, warnings have been put forward against the reckless waste of the timber resources of the continent. Mr. B. E. Fernow, Chief of the Forestry Division of the United States Department of Agriculture, in 1886 expressed the opinion that the reason why the prophecies of a dearth of timber made for more than a century by alarmists in Europe have not been realized is that their clamour has induced more careful husbanding of forest resources. He then estimated the forest area of the United States, exclusive of Alaska, as less than 500 million acres, much of this being only brushwood or thinly stocked with trees. The amount of wood then used he quotes as 20,000 million cubic feet, made up as follows:

Lumber-market and manufacture,	-	-	-	2,500 millions.
Railroad construction,	-	-	-	360 „
Charcoal,	-	-	-	250 „
Fences,	-	-	-	500 „
Fuel,	-	-	-	17,500 „

"There is also to be added," he writes, "an item requiring yearly a considerable amount of wood for a use to which no other civilized nation puts its forests. I refer to the 10,000,000 acres or so of woodland burnt over every year, intentionally or unintentionally, by which a large amount of timber is killed or made useless; and, what is worse... the capacity of the soil for tree growth is diminished." Reckoning 50 cubic feet as the yearly accretion per acre, the 20,000 million cubic feet consumption here indicated would require an area of not less than 400 million acres to be kept well stocked.

Some day, no doubt, the development of the coal-fields of the United States will considerably lessen the consumption under the largest of the above-mentioned items, and there is certainly room for economizing in other directions. It is computed, for instance, that, in the Californian Redwood (Sequoía sempervírens) forests, to produce a railroad-tie worth 35 cents, timber to the value of 1.87 dollars is wasted. In 1894 there were in the United States 156,497 miles of railroad; there were in 1899 189,294 miles. Reckoning 2,640 as the average number of sleepers per mile would make the number used by 1884 413,152,080. The young sound trees employed will not commonly make more than two sleepers each, i.e. not more
than 100 to 200 sleepers could be cut from an acre of such timberland as prevails in the States, so that the lines existing in 1884 had required all available timber from 4,131,520 acres. The average "life" of a sleeper is seven years, so that 59,021,700 ties, or the product of 590,217 acres, would be requisite to keep the existing lines in repair. The average length of new line built every year was then about 5,000 miles, requiring 13,200,000 ties, or the timber of 132,000 acres. If we allow twenty-five years as the time necessary for trees to attain a size suitable for making ties, then it would require the annual growth of 14,755,425 acres to keep good the existing lines, and 3,300,000 to supply the annual demand for new lines, to say nothing of keeping the latter in repair. Not less than 18,000,000 acres of woodland need, therefore, to be kept in reserve for the sole maintenance of the permanent way of the railroads of the United States. By 1905 it was estimated that there were 620 million cross-ties in use in the United States, so that from 90 to 110 millions would be annually required for repairs and extensions. Bridge-timbers, fence-posts, telegraph-posts, car materials, and other railway building timber would together equal the amount demanded for cross-ties. The annual fuel consumption is reckoned as the produce of 6½ million acres annually, and the entire consumption as 25 million acres. Not only have too many Redwood trees been used for fuel, but of late ordinary building has absorbed a great many, panels of Redwood having become very popular in San Francisco as a substitute for plastered walls, whilst there has also been considerable exportation to China, Hawaii, and the Philippines. Some lumbermen predict that within a few years the Redwood tree will be as scarce as the buffalo, and that a shortage has already begun is evident from the fact that the price of Redwood has risen rapidly from 25 to 45 dollars per 1,000 square feet. Another serious factor in the question of timber supply in the United States is the extravagant manner in which the turpentine industry is conducted. Instead of any care being taken not to destroy the timber (as is done in the south of France), it has been said that there is no business connected with the products of the soil which yields so little return in proportion to the destruction of the material involved. The turpentine is chiefly obtained in Georgia from the Long-leafed and Loblolly Pines (Pinus palustris and Téda), and the forests of this State were once unsurpassed, and, if properly husbanded, might have continued indefinitely to yield a handsome return. The turpentine farmers, however, aim only at obtaining the maximum amount of crude-resin with the smallest expenditure of labour, caring nothing for the fate of the trees they attack.
If, however, 500 million acres of true timber-forest were maintained in the United States, an annual cut of 20,000 million cubic feet, or 40 cubic feet per acre, would not at first sight appear excessive. It is, however, important to bear in mind that the White Pine (Pinus Stróbus) requires 90 years to reach the dimensions attained by the Northern Pine of Europe (Pinus sylvestris) in 70, whilst the Long-leafed Pine (P. paléstris) requires 200 years for the same growth.

The White Pine has for half a century been the most important timber of the United States, furnishing, as it does, the best quality of soft Pine. Of the home consumption of this wood some idea may be formed from the fact that the city of Chicago alone received in one year over 2,000 million feet, principally of this species, or an amount equal to the entire produce of Canada during that year. Speaking of this species, in 1882 Professor C. S. Sargent of Harvard wrote, "It has been wantonly and stupidly cut, as if its resources were endless: what has not been sacrificed to the axe has been allowed to perish by fire. The Pine of New England and New York has already disappeared. Pennsylvania is nearly stripped of her Pine, which only a few years ago appeared inexhaustible." . . . "In Michigan there remained of standing White Pine timber, suitable for market, but 35,000 million feet, board measure," whilst in 1880 there had been cut in the State over 4,000 million feet, "requiring only eight years at this rate to exhaust the supply." In Wisconsin there were standing 41,000 million feet, with a cut of over 2,000 million for that year, "leaving a supply that would last but fourteen years." In Minnesota there were remaining 8,170 million feet, and 541 million were cut in 1880, leaving a supply for fifteen years; so that the supply in the three States would be exhausted in twelve years. There was in fact little more than 80,000 million feet in the United States, whilst consumption was at the rate of 10,000 million per annum and the demand constantly and rapidly increasing. Already by 1885 the United States were importing timber from Canada to the value of nearly two millions sterling, or about 75 million cubic feet, more than the entire cut of the province of Ontario. That the extreme forecasts of the alarmists have not been wholly realized throughout the United States may be owing to the fact that it has been cheaper for the more densely populated north-eastern States to supplement their own dwindling resources from Canada rather than from the southern States. Thus Mississippi, with 18.200 million feet board measure of Long-leaf Pine standing in 1880 and with an annual cut of 102 million feet, can supply timber at the same rate for 150 years, a period sufficient, with proper conservation, to enable the supply to renew itself.

Throughout Newfoundland and the Dominion of Canada reckless
waste has prevailed in the past. Forest fires and the absence of replanting has reduced the forest area of Newfoundland to about \(\frac{1}{5} \) of the whole area of the country, or some 464,000 acres, bearing White Pine, Spruce (\(\text{Picea \text{álba and \text{nigra}} \)), Tamarack or Red Larch (\(\text{Lárix \text{microcarpa}} \)), said to be better than that of the mainland, Yellow Birch (\(\text{Bétula excelsa} \)), and Poplar. Prince Edward’s Island produces the same species, together with Rock Maple (\(\text{Acer \text{barbátum}} \)), Hemlock Spruce (\(\text{Tsúga \text{canadénsis}} \)), and the valuable Cedar (\(\text{Juníperus \text{virginíána}} \)), which has been largely sacrificed for railway purposes; but fires and clearings have largely diminished the supply, the annual cut being more than 17 times the increment. Nova Scotia had 9 million acres of timber land in 1875, but the annual cut was for years 25 per cent. more than the increment. Hackmatack or Larch (\(\text{Lárix \text{americána}} \)), White Pine and Hemlock Spruce, are the chief species. New Brunswick had but 6 million acres of timber land in 1874, mainly covered with hardwoods. Sleepers of Cedar (\(\text{Cupréssus \text{thyóides}} \)) and Hemlock bark-extract for tanning are important articles of export, besides deals, consisting mostly of Black Spruce (\(\text{Picea \text{nigra}} \)). In the province of Quebec the lumber industry is still by far the most important trade; but, whereas in 1874 there were 74 million acres, there are now only 62 million, 32 million of which are under license to cut timber. The species are mostly the same as those of New Brunswick, including White Pine and a scarce but valuable Oak (\(\text{Quéercus \text{álba}} \)).

The wood-pulp industry has grown from an annual value of 160,000 pounds sterling in 1890 to nearly forty times that amount; and a service of rangers has been organized to prevent forest-fires. In Ontario lumbering has ceased to be the sole industry that it once was; but almost the whole amount felled is exported, and the demand of the adjoining States of the Union keeps the annual consumption far in excess of the increment. Though two-thirds of British Columbia, or about 110 million acres, were under timber in 1874, and almost all was under Government control, destructive fires and wholesale clearing have very much lessened the supply. There is, however, a very extensive timber reserve on the coast, consisting of Douglas Fir (\(\text{Pseudótúga \text{Douglásií}} \)), Spruce, Red Cedar (\(\text{Juníperus \text{virginíána}} \)), Yellow Cedar (\(\text{Cupréssus \text{noolkaténsis}} \)), and Hemlock (\(\text{Tsúga \text{Mertensiána}} \)), the available supply of which is from 40,000 to 100,000 million feet. British Columbia has now a wooded area estimated at 285,000 square miles, extending along the coast, river-valleys, and foot-hills as far north as Alaska, and producing many useful species besides the Douglas Spruce. There are, however, sixty saw-mills in operation, with an annual capacity of 550 million feet.
In the early days of its occupation by the French, the forests of Eastern Canada, which then stretched unbroken from the Atlantic to the head of the St. Lawrence basin, a distance of over 2,000 miles, engaged the attention of the Government, who drew from them large numbers of masts and spars for their navy and issued stringent regulations for the preservation of the Oak. On the conquest of the country by Great Britain, which then had almost the entire trade with the Baltic, Canadian lumber was neglected; but the continental blockade during the war with Napoleon directed the attention of our timber importers to the resources of Canada, and an import of 2,600 loads in 1800 grew to one of 125,300 loads in 1810, and over 300,000 loads in 1820, whilst for the last fifty years it has exceeded a million loads annually. Whilst during the first half of the last century Canada only exported wood to the United Kingdom and the West Indies, for the last twenty years she has experienced a steadily increasing demand from the United States, which now take about half her annual export, or some 13 million dollars' worth annually. For many years past the Pine logs floated down to Ottawa have numbered nearly four millions a year; and now the demand for paper-pulp has given the Spruce, owing to the far greater area of its distribution, a value in the aggregate much greater than that of the Pines.

In addition to the southern forest belt, now so largely cleared or depleted in the eastern half, there is the great northern forest which stretches from the Straits of Belle-Isle round by the southern end of James Bay to Alaska, a distance of about 4,000 miles, with a breadth of some 700 miles. "This vast forest," says Dr. Robert Bell of the Canadian Geological Survey, "has everywhere the same characteristics. The trees, as a rule, are not large, and they consist essentially of the following nine species: Black and White Spruce, Banksian Pine, Larch, Balsam Fir, Aspen, Balsam Poplar, Canoe Birch, Bird-Cherry, White Cedar, White and Red Pines: Black Ash and Rowan occur sparingly in the southern part of this belt."

With nearly 38 per cent. of the whole area of the Dominion under forest, Canadians have in the past given little heed to conservation, believing in the power of natural reproduction to balance the forces of destruction, a belief which, when not substantiated by careful statistical investigation, is a dangerous fool's paradise.

Conclusions.—A most valuable practical test of the increased consumption and the growing scarcity of timber is the advance in prices. It has been estimated that in Germany from about 1550 to 1750 wood quadrupled in price, from 1750 to 1830 the progressive increase of price was at the same rate, but from 1830 to 1880.
the rate was much higher, reaching in some cases 300 per cent. within the half-century. What was worth 100 francs in 1840 was worth 150 francs in 1850, 260 francs in 1860, 360 francs in 1865, and 400 francs by 1877. In the United States prices rose 100 per cent. between 1874 and 1882; and an equal rise took place in Russia; whilst in Sweden and Norway between 1847 and 1882 (35 years) a rise of from 150 to 200 per cent. according to species occurred.

The obvious conclusions to be drawn from this necessarily incomplete survey of the world's resources and consumption of timber are that, in spite of substitutes, the use of wood increases with advancing population and civilization; that there is still in many lands much waste, much over-felling and but little conservation or forethought; that no country can safely declare its supply inexhaustible; and that, though an absolute dearth of timber may be far distant, some valuable species are in danger of extermination, and we may expect a considerable enhancement of the price of the commoner kinds as the supply has to be drawn from more and more remote sources.

It is undoubtedly, from the magnitude of the interests at stake, a question which demands the attention of the economists, landowners and legislature of every country. If, as Bernard Palissy wrote in the sixteenth century, "after all the trees have been cut down it will be necessary for all the arts to cease"; and if even Colbert could prophesy that "France will perish for want of wood," the danger, in our own time and in many lands besides France, is far more serious.

1 "Wood-prices, even in the United States, have been rising continuously for the last seventy years at the rate of about 1½ per cent. a year."—B. E. Fernow (1905).
CHAPTER VII

TESTING WOOD.

The very general substitution of iron or steel for wood in permanent structures renders the exact investigation of the strength of timber less important now than formerly. Nevertheless, in merely temporary structures, such as scaffoldings or centerings, its power of withstanding different strains is of very serious concern. Practically, although not scientifically, every joist, rafter, windowsash or door-frame, the chair we sit on, the floor we walk on, the wood of the cart or boat we ride in, are all tested as to their strength, their elasticity, their hardness and their toughness. In the workshop it is recognized that the fitness of a wood for a given purpose invariably depends upon a combination of several qualities. A spoke, for instance, must not only be strong, it must be stiff to keep its shape, tough and hard; and accordingly it must be made from wood split with the grain, and not from sawn or cut material. The experienced wood-worker judges the suitability of any particular piece of wood for his purpose by rule-of-thumb. This rule-of-thumb guess is largely based on the general rule that, in timber, weight, hardness, and power of resistance to most strains, vary together. To this rule, however, there are many important exceptions, where testing would prove what no rule-of-thumb is likely to perceive; and it was in reference to this that Tredgold remarked that actual testing may take the place of a life-time of practical experience in carpentry.

In the scientific testing of timber each property is examined separately. A beam resists bending, and is accordingly termed stiff; wicker bends readily, or is flexible; while the rod or beam that straightens itself again on the removal of a load that has been applied to it is termed elastic. Resistance to a pull in the direction of the grain is known as tensile strength; whilst a force applied in an opposite but parallel direction is a crushing force. The pressure of a hammer-head across the grain of the handle tends to shear the fibres, and a nail entering a board tests its cleavability or tendency to split.
The results of the many tests that have been published are often widely discordant. This arises from various causes, e.g. incorrect identification of the species, nature of the locality where the tree was grown, the age of the tree when felled, the part of the tree from which the test specimen was taken, the extent to which it was seasoned, the size of the piece tested, and the method of stating the experimental results. The use of popular names, such as Ironbark or Blue Gum, each applicable to half-a-dozen different species, is an obvious source of error. As we have already seen, the same species grown under different conditions of heat, moisture, etc., varies widely in rate of growth, and accordingly in strength also. Timber is at its best when the tree is at its maturity, an age which depends upon the species, the climate and the soil. Before that age not only does the less durable sapwood predominate, but the heartwood has not yet reached its full strength; whilst after maturity the heartwood is the first to show symptoms of weakness. As we have already seen, the centre, with its many knots, is generally the weakest part of the heartwood, and a scantling will have greater transverse strength, or resistance to bending stress, and tensile strength in proportion to the number of rings that occur both at its butt and its top. Seasoning, as we have seen, may double the strength of timber. Early experiments on the strength of timber were generally made with very small pieces owing to the difficulty of holding and bringing strains to bear upon large scantlings. Pieces less than a quarter of an inch square were often used. Such pieces might give an unduly unfavourable result from the cutting across of individual fibres; or, on the other hand, being freer from knots or other defects, more readily seasoned throughout and more homogeneous, they are rather picked than average samples, and may give an unduly favourable result.

In an excellent series of tests carried out for the Forest Department of the United States Board of Agriculture by Professor Johnson in 1891-92, an accurate record was kept, when each tree was felled, as to the condition of the soil, the climate, the size, age and growth of the tree and the date of felling.

Density.—We can only give here a bare outline of the principles, methods, and results of testing. Much, as we have seen, depends upon density; and, admitting that, owing to air or moisture in the wood, the results are not as satisfactory as could be wished, we have two simple methods, described by Professor Unwin, for determining this character, viz. (i) by measuring and weighing planed rectangular blocks, and (ii) by weighing the block and the water it displaces. In the former method, if \(b = \) the breadth, \(t = \) the thickness, and \(h = \) the height of the block in inches, its
volume will $= \frac{bth}{1728}$ cubic feet; and if $W =$ its weight in pounds, the
heaviness of the wood per cubic foot will $= \frac{1728W}{bth}$ lbs.

In the second method, if $W =$ the weight of the block in pounds, $W' =$ the weight in pounds of the water it displaces, and $G =$ the weight of a cubic foot of water, i.e. 62.4 lbs. at the normal temperature, then $\frac{W'}{G} =$ the volume of the block in cubic feet, and the
heaviness of the wood per cubic foot will be $\frac{GW}{W'}$.

Mr. Stephen P. Sharples, who made the examinations of North American timbers incorporated by Professor Sargent in the Ninth Census of the United States, vol. ix. (1880), making at least two determinations for each species, calculated the specific gravity by measurement with micrometer calipers and weighing. The specimens tested were 100 millimetres long and about 35 millimetres square, and were dried at 100° C. until they ceased to lose in weight. Of the 429 species experimented upon the specific gravity ranged from 0.2616 in the Small-fruited Fig (Ficus aurea) to 1.3020 in Black Ironwood (Condalia férrea).

Bauschinger found, by experiments made at Munich in 1883 and 1887, that the density and strength of timber is greatly affected by the amount of moisture it contains, the strength falling very rapidly in any one quality of timber as the percentage of moisture increases. To determine the percentage of moisture Professor Unwin gives this method. Drill a hole through the test block and weight the shavings at once. Dry them in an oven at a temperature of from 200° to 212° F. for 8 or 10 hours, and, when they cease to lose weight, re-weigh them. If then $W =$ their first or wet weight, and $D =$ their second or dry weight, $W - D =$ the weight of moisture they contain, and $\frac{100(W - D)}{D} =$ the percentage of moisture.

The maximum of strength is reached, not when the timber is perfectly dry, but when there is from 3 to 4 per cent. of moisture in it.

Bauschinger decided on 15 per cent. of moisture as the standard dryness of air-dried wood.

Ash percentage and fuel value.—From the specific gravity Mr. Sharples deducted the percentage of ash (determined by burning small dried blocks at a low temperature in a muffle furnace), in order to obtain the relative approximate fuel value. This calculation is based on the assumption that the real value of the combustible
or volatile substance of all woods is the same. Though resinous woods give off more than 12 per cent. more heat on burning than do non-resinous woods, at least this amount is lost in the case of the former in the form of unconsumed carbon in the smoke. The amount of heat obtained is, in fact, very nearly in direct proportion to the specific gravity, *i.e.* the heavier the wood the greater the amount of heat obtained. Taking as the unit of fuel value an imaginary wood with no ash and a specific gravity of 1, the relative fuel value of 430 woods examined varied from 0·248 in *Yucca* to 1·194 in Black Ironwood (*Condúlia férrea*). Taking as a unit of heat the amount necessary to raise 1 cubic decimetre or 1 kilogram of water 1° C., 4,000 units will be produced by burning a kilogram of dry wood, *i.e.* the relative fuel value of any wood multiplied by 4,000 will give approximately the amount of heat obtained by burning a cubic decimetre of it.

Strength.—All measurements of the strengths of timbers are determinations of their powers of resisting certain stresses, or forces tending to produce strains, or changes of shape. It must always be remembered that, unlike metals or many artificial products, wood is not, and cannot be, considered as uniform in structure and composition: it is not homogeneous or isotropic. Stresses applied to it, and the resultant strains must, therefore, be considered separately. Those stresses which are exerted in a direction normal, or at right angles, to a cross-section or imaginary surface of division are termed pushes or pulls, and being continuous, or in parallel though opposite directions, may be considered as identical, or rather as differing only in mathematical sign (+ or −). Those which are exerted at a tangent to such a cross-section are termed shearing stresses. The intensity of a stress is its amount per unit of surface, and may, therefore, be expressed in pounds or tons per square inch, or in kilograms per square millimetre, or per square centimetre.

Broadly speaking, the strength of timber increases with its heaviness. More accurately, the greater the density or weight the greater the resistance to compressive strain. Density is no criterion as to tenacity or tensile strength. The most valuable timbers for structural purposes are those which have considerable strength without excessive heaviness, as is the case with Pine.

In 1676 Robert Hooke enunciated the law that (using modern terminology) within the limits of elasticity, or recovery from strain when the stress is removed, strain is proportional to stress. In accordance with Hooke's law, Thomas Young postulated the

1 To facilitate the conversion of results thus variously stated, it may be mentioned that 1 ton, or 2,240 lbs. per sq. inch = 1·511 kilos. per sq. mm., or 151·1 kilos. per sq. centim., whilst 1 kilo. per sq. centim. = 14·22 lbs. per sq. inch.
modulus of longitudinal extensibility that bears his name. This is generally called the modulus of elasticity, but incorrectly, since there are others. It is constant for any material, being represented by the letter E, and is, in fact, the ratio of the intensity of push or pull to longitudinal strain. Thus, if l = length and δl = change of length under a stress, p, then $\frac{\delta l}{l} : p : E$, or

$$E = \frac{lp}{\delta l}$$

Obviously, a stress applied to a transverse section of wood will have to break the fibres across, while one applied to a longitudinal section tends to separate the fibres from each other. Thus the strength of wood along the grain depends upon the strength of the fibres; that across the grain, upon their cohesion. This latter or lateral strength is, in broad-leaved trees, from $\frac{1}{6}$ to $\frac{1}{4}$ of the longitudinal strength; but in coniferous woods it is only from $\frac{1}{10}$ to $\frac{1}{6}$.

One of the simplest and most instructive tests of timber is that of transverse strength or breaking weight. Two knife-edges, or supports for the ends of the beam, a cradle to sling from the centre, in which pig-iron or other weight can be placed, a stretched cord and a 2-foot rule are practically all the apparatus required for such testing. Laslett, in his Woolwich experiments, took pieces 84 inches long, 2 inches wide, and 2 inches thick, placed upon supports 72 inches apart, and then poured water gradually into a scale suspended from the middle, noting the deflection with 390 lbs. weight and at the breaking point. The transverse strength (p) is calculated from the formula $p = \frac{w'l}{\frac{3}{2}bd^2}$, where w' = the breaking weight in pounds, l = the length between supports, b = the breadth, and d = the thickness of the sample, or with the dimensions employed,

$$p = \frac{w' \times 72}{\frac{3}{2} \times 2 \times 4} = 13\frac{1}{2}w'.$$

Mr. Gamble uses the formula $w'L$ in terms of bd^2, where L = the length between supports in feet, b = the breadth of the bar in inches, and d = its thickness in inches. Bauschinger employed for bending tests beams 20 inches square and 9 feet long, with 984 inches between their supports; and Professor Lanza of the Massachusetts Institute of Technology employed beams varying from 4 to 20 feet in length, from 2 to 6 inches in width, and from 2 to 12 inches in thickness. Then, W being the load at the centre in tons, l the length in inches of the beam between supports, b its breadth, and h its thickness, also in inches, f, the greatest direct stress on the fibres, or coefficient of bending strength, is obtained in tons per square inch from the
formula \(f = \frac{3Wl}{2bh^2} \). If \(\delta \) = the deflection at the centre in bending in inches, the coefficient of elasticity (E) in tons per square inch is obtained from the formula \(E = \frac{Wl^3}{2\delta bh^3} \). Sir John Anderson has reduced the results of many experimenters to a simple comparative table of mean breaking weight for beams 1 foot long and 1 inch square in timbers employed in England, which, with some slight modifications, is as follows:

<table>
<thead>
<tr>
<th>Tree Name</th>
<th>Breaking Weight</th>
<th>lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash (Fraxinus excelsior)</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>Beech (Fagus sylvatica)</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Elm (Ulmus campestris)</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>Larch (Larix europaea)</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>Menel Fir (Pino sylvestris)</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>Riga Fir</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>Scots Fir</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>Christiana Fir</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>American Red Pine</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>White Spruce</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>Oak, English (Quercus Robur)</td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>Dantzig</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>Adriatic</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Canadian</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>or Teak, African (Oleiféidia africana)</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>Mahogany (Swieténia Mahagoni)</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>Teak (Tectóna grandis)</td>
<td>814</td>
<td></td>
</tr>
</tbody>
</table>

The ultimate strength of a material is that stress which is required to produce rupture, and this may be either tensile stress or that exerted longitudinally or parallel to the axis of a beam, crushing stress, or resistance to compression in the direction of the fibres, or shearing stress, i.e. tangential.

Professor Unwin figures details of various instruments employed for testing timbers, more especially for tensile strength, including Bauschinger's roller and mirror extensometer, and several shackles for holding the test-specimens. The principle of most modern instruments for these purposes is the same, the weight being applied gradually, either by small weights or by hydraulic action, to a system of levers, the force exerted being shown by a delicately adjusted steelyard. Thus the comparatively simple instrument of American design, introduced at Woolwich in 1854 by Sir John Anderson, and figured in his work,\(^1\) consists of a combination of two levers which together give a purchase of 200 to 1, that is to say, 1 lb. applied to the end of the long arm of the upper lever will exert a stress of 200 lbs. on the specimen attached by shackles to the lower one.

\(^1\) The Strength of Materials and Structures, London, 1872, p. 16.
The dimensions of the specimens tested by different experimenters, whether for breaking weights, tensile strength, or other measurements, have unfortunately varied greatly. In contra-distinction to the long beams just mentioned as used by Bau-
schinger and Lanza, Captain Fowke, in testing the New South
Wales timbers at the Paris Exhibition of 1855 for breaking weight,
etc., used samples 2 inches square and 12 inches between supports.
Mr. Laslett used samples of the same sectional area, but 72 inches
between supports; whilst Mr. F. A. Campbell, experimenting on
Australian timbers in 1879, employed a sectional area of only \(\frac{1}{16} \) of
an inch.

The term strength, when used absolutely, generally means the
breaking weight under a bending test, and in English books is
expressed in pounds. It is found by the formula \(\frac{b \times d^2 \times E}{l} \), where
\(b \) = breadth in inches, \(d \) = depth in inches, \(l \) = length in feet, and
\(E \) = the constant or modulus. This constant, in England, means the
number of pounds' weight applied in the middle of a bar 1 inch
square and 12 inches between supports required to break the bar.

When a beam is supported at each end in such experiments as
these, the distance to which the middle of the beam is forced down
below its original position by the load is termed its deflection.
In solid rectangular beams the deflection varies directly as the load
and the cube of the length, and inversely as the breadth and the
cube of the depth. The resistance to deflection is known as stiffness or rigidity. If then we require two beams of the same breadth,
but of different lengths, to be equal in stiffness, then their respective
depths must be in proportion to their lengths. Thus, if the beams
are 24 and 12 feet long respectively, and the latter is 12 inches
deep, the former will have, in order to be equally stiff or rigid, to
be 24 inches deep. Strength, on the other hand, in solid rectangular
beams, varies inversely as the length, directly as the breadth, and
directly as the square of the depth, so that, in the example given
above, the longer beam will only require to be 17 inches deep in
order to be as strong as the shorter. If the beams are equal in
breadth, but of different length, and are required to be equal in
stiffness, their breadths must be as the cubes of the lengths. In
two beams 24 and 12 feet long, for example, the breadths must be
in the ratio of \(24^3 \) to \(12^3 \), i.e. 13,824 to 1,728, or as 8 is to 1. In other
words, the long beam would have to be eight times as broad as the
shorter one to be equally rigid, whereas it only requires to be twice
as broad to be equally strong. So, too, in cylinders, the strength
varies as the cube, the stiffness as the fourth power of the diameter.

The constants or values of deflection were deduced by Barlow
from the formula \[D = \frac{l^3 \times W}{b \times d^3 \times \delta}, \]
where \(l \) = length in feet, \(W \) = the greatest weight in pounds which the beam can bear without losing its elasticity or acquiring a permanent set, \(b \) = breadth in inches, \(d \) = depth in inches, and \(\delta \) = deflection in inches. From this it obviously follows that

\[\delta = \frac{l^3 \times W}{b \times d^3 \times D}. \]

It is found in practical engineering that the deflection of timber beams (\(\delta \)) should not exceed \(\frac{1}{450} \)th of their length.

Bauschinger employed, for testing tensile strength, rods 18 inches long and 1 or 2 3/8 inches square for 5 1/4 inches at each end, reducing to 1 1/2 or 1 5/8 inch in the middle. He does not, however, consider these, or his experiments on bending (in which the individual variation of the large beams employed, as to knots, etc., produces wide differences in the results), so instructive as to the relative values of timbers as are crushing experiments. For such experiments he used blocks 6 inches high and 3 1/2 inches square, protected at the ends with metal plates.

Results will be affected by so many circumstances that it is most important that the history of logs experimented with should be known. The nature of the locality in which the timber is grown, the age of the tree, the part of the tree from which the timber is taken, and the extent to which it has been seasoned, will all modify the results. Thus Bauschinger showed that strength varies according to the proportion of summer to spring wood, and that the centre of a tree is therefore weaker; whilst the following table of the range of variation in 26 trees of Pinus palustris, quoted by Professor Unwin from a Report of the U.S. Department of Agriculture, shows how butt, middle, and top logs differ in strength, largely no doubt for the reason, which we explained in a previous chapter, that the annual increments of wood forming cones do not extend uniformly from end to end of a log. [See p. 66 and Fig. 40.]

<table>
<thead>
<tr>
<th>Heaviness in lbs. per cubic foot</th>
<th>Coefficient of Elasticity from Bending Test</th>
<th>Tensile Strength</th>
<th>Crushing Strength</th>
<th>Coefficient of Bending Strength</th>
<th>Shearing Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt</td>
<td>28-64-3</td>
<td>500-1380</td>
<td>3·84-14·4</td>
<td>2·13-4·40</td>
<td>2·12-7·25</td>
</tr>
<tr>
<td>Middle</td>
<td>36-53·5</td>
<td>510-1369</td>
<td>2·82-13·4</td>
<td>2·25-4·15</td>
<td>3·40-7·65</td>
</tr>
<tr>
<td>Top</td>
<td>32-56·5</td>
<td>375-1200</td>
<td>1·85-10·8</td>
<td>2·04-4·06</td>
<td>1·90-7·00</td>
</tr>
</tbody>
</table>

All in tons per square inch.
OF WOOD IN GENERAL

As to seasoning, since timber loses from $\frac{1}{10}$ to $\frac{1}{5}$ or, when perfectly dried, $\frac{1}{3}$ of its weight in the process, and strength and the co-efficient of elasticity vary directly with density, its effect is obvious.

Unfortunately, the systems employed for stating the results of experiments vary almost as much as the dimensions of the specimens tested, so that it is a matter of considerable calculation to compare the records of different experimenters. Mr. Sharples, for instance, defines the co-efficient of elasticity, or rather of longitudinal extensibility, as the weight in kilograms sufficient to elongate a stick 1 centimetre square to double its original length, were that possible, and states results ranging from 25,699 in *Ficus aurea* to 165,810 in the Western Tamarack (*Lärix occidentalis*). To translate his results into the tons per square inch usual in England it is necessary to divide them by 151·1. (See footnote on p. 115.)

So too while Professor Thurston defines the *modulus of rupture* as "the quantity which represents the stress upon a unit of area of cross-section . . . at the instant of breaking under the transverse stress," and Mr. Sharples expresses this *breaking-weight*, as it is generally termed, in kilograms per square centimetre, English writers here also use tons or pounds per square inch. So too Mr. Sharples gives the *resistance to longitudinal pressure*, or ultimate weight which a stick will support, in the number of kilograms required to crush a stick one centimetre square by such pressure, while Mr. Laslett terms this *vertical strength*, and states it in the number of pounds of vertical force required to crush 1 square inch of base. Mr. Sharples also gives the *resistance to indentation* or number of kilograms required to sink a punch 1 centimetre square to the depth of 1·27 millimetres perpendicularly to the fibres.

It is well-nigh impossible to reduce all the results of different experimenters. They will, therefore, be here stated mainly in the form and with the terminology of their respective authors.

The following symbols will be employed:

S.G. = Specific gravity, compared to water as 1000.
W = Weight of a cubic foot in pounds.
E = Co-efficient of elasticity, stated in tons or pounds per square inch, or in kilograms per square centimetre.
e' = Elasticity compared to Oak as 1·00.
p = Transverse strength in pounds per square inch.
p' = Transverse strength compared to Oak as 1·00.
j = Co-efficient of bending strength in tons per square inch.
ABBREVIATIONS EMPLOYED

$f_t =$ Tensile strength or tenacity along the fibre, in tons per square inch.

$c =$ Direct cohesion, in pounds per square inch.

$c' =$ Cohesion compared with Oak as 1·00.

$f_c =$ Crushing strength along the fibre, in tons per square inch.

$v' =$ Crushing strain as compared to Oak as 1·00.

$f_s =$ Shearing resistance along the fibre, in tons per square inch.

$R =$ Modulus of rupture for transverse strain, stated either in kilograms per square centimetre, or in pounds per square inch.
Acacia, in England, Robinia Pseudacacia L. See Locust.

Acacia Cedar (Albizzia Toóna Bail.: Order Leguminóseae). Queensland. Also known as "Mackay Cedar." A large tree. The heartwood resembles that of Moulmein Cedar.

Acajou, a general name in the French timber-trade for Mahogany. See Mahogany. In French Guiana it is applied also to Cedrela guianénsis A. Juss.: (Order Meliáceae). S.G. 577. Reaching large dimensions, soft, not very flexible, very homogeneous and free from flaws, working well, without splitting, durable, owing to a bitter principle obnoxious to insects, and termite-proof. Fairly common and in much request as a furniture-wood. Used in Europe for cigar-boxes.

In Guadeloupe "Acajou blanc" is Simarúba amára. See Simarouba.

In Barbadoes "Cedre acajou" is Cedréla odoráta. See Cedar, West Indian.

Acle (Xýlia dolabrífórnis Benth.: Order Leguminóseae). India, the Malay Peninsula, and the Philippines. "Ironwood" of Pegu and Arracan. Hindi "Jambu," Burm. "Pyengadu," Philipp. "Acle." Formerly named Mimósa Acé and Ínga xylocárpa. Height 70—100 ft., diam. 3—4 ft., yielding timber 1—2½ ft. square; S.G. 934—1225, W 63, e' 2·19, p 17,200, p' 1·58, c 8960—10,360, e' 1·275, v' 1·527, fc 5·2. Heartwood dark brown or reddish-brown, often beautifully mottled with a waved and twisting grain, heavier than water, hard, tough, strong, rigid, its pores filled with a thick,
oily resin, which renders it clammy until completely seasoned, difficult to cut, causing sneezing in working, taking a good polish, shrinking $\frac{1}{2}$ in. per foot in seasoning, "more indestructible than iron," being both termite and teredo-proof, but having sometimes extensive heart-shakes which unfit it for constructive purposes. The Burmese wood contains more resin than that from the Deccan. It is used for piles and beams of bridges; in Bengal and Burma for telegraph-posts; in Southern India for posts, railway-sleepers (for which purpose it ranks next to Teak), carts, etc.; in Burma for agricultural implements; and for house and boat-building in the Philippines, and is probably the best hardwood in India for paving.

Sapwood broad, yellowish. Heartwood not dissimilar, greyish-orange, not readily distinguishable in a transverse section from Ash. Rings wide and distinct. Springwood very broad with numerous large vessels towards its inner margin and few small ones, scattered, or in segments of circles, four or more together, towards its outer part. Medullary rays distinctly visible to the naked eye, with a satiny lustre. Pith-mass very large. The wood contains vessels, tracheids, wood-fibres, fibre-cells, and parenchyma. It is moderately heavy, tolerably hard, somewhat difficult to split, and of a beautiful satiny-like lustre. It is durable, and, although not common, is appreciated by cabinet-makers; but the tree is mainly grown for shade. A native of Japan and Northern China, it is grown for ornament in England and the Eastern United States. It is used for charcoal in Europe.

Akagashi (Quércus acúta Thunb.: Order Cupulíferæ). South Japan. The dark red-brown, very hard and heavy wood of an Evergreen Oak, which with that of some allied species, such as the grey-white Shiragashi (Q. vibrageana Tr. and Tav.) is used in boat and waggon building, and, owing to the growing scarcity of American White Oak, is now established in the European market.

Akashide (Carpinus laxiflóra Bl.; Order Cupulíferæ). Japan, Height 40 ft.; diam. 1 ft. It is used for furniture, waggon-building, agricultural implements and firewood.
ALDER

Alder, Common or Black (Alnus glutinosa Medie.: Order Betulaceae). French "aune," Ital. "alno" or "ontano," Span. "alano" or "aliso," Germ. "schwarz Erle" or "Else," Russ. "olse." S.G. fresh 901, dry 551. W 50—62 when green, 50—26 when dry. Strength, compared to Oak, 80; stiffness, 63. Height 20—40, very rarely 70—80 ft.; diam. 1—2 ft. No heartwood. Wood white when alive, red when cut, becoming pinkish-brown. Rings rather broad, not very distinct, waving inwards where they cross the few, lighter-coloured, medullary rays. Brown pith-flecks are frequent. Pith-mass triangular with rounded angles, from which the medullary rays radiate in curves. The wood contains vessels, tracheids, wood-fibres, fibre-cells, and parenchyma; but the vessels are small, few, and uniformly distributed. It is soft, easily split, rather light, with a smooth, fine grain, and lustrous. It does not warp or splinter. When kept wholly submerged it is very durable, but not at all so otherwise. To preserve the finer pieces from insect attack they are sometimes, in Scotland, immersed for some months in peat-water, to which some lime is added, which gives the wood some resemblance to Mahogany. It has then been used for tables. Alder was formerly used for piles, water-pipes, sluices, etc., but Elm, being far more durable when alternately wet and dry, is much better for such purposes. The piles of Ravenna, according to Vitruvius, and those of the Rialto at Venice, and those of Amsterdam, according to Evelyn, were largely of Alder, and Pliny speaks of it as "eternal" when so used. Alder is employed for packing-cases, the staves of herring-barrels, shovels, clogs and sabots, bobbins, barrows, kneading-troughs, etc. The roots and knots, being often handsomely veined, are used in small articles of turnery and cabinet-making. Alder is practically the best wood for gunpowder-charcoal. It is imported from the Baltic ports of North Germany, where there are extensive pure forests of this species, sometimes mixed with Birch; and it is mainly bought by the Lancashire clog-makers.

Alder, American or Hoary (Alnus incana Willd.: Order Betulaceae). Germ. "Weisserle." A similar but inferior wood, with more lustre, fewer pith-flecks, very few, wide, but indistinct medullary rays, has a wide range in North America.

Alder, Red, Alnus rubra Bong. = A. Oregóna Nuttall, a native of the Pacific slope, known also as "Oregon" or "Western Alder," is a large tree yielding a light brownish wood sometimes employed for charcoal, canoes, or furniture.

Alder, Red, of the Cape. See Cedar, Red, in Cape Colony.

Alder, White, the name in the western United States for Alnus rhombifolia Nutt.; but applied in Cape Colony to Platylóphus
trifoliatus Don, a yellowish-white, hard, tough, durable wood, from a tree 20—50 ft. high and 2—4 ft. in diam., much used in the Colony for furniture and boat-keels. It takes a good polish and in the lower part of the tree has generally a fine twisted grain. W 38. Boer name, "White Els."

Alerce (Tetraclinis araucana). [See Thuya.] In Chile the name is applied to Libocedrus tetragona, a very durable coniferous wood of moderate dimensions, used for spars and roof-shingles.

Algarrobo, applied in Brazil to Hymenaea [See Locust], is in Argentina the name for the allied Prosopis nigra Hieron. and P. álba Griseb. (Order Leguminosae), small trees not exceeding a foot in diameter, yielding a very tough, fine-grained wood, used for wheel-felloes and paving-blocks.

Amboyna-wood. Moluccas, especially Ceram and Amboyna, Arru and New Guinea. Malay name, "Kaya Boka," corrupted into "Kiabooca," known also as "Lingoa wood." The tree throws out burrs which are sawn off in slabs 2—8 in. thick and up to 9 ft. in diam. The burrs are known as Amboyna-wood, the wood as Kiabooca, but both are now rare on the market. Light reddish-brown to orange, fragrant, somewhat resembling Thuya, very hard, beautifully mottled and curled, taking a good polish and very durable; but of uncertain botanical origin, probably a species of Pterocarpus (Order Leguminosae), but possibly Meliaceous. Sold in Singapore by weight. Used in inlaying and for fancy boxes, etc. S.G. 634. W 39.

Amaranthe. See Purple-heart.

Amarello Pao. See Fustic.

Ameixera. See Sanders, Yellow.

Amlaka (Phyllanthus Emblica Gaertn: Order Euphorbiaceae). India, China, and Japan. Red, hard, elastic, durable, especially under water; but seldom straight. Its fruit is known as Emblic Myrobalans.

Anan (Fagraea fragrans Roxb.: Order Loganiaceae). Burma and Indian Archipelago. Red-brown, hard, close-grained, beautifully
mottled, very durable, teredo-proof. Used for bridges and boat-
building. W 52-5. S.G. 840.

Ancona. See Walnut (Juglans regia).

Angelim vermelho (Andira traxiniifolia Benth.: Order Legum-
inósae). Brazil. Of crooked growth, reddish-brown, moderately
heavy. Used for ship-timbers.

Angelina (Andira nitrimis Kunth: Order Leguminosae). Tropical
America. "Cabbage" or "Bastard Cabbage Tree." Cuba,
"Yaba." Height 20—50 ft.; diam. 3—5 ft. S.G. 644—688. W 33-8
—60-4. E 563 639. R 300 lbs. f 2·01—5·44. fc 1·98—2·99.
fs ·32—45. Brown, veined, hard, very durable underground or
under water. Used for mill-rollers and in house and ship
building. Some " Partridge-wood " may be the timber of this species.

Angélique (Dicorynia paraensis Benth.: Order Leguminosae).
Brazil and Guiana. Height 20—54 ft., yielding timber 12—22 in.
square. S.G. 746—916. R 215 kilos. Reddish-brown, moderately
hard, tough, strong, elastic, straight and even-grained, easily
worked, durable in sea-water, insect-proof, sometimes with an
ornamental waviness of grain, with but little sapwood; but with
slight shakes and an unpleasant odour, and said to rust nails.
Used in French dockyards, as a substitute for Teak, for backing
armour plates, etc., far more durable than Oak.

Angelly (Artocarpus hirsuta Lam.: Order Artocarpaece). India,
chiefly in the south-west, Ceylon, Burma. Known also as " Jungle
Jack " and " Aini." Height 50—60 ft.; diam. 2½—3 ft. S.G. 590. W 36—51. Very tough, bears exposure to water well, and,
if kept oiled, is very durable. Used for planks in house-building,
canoes, fishing-boats, etc. Classed in the third line in Lloyd's
Register.

Angico (Piptadenia rigida Benth. = Acacia Angico Mart.: Order
diam. W 71-5. reddish or dark brown, with black lines, hard.
Turnery.

Anjan (Hardwickia binata Roxb.: Order Leguminóseae). Central
and Southern India. Telugu " Epe," Tamil " Acha maram,"
Height 50—60 or 120 ft., straight. Dark red, streaked with black
and often purplish, close-grained, " perhaps the hardest and
heaviest wood in India," resinous, very durable, not warping, but
liable to split, very strong. W 84—85. Used for bridges, sleepers,
beams, rafters, house posts, and ornamental work.

Apple (Pyrus Málus L.: Order Rosáceae). German " Apfelbaum,"
Height seldom over 30 ft., or diam. over 2½ ft. Dark brown, generally strongly tinted with red. Sapwood, dull white. Rings distinct, broad, often over ½ in. across; with no pith-flecks; medul-

lary rays not visible to the naked eye; vessels small, uniformly distributed, 1—4 together. Heavy, very hard, close-grained, brittle, taking a high polish, but warping badly on drying. S.G. 790. W 41—50. Used for mallets, tool-handles, and other turnery, and traditionally preferred in Cornwall for "poling" tin-ore.

Apple, Black or Brush (Sideróxylon austrálé, Benth. and Hook.

fil.: Order Sapotáceæ). New South Wales and Queensland. Also known as "Native" or "Wild Plum." Height 80—100 ft., diam. 1—3 ft., W 55—58. Pale yellow, close-grained, prettily veined, but requires careful seasoning. Used for staves, laths, and building, but suitable for cabinet work.

Apple, Emu. See Plum, Sour.

Apple, Oregon Crab (Pýrus rivuláris Dougl.: Order Rosáceæ). Alaska—California. Height 15—25—40 ft.; diam. 1—1½ ft. S.G. 832. W 51.8. Light reddish-brown, heavy, very hard, close-

grained, taking a fine polish. Used in mill-work and for handles.

Apple-tree, Broad-leaved (Angóphora subvelutína F. v. M.). New South Wales and Queensland. Aborig. "Illarega." Red-
dish, tough, polishes well, durable, but requires careful seasoning. W 52—53. Used by wheelwrights and for fencing.

Apple-tree, Narrow-leaved (Angóphora intermédia DC.). Eastern Australia. Formerly Metrosidéros floribánda Sm. Height 40—100 ft.; diam. 1—3 ft. Hard, tough, bears damp well, but is subject to gum-veins. Much used by wheelwrights.

"Arar.** See Thuya.

Arbor-vítæ. See Cedar, White.

Argan (Argánia Sideróxylon Rom. and Schult.: Order Sapotáceæ). Morocco. "Morocco Ironwood." Height seldom more than 20—30 ft.; diam. 8 ft. or more. Heavier than water, very hard.

Arjun (Terminália Arjúna Bedd.: Order Combretáceæ). India, Burmah, Ceylon. Apparently known also as "Kahua" or "Ko-
wah." Height 50—80 ft.; diam. 2—8 ft. Dark brown or brown-
red, very heavy, strong, but sometimes rotten at the heart, splits
freely when exposed to the sun, durable, but liable to termite attack. Recommended for beams, rafters, and masts.

Asada. See Hornbeam, Hop.

Height 30—50, or even 80—100 ft.; diam. 1$\frac{1}{2}$—2 ft.

The sapwood, very broad, about 40 rings, yellowish or greyish-white; the heart, light brown, or greyish-white, not very different from the sapwood, or, in colour, from light Oak. Rings very distinct, with a broad zone of spring-wood with numerous larger vessels, sharply marked off from the autumn wood, in which the few small vessels stand singly or from 2—4 together. Pith-rays scarcely recognizable. Pith-mass, ovoid, very large. The wood contains vessels, wood-fibres, fibre-cells, and parenchyma. It is of moderate weight and hardness, very even and close in grain, lustrous and susceptible, of a good polish, the toughest of European woods, and very pliable. It warps but little; and, if felled in winter and properly seasoned, is extremely durable, though few woods are more perishable if these precautions are neglected.

"Very great advantage will be found in reducing the Ash logs soon after they are felled into plank or board for seasoning, since, if left for only a short time in the round state, deep shakes open from the surface, which involve a very heavy loss when brought on later for conversion" (Laslett).

The compression or contortion of its fibre produces a lateral grain or figure in Ash known as "ram's-horn," or, from its resemblance to the figured Maple used for the backs of violins, as "fiddle-back." This is best shown in billets imported from Austria and Hungary. Though the Ash grows in almost any soil, it produces the best light-coloured wood when grown quickly in rich loam and a moist climate, as in the valleys of Britain and Central Europe. The slower-grown wood of poorer soils, mountains, and Northern Europe is apt to become "black-hearted," as also does that of pollard-trees. This is sometimes attributed to incipient decay, and is held to lessen the strength of the wood, but produces the figured veneers imported from the Pyrenees, as "Pyrenean Ash." Wounds or cankers also occur in the heart-wood, which are believed, in the North-East of England, to be caused by bees; but this "Bee-sucken Ash," as it is termed, is extremely hard and tough, so as to be suitable for mallets, etc.

The utility of the Ash has long been recognized, and few woods
have a greater variety of uses, so that the poet Spenser terms it "The ash, for nothing ill." Greeks, Romans, and Teutons alike used its tough saplings for lances, the Romans preferring the wood obtained from Gaul, and the Teutons also employing it for bows, arrows, shields, and boat-building. Roman agricultural writers recommended it for implements, and from its varied uses in this respect it has been called "the husbandman's tree." It is frequently coppiced, this young, or "Maiden Ash," and the "strooled" shoots, or second growth from the original roots, which are very tough, being fit for walking-sticks or whip-handles when four or five years' growth, for lance-poles or hop-poles a year or two later, for spade-handles at nine years, and when 3 inches in diameter as valuable as the timber of the largest tree. These growths are frequently termed "Ground Ash." In the Potteries it is largely used for crate-making, for which purpose it is cut every five or six years, though for other purposes only every seven or eight. Since, when steamed or heated, it can be easily bent, without injury, into any curve, it is invaluable for hoops. Larger wood is largely used by the wheelwright, for both spokes and felloes, and by the carriage-builder, and for oars. As it does not splinter, it is also useful for chopping-blocks, shop-boards, handles, such as those of croquet-mallets, and billiard-cues. For furniture it is chiefly used where softer, as in Central Russia. Its flexibility unifies it for use in architectural work. When seasoned, the sapwood is as valuable as the heart. The roots and knotty parts of the stem were formerly valued by cabinet-makers. There being no better principle in the heart-wood, Ash is very liable to the attacks of the larvae of the furniture-beetle, though painting renders it more durable.

Ash is valuable as fuel, and its residue is rich in potash.

The tree is a native of Europe and Northern Africa.

Ash (Flindérsia). See Flindosa.

Ash, American, Quebec, or White (Fráxínus americána L. = F. acumináta Lam., F. canadócensis Mich.; Order Oleácæ). S.G. 654. W 30—40. Coefficient of elasticity 101,668, R 861 kilos, Resistance to longitudinal pressure 463. Resistance to indentation 171. Height 70—100 ft.; diam. 1—3 ft. Imported in partly squared logs, 18—35 ft. long, and 10—18 in. square, in planks and partly manufactured, as oars, etc. Wood generally much whiter, and with narrower rings than Common Ash (F. excelsior): the sapwood, when well seasoned, nearly white; the heart, light reddish, contrasting with the sapwood more than in Common Ash, but less than in other
American kinds, in the best quality, lightest and most uniform; in second quality, slightly stained alternately red and yellow; and in the third quality, mottled red. It is of much slower growth than Common Ash, the rings being only about half the width of those in that species, very distinct, with a narrow zone of spring-wood and fewer larger vessels. Though it may be termed rather heavy, it is less so than the European species, moderately hard, but very tough and elastic, except in the oldest timber, clean and straight in grain, very easy to work, and standing well after seasoning.

In America it is used for all purposes to which Common Ash is applied in England. The small wood of young trees or stools, which is mostly sapwood and white, is the best material for oars. Larger logs, when white, are much sought after for bedroom and other furniture, and for coach-panels; but the more coloured logs are universally considered by the trade inferior in strength and durability, though, being more easily worked, they are used by cabinet-makers for drawers and carcass work, for which European Ash is never employed. It occurs generally throughout Canada and the Eastern United States, chiefly on river-banks, and is the species imported into England for bending and carriage-work.

Ash, Arkansas. See Ash, Water.

Less valuable than White Ash, but much used in America for furniture and interior finishing, and for fencing and hoops. The Indians use it for making chair-bottoms and "splint" baskets, working it "into sticks as wide along the rings as the splints are to be, and perhaps 2 inches thick. These are then bent sharply in the plane of the radius of the rings when they separate into thin strips nearly or quite as many as the rings of growth." (Romeyn Hough). Large wart-like swellings, or "burls," on the trunk, with much contorted grain crossed by innumerable radiating "pins," or abortive branches, form, when cut tangentially, very valuable veneers.

Swampy situations from Newfoundland and Winnipeg southward, the most northern American Ash.
Ash, Black (*Litsœa dealbâta* Nees: Order *Lauriœæ*), New South Wales and Queensland. Height, 100—150 ft.; diam. 2—3 ft. Yellowish, streaked with brown longitudinally, fragrant, close-grained, tough. Used for indoor work. The name is also applied to the smaller white wood of *Cupânïa semiglâuca* F. v. Muell., the "Tyal-dyal' of New South Wales, which is not used.

Ash, Blue (*Frâxînus quadrangulâtâ* Michx.: Order *Oleâcæ*). Dry woods in the central United States, Michigan to Tennessee, best in the basin of the lower Wabash River. Height, 70 ft.; diam. 2 ft. Heavy, hard, and more durable, especially when alternately wet and dry, than any other Ash. Valuable for tool-handles, used also in carriage-making, flooring, and other purposes, as is White Ash.

Ash Blue (*Elæodendron austâlë* Vent.: Order *Celastrâcæ*), North-East Australia. Known also as "White Cedar" or "Coursâivo." Height 20—30 ft.; diam. 4—12 in. W 49-5. Pinkish, close-grained, prettily marked, but liable to shakes. Valuable for oars, staves, or shingles.

Ash, Blueberry (*Eîxocârpus cyâneus* Ait. and *E. holopítalus* F. v. Muell.: Order *Tilbâcæ*), the former in Tasmania and throughout Eastern Australia, the latter in Victoria and New South Wales. The former is known also as "White Boree" or "Native Olive," the latter as "Maddagowrie" or "Prickly Fig." *E. cyâneus* grows 40—50 ft. high, with a diameter of 12—15 in., has a dark heart and white sapwood and is very tough, and is useful for tool-handles. *E. holopítalus* reaches 60—80 ft. with a diam. 1—2 ft., and W 37-5, is white, close-grained and suitable for cabinet work.

Ash, Brush (*Acrônýchia Bauëri* Schott.: Order *Rutâcæ*). New South Wales and Queensland. Height 40—70 ft.; diam. 1—2 ft. Very hard, close-grained, and strong. Excellent for tool-handles, and might be used for cabinet work.

Ash, Cabinet. The English trade name for *Frâxînus nigra* [See Ash, Black], *F. Pennsylvânica* [See Ash, Red] and *F. Carolînîâna* [See Ash, Water].

Ash, Cape (*Ekebêrgïa capënsis* Sparrm.: Order *Meliâcæ*). Natal and Cape Colony. "Boer 'Essen-boom,' "Zulu 'Umgwenyuizinja.'" Height 20—30 ft.; diam. 2—3 ft., close-grained, tough. Used for furniture, the sides of waggons, etc.

Ash, Crows'. See Flindosa.

mont and Saskatchewan to Texas, Arizona, and Florida, most common and best in the Mississippi valley. Height 50—60 ft.; diam. 1½—2 ft. S.G. 718. W 44.35. Brown, with obscure pith-rays and several rows of open ducts in each ring. Heavy, hard, and strong. Somewhat inferior to White Ash; but often employed for the same purposes.

Ash, Grey. See Ash, Red.

Ash, Mountain (Pyrus Aucupária L. Order Rosáceae). See Rowan.

The name is also applied in the Illawarra district of New South Wales to Elaoeárus longifólía C. Moore and E. Kirtóni Bailey (the latter being also known as "Australian White Beech" or "Kirton wood"), close and fine-grained, light-brown woods, easily worked and employed by wheelwrights and for oars; and in other parts of Australia to Eucalýptus Stuártiána F. v. M., the Apple-scented Gum, to E. Sieberiána F. v. M., the Cabbage Gum, to E. piluláris Sm., the Blackbutt, to E. paucifóla Sieb., to E. hamá-stoma Sm., the Scribbly Gum, in East Gippsland to E. goniocályx F. v. M. (See Box, Bastard), and in Victoria to E. amygdalína Labill., and especially the tall variety régnans. This last-named species is a native of Southern Australia and Tasmania, and is probably the tallest tree on the globe, often reaching 100—150 ft., with diam. from 3—8 ft., but in some cases 400, 410, or even 420 or 471 ft. It is, therefore, appropriately called "Giant Gum," the name "Peppermint tree" belonging apparently to smaller specimens. The Gippsland aboriginal name "Wangara" is the equivalent of "Stringybark," applied to many other species. S.G. air-dried 1045—1076, dry 908—703. W 47.54. R 778—1,152 lbs. Light yellowish brown, with a neat striped figuring, straight in grain, easily worked, sometimes proving durable under water, not twisting in drying, suitable for fencing, shingles, ships' planks,
keelsons, packing-cases, carpentry, or railway-carriage building; but less durable than E. glóbulus or E. oblíqua.

Ash, Prickly (*Zanthóxylum Clava-Hérculis* L.: Order Rutáceae). West Indies. The prickly young stems are imported under the name of "Briar" for walking-sticks. In Jamaica it is known as "Prickly Yellow-wood." W 60·66. E 499. j 2·7. jc 1·77. js 4·18.

Sapwood light brown or nearly white, sharply defined; sometimes streaked with yellow; heart rich or light reddish brown, moderately heavy, hard, rather strong, coarse-grained, brittle; pith-rays numerous, thin. Used locally for agricultural implements, fence-rails, interior finishing or furniture, as a substitute for Black Ash.

In Australia the name "Red Ash" is applied to *Alphitónia excélsa* [See Ash, Mountain,] and to *Orités excélsa* [See Oak, Silky.]

Ash, Rock, of Cape Colony. See Els, Klip.

Other less important species, used locally, are *Fráxínus anómala* Watson. S.G. 660. W 41—11. Light brown with thick sapwood (30—40 rings), thin medullary rays, many large scattered ducts and several rows of small ducts. Heavy, hard, close-grained. Colorado, Utah, Nevada.

F. Berlandieriana D.C. Used for tool-handles in Mexico.

F. velutína Torrey (= *F. pistaxcifólia* Torrey). Used, for axe-handles and waggons, in New Mexico, Texas, and Arizona.

Dingy white, looking reddish-brown in transverse section, with no heartwood. Rings circular, broad, distinct; medullary rays not visible to the naked eye; vessels small, uniformly distributed, dendritic, 2—7 together; generally with white pith-flecks near the centre. Soft, light, elastic, easily split, warping and cracking but little. Used as blindwood, for cooper's ware, milk-pails, herring casks, butchers' trays, clogs, pack-saddles and paper-pulp; and, in France, for sabots and for flooring. Imported in small quantities from the southern Baltic ports, mainly for turnery.

Aspen, Large-tooth (Populus grandidentåta Michaux). [See Poplar, Large-toothed.]

**Assegai-wood (Curtisiæ jagûna Ait.: Order Cornicæ). Zulu "Unguna," "Umnoiso." Cape Colony and Natal. Height 40—80 ft.; diam. 1—4 ft. W 60. Bright red, becoming dull on exposure, close-grained, very strong, tough, elastic and durable even in damp situations. Used for furniture, shafts of assegais, tool-handles, spokes and felloes, and is one of the best woods for waggon-building.

Babela (Terminália belérîca Roxb.). See Myrobalan wood.

**Babul (Acâcia arâtica Willd.: Order Leguminóseæ). Hindi "Babul," Bengali "Babla." Panjâbi "Kikar." Height 50—60 ft.; diam. 2—2½ ft. W 45. Heartwood, pinkish to brown, mottled, with dark streaks, hard, and, if well seasoned, very durable. Used extensively in Northern India for wheels, sugar and
oil-presses, rice-pounders, agricultural implements, and tool-handles; and in Sind for boat-building, rafters, occasionally for railway-sleepers, and for fuel.

Bagasse, the name of two similar but distinct timbers of French Guiana: (i) *Bagássia guianénsis* Aubl. (Order *Artocarpaceae*), a large, straight-growing tree. S.G. 1130—730. R 215 kilos. Very durable and excellent for flooring; and (ii) *Icica altissima* Aubl. (Order *Borseraceae*), known also as “Cèdre blanc,” “Kurana” or “Carana,” also of large size. S.G. 1036—842. R 226 kilos. Soft, but of excellent quality. Used for canoes and for cabinet-making.

Bailey Gum. See Gum, Bailey.

Balau. See Teak, Johore.

Bally Gum (*Litsæa reticulátâ* Benth.; Order *Lauriaceae*). Queensland. “Cudgerie.” Large, grey, close-grained, light, easily worked and susceptible of staining. Suitable for flooring or cabinet-work; but not plentiful.

Banaba. See Jarul.

Bancoulier. See Walnut, Belgaum.

Bandara. (*Lagerstrømía parvisítâ* Roxb. var. *majúscula* C.B. Clarke; Order *Lythráceae*). India. A large tree. Diam. 2 ft., W 40. Red or light brown, compact, moderately hard, tough, elastic, seasons well and is easily worked, and durable in water. It is used for beams, rafters, and boat-building, and is recommended for sleepers.

Barberry (*Béberis vulgaris* L.; Order *Berberidáceae*). Germ. “Sauerdorn.” Too small to be of use. Sapwood lemon-yellow; heart bluish-red. Pith-rays widening outwards, all broad; pore-circle very narrow, with very large vessels in radial lines. Europe.
Barwood, generally considered identical with Camwood, but possibly *Pterocarpus santalinoides* L'Herit. or *P. angolensis* DC. (Order *Leguminosce*). West Africa. S.G. 620. W 38-75. A dye-wood.

Basswood (*Tilia americana* L.; Order *Tiliaceae*). "American Linden" or "Lime," "Bee tree." Germ. "Amerikanische Linde," French "Tilleul d'Amerique," Span. "Tilio Americano." Eastern United States and Canada. Height 80—100 ft.; diam. 3—4 ft. S.G. 452. W 26—45. R 589 kilos. Ash percentage 55. Relative fuel value 45. Coefficient of elasticity 84,010 kilos. Resistance to longitudinal pressure 348 kilos. Resistance to indentation 63 kilos. White to light brown, or tinged with red, light, soft, tough, close-grained, easily worked, but not strong, shrinking considerably in drying; but durable. Extensively used for cheap furniture, toys, carriage-panels, chair-seats, carpentry, turnery, cooperage, and to some extent for paper-pulp and charcoal. It is sometimes worked up by a rotary knife-cutting veneer machine so as to make a thin board, as long as the log and as much as 100 ft. broad, for three-ply wood.

Basswood, White (*Tilia heterophylla* Vent.). Middle and Southern States. Not distinguished commercially from the preceding.

Bay-wood. See Mahogany.

Bean-tree, or Bean, Black. See Chestnut, Moreton-Bay.

Bean, Red (*Dysóxylum Muelleri*). See Cedar, Pencil.

Beati (*Cassia siamea* Lamk.: Order *Leguminosce*). Sinhalese "Wa." Southern India, Ceylon, Burma. 1½ ft. diam. W 62. Heart nearly black, often beautifully mottled longitudinally, very hard. Used in Burma for mallets and walking-sticks, and in Ceylon for fuel for railway-engines. Exported to Bombay and thence to England as "Bombay Black-wood" or "Rosewood."

Beech, Common (*Fagus sylvatica* L.; Order *Cupulíferæ*). Germ. "Gemeiner" or "Roth Buche," Dutch "Rood beuke," Danish
"Bög," Swedish "Bok," Russian and Polish "Buk," Ital. "Faggio," Portug. "Faya," Span. "Haya," French "Hêtre," "White Beech" in America. S.G. 700—720, average 705. W 41—56. E 603 tons. \(\text{ft} \ 2\frac{3}{4}—7. \ \text{fc} \ 3—4. \ \text{f} \ 4\frac{7}{10}. \ \text{fs} \ 4—5.\) Breaking weight (tensile) 4,853 lbs. per sq. in. Crushing strain on sq. in. 9,363—7,733 lbs. Lighter than Oak, with less tensile but almost equal crushing strength. Height 70—100 ft.; diam. 3—4½ ft. Wood varying in colour from red to yellow or white, the red being the better, grown on richer soil. Rings distinct, bulging between the medullary rays. Vessels small, more numerous in the spring wood, 1—5 together, so that autumn wood appears darker. Medullary rays broad, very distinct, with a satiny lustre, occupying nearly a tenth of the transverse section. Pith-mass triangular, small. The wood contains vessels, tracheids, wood-fibres and parenchyma. It is hard, heavy, as strong as Oak and tougher, but 25 per cent. less stiff, close and even in texture, with a fine silky grain, easily cleaved along the rays, very durable under water, and, when well seasoned, not liable to split. (Fig. 26.) It must, however, be kept either wet or dry. It is liable to become worm-eaten; but can readily be treated with preservatives. Beech is largely used for chair-making in Buckinghamshire and in Vienna, in the latter district being often stained. Burning rapidly with a bright flame, it is the chief fuel on the Continent of Europe. It also yields one of the best gunpowder-charcoals. It is in great request among turners for tool-handles, wooden screws, wheel cogs (for which it ranks next to Hornbeam), shoe lasts, printers' rollers, wood type, knife-handles and bobbins, and makes excellent wedges. In France and Germany it is considered the best of all woods, except Walnut, for sabots and wooden soles, for which purpose it is "smoked" over branches and chips of beech, so as to become charged with pyroligneous acid, when it is extremely impermeable. It is also used for railway-sleepers, shafts, oars and boat-building. It is imported from Holland and Germany to our Eastern ports.

The name is applied in Australia to *Trochocárpa laurina* R. Br. [See Barranduna], *Flindérsia australis* R. Br. [See Flindosa], *F. Oxleyána* F. v. M. [See Jack, Long], *Tristánia laurina* R. Br. [See Box, Bastard], *Schizoméria ováta* D. Don [See Coach-wood], *Monótoca elíptica* R. Br. [See Wallang-unda], *Cryptocaráya glau-císcens* R. Br. [See Beech, She], and to *Gmelína Leichhárddtii* F. v. M. (Order Verbenáceae). This last is also termed "White Beech," and by the aborigines "Binburra" and "Cullonen." It is a native of Queensland and New South Wales, 80—150 ft. in height; 2—4 ft. in diam. W 36. Light-coloured, with a fine, bright, silvery grain, strong, not warping, if moderately seasoned, durable, not easily attacked by termites, and easily worked. It is one of the most valuable of Australian timbers, being useful for turnery or for floats.
of mill-wheels, but specially valued for the flooring of verandahs and the decks of coasting vessels, posts, carving, cooperage, etc.

Beech, American or Red (Fagus *ferruginea* Ait.: Order *Cupuliferae*). *Germ.* "amerikanische Buhe," *French* "Hêtre d'Amérique," *Span.* "Haya Americana." Eastern North America. Height up to 100 ft.; diam. up to 4 ft. *S.G.* 688. W 41—43. Ash percentage .51. Relative fuel value .685. E 120,996 kilos. R 1,148 kilos. Resistance to longitudinal pressure 478, to indentation 196 kilos. White to light brown; heart reddish, pith-rays large and conspicuous. Moderately heavy, hard, stiff, strong, tough, rather coarse in texture, warping in drying, but taking a very smooth and beautiful polish, liable to insect attack, and not tolerant of contact with the ground, but otherwise durable. Used in America for plane-stocks, shoe-last, chairs, tool-handles, furniture, ships' timbers, and fuel. It is exported to a small extent to England, but is inferior to English Beech.

Beech, Black. See Beech, She.

Beech, Blue. See Hornbeam.

Beech, Red, in Queensland (Flindérsia *Chatawaiana* F. M. Bailey: Order *Meliaceae*). Also known as "Maple." Used for joinery and cabinet work.
Beech, She \((Cryptocarya glaucoscens\) R. Br.: Order Laurinae). "Black Beech, Sassafras, White Laurel." North-Eastern Australia. Height 70—80 ft.; diam. \(1\frac{1}{2}\)—2 ft. Soft, ornamental, not durable. Used in cooperage. The name has also been applied to \(C. \text{obovilia}\) R. Br. [See Sycamore, White.]

Beech, White, in Canada is \(F\text{\textit{igus sylv\textit{itica}}\) L. [See Beech, Common]. In Australia the name is applied to \(E\text{laoog\textit{arpus Kirtoni}\) F. v. M. [See Ash, Mountain], \(G\text{\textit{melina Leich\textit{hardtii}} F. v. M. [See Beech, Common], and to \(P\text{\textit{hyll\textit{anthus Ferdin\textit{anti}}\) M\text{\textit{ull. Arg. (Order \text{Euphorbiaceae})}. This tree, also called "Pencil Cedar," "Lignum-vite," and by the aborigines "Chow-way" and "Tow-war," a native of the north-east, reaches a height of 70—80 ft. and a diameter of 1—1\(\frac{1}{2}\) ft. Its wood is grey, close-grained, and easy to work, but warps. It is used in building and for staves.

Beech, Water. See Hornbeam.

Beef-wood in Trinidad is \(R\text{\textit{h\textit{opula mont\textit{ina}} (Order Proteaceae), a valuable timber; but in Australia the name is hopelessly vague, being applied to members of four genera of Proteaceae, viz., \text{Banksia}, \text{Grevillea}, \text{H\textit{\textit{akea and Stenocarpus, and to several species of the widely differing genus Casuarina. For \text{Banksia see Honeysuckle; for \text{H\\textit{akea, Pin}bush; for \text{Stenocarpus, Oak, Silky; for \text{Casuarina equisetifolia, Oak, Swamp; for \text{C. suber\textit{osa, She-oak, Erect; and for \text{C. torul\textit{osa, Oak, Forest.}}\text{Grevillea stri\textit{a R. Br. (Order Proteaceae), also known as "Silvery Honeysuckle," and by the aborigines as "Turrai," reaches a height of 40—50 ft., with a diam. of 1\(\frac{1}{2}\) ft. Its timber is red and prettily marked, though named from its resemblance to raw beef, hard, close-grained, and susceptible of a good polish. It is used for fencing, cabinet work, and furniture. [See also Bullet-wood.]

Bendy-tree. See Umbrella-tree.

Betis \((P\text{\textit{ay\textit{ina B\textit{itis Villar; Order Sapotaceae}). Philippines. Used in ship-building, and classed in the third line of Lloyd's Register.

Big-tree \((Sequoia gig\textit{antea Decaisne: Order Conifereae). "Mammoth tree of California." "Wellingtonia." French "Sequoia gigantesque," Germ. "Riesen Sequoia," Ital. "Gigante della California." Western slopes of Sierra Nevada, California, 5,000—8,000 ft. above sea-level. Height 250—400 ft.; diam. sometimes exceeding 35 ft. The specimen, 62 ft. in girth, of which a section is exhibited in the Natural History Museum, South Kensington, has 1,335 annual rings. Wood red-brown, light, soft, brittle, weak, cross-grained, durable in contact with soil. Formerly used locally for lumber, fencing, shingles, etc., but now only of historical interest. Introduced into England as an ornamental tree by William Lobb in 1853.
Bija. See Teak, Bastard.

Billian or **Borneo Iron Wood** (*Eusideroxylon Zwägeri* T. and B.; Order *Lauráceae*). British North Borneo. A very large tree. W 67. Resembling Oak when newly cut, but with age or exposure becoming black as Ebony. Very heavy and hard, strong and durable, bearing exposure, resisting termites and the ship-worm. The best wood in the Bornean and Chinese area for piles, beams, or planks.

Billy Web. See Ebony, American.

Bilsted (*Liquidámbar styraciﬂua* L.). See Gum, Sweet.

Birch, Common, European, White or **Silver** (*Bétula álba* L.; Order *Betuláceae*). French “Bouleau commun,” Germ. “Gemeine Birke,” Dutch “Berk,” Danish “Birk,” Swedish “Björk,” Russian “Bereza,” Port. “Bettula,” Span. “Abedul.” Northern Europe and Asia. Height 40—50 ft.; diam. 1 ½ ft. S.G. fresh 909, dried 664. W 32—49. ft 2:3—10. fs 0:43. Yellowish or reddish-white to light brown, the vessels so minute as to be almost imperceptible to the naked eye, a smooth transverse section appearing as though sprinkled with flour. Rings and pith-rays distinctly marked: pith-flecks numerous near the centre; wood consisting of tracheae, tracheoids, fibres, fibre-cells, and parenchyma. Moderately hard and heavy, even-grained, difficult to split, but easily worked, neither strong nor durable, and liable to the attacks of worms. Burrs are occasionally produced on the stem, with solid marbled wood, valued by turners, and made into cups and bowls in Lapland. In many countries on the Continent, Birch as the cheapest native hardwood, is largely used for furniture and turnery: in France it is largely used for feloës of wheels, cooperage, and sabots; and in the Scottish Highlands for an infinity of purposes, including spoons and plates, as in Russia. It is a valuable fuel in Northern Europe, comparing with Beech as a heat-producer as 13 to 15. It also produces excellent crayon charcoal, and its coppice-wood is largely used for brooms, hoops, and crate-making; for tanning leather; for a yellow-brown, or, with alum, a brownish-red, dye; and, when burnt, for distilling Scotch whisky and smoking herrings and hams. Birch timber is imported, mostly with the bark on, from Prussia and the South of Sweden, to Grimsby, Hull, and Ireland; but that from Sweden is often crooked; and the sapwood, especially if felled in the spring, left on the ground, kept too long on the voyage, or stored without ventilation, will become “doated” or foxed, undergoing, that is, a fungoid fermentation. A new industry has been recently started in Russia in the manufacture of Birch three-ply planks for export to India for tea-chests. The logs are cut rotarily, as we have already mentioned in the case of Basswood, and three thicknesses are then glued back to back with their grains crossing so
<table>
<thead>
<tr>
<th>Order</th>
<th>Yellow</th>
<th>142</th>
<th>applied</th>
</tr>
</thead>
</table>

Birch, American, a trade name for the imported timber, which is the product of more than one species, though chiefly of *Bétula lenta*, the Cherry Birch, and, to a much less extent, *B. lutea*, the Yellow Birch.

Birch, Black (*Bétula lenta* L.). See *Birch, Cherry*.

Birch, Black or **White**, of New Zealand (*Fágus Solándri* Hook. fil.: Order *Cupulíferae*). *Maori* “Tawhai rauriki.” Really a Beech, but known in Nelson as “White,” and in Wellington as “Black Birch.” Height 100 ft.; diam. 4—5 ft. W 47. Hard and very durable, and suited for fencing or fresh-water piles, but liable to attack by the ship-worm. The names “Black” and “Red Birch” are also applied to *Fágus fúsca* Hook. fil., a tree reaching a greater diameter and with darker wood. “Tawhai raunui.” S.G. 700. W 48·6—53·25. p 202·3.

Birch, Canoe (*Bétula papyrifera* Marshall: Order *Betuláceae*). “White” or “Paper Birch.” *Germ.* “Nachen Birke.” Canada and the Northern United States. Height 60 ft. or more; diam. 3 ft. or more. Sapwood white, heart reddish-brown, with a fine glossy grain. Rather heavy, hard, tough, and strong, not durable where exposed to alternations of moisture and heat. Used for bobbins, shoe-lasts and pegs, turnery, and extensively for paper-pulp and fuel. A curl in the grain where the branches are given off is sought after by Boston cabinet-makers for veneers.

Birch, Cherry (*Bétula lenta* L.: Order *Betuláceae*). “Black, Sweet,” or “Mahogany Birch,” “Mountain Mahogany.” *French* “Bouleau doux;” *Germ.* “Kirsche-Birke,” *Span.* “Abdul dulce.” Canada and Eastern United States. Height 60—80 ft.; diam. 3—4 ft. S.G. 762. W 37·5—48. Ash percentage 26. Relative fuel value 759. Coefficient of elasticity 141,398. R 1,216 kilos. Resistance to longitudinal pressure 619, to indentation 226 kilos. Sapwood when first sawn distinctly yellow, with the heart a brownish red. After seasoning the sapwood fades to a cream white and the heart to a pinkish red. Heavy, hard, very strong, close-grained, taking a beautiful satiny polish, not attacked by worms, and fairly durable, but becoming duller after conversion. It presents the “roll figure,” seldom seen in any other wood. If the boards after
sawing are allowed to lie together, mildew soon develops, and the sapwood becomes what is known as "dozy." Largely used, especially in the Northern States, for furniture, sometimes stained to imitate Mahogany or Cherry, and also for turnery, for bakers' troughs, in ship-building, and for fuel. It is exported to England in sawn planks and in slightly waney logs 6—20 ft. long and 1—2½ ft. square, the best coming from Quebec. It is here chiefly used for bedroom furniture, the planks, which seldom exceed 9 in. in width, being used chiefly for chair-making, while the logs are in great request by the coachbuilder.

Birch, Grey. See Birch, Yellow, and Birch, Old-Field.

Birch, Mahogany. See Birch, Cherry.

Birch, Paper. See Birch, Canoe.

Birch, Red or River (Betula nigra L.). Eastern United States. French "Merisier rouge." Smaller, lighter, and less valuable than the other American species, nearly white. Used like poplar, but not exported. The name Red Birch is applied in New Zealand to Fagus fuscus [see Birch, Black or White] and also, with "Silver Birch," to F. Menziësii Hook. fil. S.G. 626. W 39. p 158-2.

Birch, Sweet. See Birch, Cherry.

Birch, White. See Birch, Common, Canoe, Black, and Old-Field.

Birch, Yellow (Betula lutea Michaux fil.). "Grey" or "Tall Birch." Germ. "Gelbe Birke," French "Bouleau jaune," Span. "Abedul amarillo." Eastern Canada and United States. Height 60—80 ft.; diam. 2—3 ft. S.G. 655. W 40-8. R 1,248 kilos. Sapwood nearly white; heart light reddish-brown, heavy, very hard, close-grained, tough, very strong, taking a beautiful satiny polish. Burrs occur, which are used for mallets. The saplings are split for hoops and the older wood for very small woodware, such as button-moulds, for chair-seats, wheel-hubs, and, in Canada, for frames of sledges. It is also largely used for fuel.

Bitterwood. See Quassia and Simarouba.
Biwa. See Loquat.

Blackbutt (Eucalyptus pilularis Sm.; Order Myrtaceae). "Flintwood, White-top," or sometimes "Mountain Ash, Willow," or "Stringy-bark." Aborig. "Toi, Techegun, Benaroon." South-Eastern Australia. Height 50—150 ft.; diam. 2—4 ft. S.G. 990. W 46—66. E 1·152. \(f \) 5·79. \(fc \) 3·75. \(fs \) ·36. Warm greyish brown, close and straight-grained, moderately heavy, very strong, but occasionally liable to gum-veins and shakes, working fairly well, but warping and requiring careful seasoning, comparatively non-inflammable. Suitable for sleepers, paving, telegraph-poles, planks, or house-carpentry. The demand for waggon-planks of Blackbutt is increasing as the supply of American Oak diminishes. The name is applied in New South Wales to E. haemastoma [See Gum, Spotted]; in Victoria, to E. amygdalina régnans [See Ash, Mountain]; in Tasmania to E. Sieberiána [See Gum, Cabbage]; occasionally to E. piperita [See Peppermint]; and in South-West Australia to E. patens Benth., which reaches a height of 100 ft., with a diam. of 6 ft., W 46—74, is tough and durable, especially underground, and is used for wheelwrights’ work, paving, piles, and sleepers.

Blackwood, in Australasia (Acácia melanóxylon R. B. : Order Leguminóseae). In Tasmania "Lightwood," in New South Wales "Hickory, Silver Wattle," or "Black Sally," Aborig. "Moochtong," "Mooeyang." Tasmania, and South-East Australia, and naturalized in India. Height 60—100 ft.; diam. 1\(\frac{1}{2} \)—3 ft. S.G. 854—529. W 36—63·5. E 1,064. \(f \) 5·45. \(fc \) 3·24. \(fs \) ·687. Dark brown, the older growth beautifully figured, sometimes "fiddle-back," with about an inch of nearly white sapwood, hard, close and very even in grain, easily split and worked, and taking, with care, an excellent polish, but warping unless very carefully seasoned. One of the most valuable of Australian timbers, an excellent substitute for American walnut; but it has the defect of resin-veins, so that newly-sawn boards feel sticky. Largely used for oil-casks, in staves 3 inches thick, for gun-carriages, furniture, gun-stocks, tool-handles, crutches, the sounding-boards of pianos, picture-frames, etc., the figure-wood being cut into veneers for railway-carriage panels, billiard-tables, etc.

Blackwood, African (Dalbergia melanoxylon Guill. and Perr.: Order Leguminóseae). "Senegal Ebony," "Congoholz." Tropical Africa. W 74.5. Sapwood narrow, brownish-white; heart jet-black or brownish-black, heavy, hard, coarse but even-grained, with a slight smell of rosewater, burning with a smoky flame and the tarry smell characteristic of Dalbergia. Used, as ebony, in turnery.

Blackwood, Indian (Dalbergia latifolia Roxb.: Order Leguminóseae). "Malabar Blackwood," "Bombay Rose-wood." "Rosetta Rose-wood." Beng. "Sit Sal," Tam. "Iti." India. A large tree reaching 80 ft. in height and 5 ft. diam. S.G. 1064—818. W 46—66.75. R 522—602 lbs. Sapwood whitish; heart dark-brown to greenish-black, often mottled with lighter purplish streaks, heavy, very hard, tough, close but cross-grained, and containing lime-incrustations, and therefore difficult to work. taking a fine polish, durable. Used for sleepers, agricultural implements, gun-carriages, cart-wheels, tool-handles, carving, and especially furniture, for which purpose it is exported via Bombay, and has fetched £13 10s. per ton in London, whilst £7 to £10 is an ordinary price. With it is confused the wood of its variety D. latifolia, var. sissóides, known in Tamil as "Biti," a smaller tree common in the extreme South of India, very strong and tough, but with much heartshake and so much oil as to be unfit to receive paint; and that of D. cultrátá in Burma. [See Yen-dike.]

Bloodwood (Eucalyptus corymbósa Sm.: Order Myrtáceae). Aborig. "Boona." Southern Queensland and New South Wales. Height 30—100 ft.; diam. 1—4 ft. S.G. 983—853. W 72.6. E 1023. ft 7.57. fc 4.48. fs .615. Dark red-brown, moderately heavy, easily dressed, straight and close in grain, but full of gum-veins, and not, therefore, a favourite with sawyers, becoming hard on drying, very strong and durable, little attacked by termites. Used chiefly for posts and rails, but also for piles and sleepers. The name is also applied to the allied E. terminális F. v. M. of the interior, the "Arang-mill" of the aborigines, a very red wood, forming the chief large timber of the area, but not otherwise valuable; and also to E. paniculátá Sm. [See Ironbark, White and Ironwood xx1.]

Bloodwood, Brush, or Scrub (Balóghia lícida Endll.: Order Euphorbídeceae). "Roger Gough." New South Wales, Queensland, Norfolk Island, New Caledonia. Height 70—80 ft.; diam. 2—2½ ft. W 44—45. Buff or light reddish, fine and close-grained, but rather soft and not used. [See also Rosewood (Synoum glandululósium).]

Bloodwood, Mountain, Smooth-barked, or Yellow (Eucalyptus eximia Schauer: Order Myrtáceae). "Rusty Gum." Blue Moun-
tains. Height 80 ft. Light-coloured, soft, not durable, except under water. Useful for work under water and as fuel.

Bois Chaire *(Tecóma leucóxylon Mart.: Order Bignoniáceae)*. Brazil, Guiana, Trinidad. *Brazil* "Quirapaíba," *Cayenne* "Ebène verte." A large tree yielding logs 14 ft. long, squaring 14—16 in. S.G. 1220—1211. R 480 kilos. Hard, even-grained, durable dark-green, or, when polished and varnished, a dark brownish-black. Used in chair-making, whence its name; in building and for the sounding-boards of pianos.

Bois d'arc. See *Osage-Orange*.

Bois de feroles. See *Satiné*.

Bois de natte *(Labourdonnaïsia calophyllóides Boj., L. glauca, Mimusops Imbricaria Willld., etc.: Order Sapóttácæae)*. Mauritius and neighbouring islands. Extensively used for ship-building, cabinet-work, and furniture.

Bois de Sang-Vene. See *Rosewood, African*.

**Bois de Table,* of the Seychelles, *Heritiéra littorális.* See *Sundri*.

Bois graine bleu *(Symplocos martiniécnis Jacq.: Order Styráceae)*. "Kakarat." Dominica, Martinique, etc. A small tree. Used for planks in internal work.

Bois Lezard *(Vitex diwáricta Swartz.: Order Verbenáceae)*. Brazil and West Indies. Strong and durable.

Bois Mulatre *(Pentaclélíhra filamentósa Benth.: Order Leguminósae)*. "Palo Mulato." Trinidad. Height 30—40 ft.; diam. 1—2 ft. Dark, even-grained, and said to be durable underground.

Bois Rivière. See *Water-wood*.

Bois Violet. See *Purple-heart*.

Bolongnita *(Diospyros pilosánthera Bl.: Order Ebenáceae)*. Philippines.

S.G. 983. W 57—61. Drab to dark red, sometimes prettily-grained, very hard, close-grained, fairly easy to work, and said to be very durable underground.

Bow-wood. See Osage-Orange.

Box (Bixus sempervirens L.; Order Euphorbiaceae). French "Bois commun," "Bois beni," Germ. "Buchsbaum." Northern and Western Asia, North Africa, and Central and Southern Europe. Height 8—30 ft.; diam. small. S.G. 950—980. W 80·5—53. Light yellow, very homogeneous, almost horn-like, neither rings, pith-rays, nor vessels being distinct, hard, heavy, firm, free from heart-shake, difficult to split, but works up smoothly, with a slight silky lustre, and is durable, when thoroughly seasoned. "Box-wood is very apt to split in drying; and to prevent this, the French turners put the wood designed for their finest work into a dark cellar as soon as it is cut, where they keep it from three to five years. . . . They strike off the sapwood with a hatchet, and place the hardwood again in the cellar till it is wanted for the lathe. For the most delicate articles, the wood is soaked for twenty-four hours in fresh very clear water, and then boiled for some time. When taken out of the boiling water, it is wiped perfectly dry and buried, till wanted for use, in sand or bran." Compared for closeness of grain to Ebony by Theophrastus: used by the Romans for veneers and flutes: Virgil mentions the Box as used by the turner:

"Smooth-grained and proper for the turner's trade,
Which curious hands may carve, and steel with ease invade."

(Dryden's translation.)

Invaluable for mathematical instruments, the chief use of Box since the fifteenth century has been for wood-engraving, for which purpose it is chiefly imported from Abasia in Circassia, Persia, and Odessa in billets 3—8 ft. long and 3—12 in. across, fetching as much as £60 a ton for large sizes. In spite of the advance of other methods of engraving, Box is so unequalled for this purpose that careful search is being made for any wood likely to approach it in suitability. (See p. 88 supra.) The largest number of box-trees in Europe are in the mixed forests of Ligny and of St. Claude on the Jura. At the latter place the wood, which is not of large dimensions, is turned into small boxes, beads, spoons, forks, etc. The Teasshur or πυξίς of Ezekiel xxvii. 6, which was inlaid with ivory, was probably Buxus longifolia of Lebanon.

In Australia the name Box is applied to a great number of Eucalypti, such as E. hemiplóia [See Canary Wood], E. largiflorúren [See Gum, Slaty], E. leucóxylon [See Ironbark], E. odoríta [See Peppermint], E. stellulátá, E. Stuartuína, and E. viminálís [See Gum, Manna]. In America the name is applied to Cornus flórida L. [See Dogwood]; in the Bahamas to Vitex umbrósa Sw.
Box, Bastard is also a name of wide application in Australia, sometimes referring to Eucalyptus largiflorens [See Gum, Slaty], E. longifolia [See Woolly Butt], E. microtheca [See Box, Dwarf], E. polyanthema [See Box, Red], E. punctata [See Leather-jacket], or E. tereticornis [See Gum, Slaty]; but chiefly to Tristania conferta, T. laurina, and Eucalyptus goniocalyx.

Tristania conferta R. Br. (Order Myrtaceae), otherwise "Brisbane, Brush, Red," or "White Box," or "Brisbane Mahogany." Aborig. "Tubbil-pulla." North-Eastern Australia. Height 80—120 ft.; diam. 1—3 ft. W 50—64. Greyish or brownish, sometimes prettily grained, strong, tough, hard, elastic, and durable, but warping very much unless carefully seasoned, dressing well and not attacked by termites. Used for ship-building, bridges, tram-rails, tool-handles, etc.

T. laurina R. Br., of Eastern Australia, known also as "Water Gum, Beech," and "Swamp Mahogany," is a smaller tree. Height 50—60 ft.; diam. 1—2 ft. Dark-coloured, hard, tough, close-grained, difficult to season. Used for tool-handles and cogs.

Eucalyptus goniocalyx F. v. M. (Order Myrtaceae), of Tasmania and South-Eastern Australia. "Grey Box, Mountain Ash, Spotted, Grey, White." or "Blue Gum." Height up to 300 ft.; diam. to 6 or 10 ft. S.G. 1152—798. W 72—74. R 799 lbs. Pale yellow to light brown, very hard, tough, usually free from gum-veins, straight-grained, difficult to split, not warping, very durable, especially underground. Used for joists, beams, rafters, sleepers, spokes, staves, boat-building, and fuel.

Box, Black (Eucalyptus largiflorens). See Gum, Slaty.

" " (E. obliqua). See Stringybark.

" " (E. microtheca). See Box, Dwarf.

Box, Brisbane or Brush (Tristania conferta). See Box, Bastard.

Box, Brown. See Box, Red.

Box, Cape (Buxus Macowanii Oliv.: Order Euphorbiaceae). Eastern Cape Colony. Height 40—80 ft.; diam. up to 4 ft. W 74. Yellow, hard, close and even-grained, resembling European (Turkish) Box, but not equally valuable for engraving. Used for turnery. The name is also applied to Gonióma Kamássi E. Mey. [See Kamassi.]

Box, China (Múrraya exótica L.: Order Rutáceae). Queensland. Small, resembling Box, but apt to crack, requiring careful seasoning. W 61—63. Used for tool-handles.

Box, Cooburn (Eucalyptus largiflorens). See Gum, Slaty.

Box, Dwarf, Flooded, or Narrow-leaved (E. microtheca F. v. M.: Order Myrtaceae). Also known as "Bastard" or "Black Box." Australia, in most of the colonies. Reddish, hard, heavy, elastic,
sometimes figured like walnut, but darker, heavier, closer-grained, and too hard for ordinary cabinet-work. Used in building.

Box, Bairnsdale Grey (*Eucalyptus bosistoïna* F. v. M.: Order **Myrtaceae**). Victoria. Height up to 70 ft. Durable wood for piles, wheelwrights’ work, etc.

Box, Grey (*Eucalyptus goniocályx*). See Box, Bastard.

, , *(E. hemiphloía)*. See Canarywood.

, , *(E. largiflórens)*. See Gum, Slaty.

, , *(E. polyánthema)*. See Box, Red.

, , *(E. salíngua)*. See Gum, Blue.

, Ironbark (*E. obliqua*). See Stringybark.

, Jamaica or West Indian (*Tecóma pentáphylía* Juss. = *Tabebuía pentaphylía* Hemsl.: Order **Bignoniáceae**). Brazil, Venezuela, West Indies, etc. “White Cedar,” “Cogwood,” “Roble blanco.” S.G. 876—834. W 49—54.5. Light yellow, fine, close and even-grained, liable to split in drying. Used for piles, house and boat-building, and suggested for engraving, but inferior to Box.

Box, Knysna. See Kamassi.

, Native. See Boxthorn.

, Poplar (*Eucalyptus populífolia* Hook.: Order **Myrtáceae**). “Red” or “White Box, Nankeen,” or “White Gum.” Aborig. “Egolla.” North-east Australia. Height 50—60 ft.; diam. 2 ft. Grey or light-brown, hard, heavy, close-grained, tough, strong, hard to work, often unsound, handsome when polished, durable. Used for sleepers, posts, building, etc.

Box, Red (*Tristáния conférita*). See Box, Bastard.

, , *(Eucalyptus populífolia)*. See Box, Poplar.

Box, Scrub (*Tristáния conférita*). See Box, Bastard.

Box, White (*Eucalyptus hemíphilóia*). See Canarywood.

, , *(E. oloríta)*. See Peppermint.

, , *(E. populífolia)*. See Box, Poplar.

, , *(Tristáния conférita)*. See Box, Bastard.

, Yellow (*Eucalyptus melliodóra* A. Cunn.: Order **Myrtáceae**). Eastern Australia. Also known as “Yellow Jacket, Honey-
scented” or “Red Gum.” Aborig. “Dargan.” Height 40—80 ft. diam. 1½—3½ ft. S.G. 876—1125. W 60—70. R 725—695 lbs. Light yellow or pale brown, very hard, heavy, close-grained, tough, durable, with a wavy figure, but with some gum-veins and cup-shake. Used for spokes, naves, cogs, treenails, posts, and, to some extent, engraving. The name Yellow Box is also applied to *Eucalyptus hemiphloia* [See Canarywood], and to *E. largiflórens* [See Gum, Slaty].

Box-Elder. See Maple, Ash-leaved.

Boxtorrn (*Bursáriá spinósa* Cav.: Order *Pittosporáceae*). Australia and Tasmania. “Native Box” or “Olive.” Height 20—30 ft.; diam. less than a foot. White, close-grained, and taking a fine polish. Used in turnery.

Brazilletto or **Brazil-wood** (*Cæsalpinía brasilíénsis* Sw.: Order *Legumínosae*), now almost extinct, *C. crístá L.*, *C. bíjuga* Sw., and *C. tinctória* H.B.K. Tropical America. Hard, heavy woods, taking a polish, and employed for violin-bows and in cabinet-work, but mainly as a red dye. They contain a red colouring-matter known as *Braziline*, soluble in water, and giving, with lime, baryta and tin chloride, a red precipitate, whilst *Logwood* gives a blue one. [See also Nicaragua wood, Peach wood, Pernambuco wood and Sappan wood.]

Break-axe. See Ironwood xxiii.

Briar. See Ash, Prickly.

Brigalow. See Myall, Brigalow.

Brimstone-tree (*Morínda citrifólia*). See Canary-wood.

Broom (*Cýtisús scopáriús* Link.: Order *Legumínosae*). Western Europe. Cultivated in Algeria, its stems being imported under the trade names of “Congo Oak” and “Black Orange” as walking-sticks.

Buckeye, Ohio (*Æsculus glábra* Willd.) and **Sweet Buckeye** (*Æ. fláva* Ait.: Order *Sapindáceae*). Eastern United States. Small trees with creamy-white, light, soft, fine, and even-grained wood, not strong, but often tough, easily worked. Used locally for building, but more for turnery, artificial limbs, and especially paper-pulp. These woods, and that of *Æ. índica* Colebrooke, from North-West India, resemble that of the Horse-Chestnut. [See Tochi.]

distinct zone of pores in the spring wood, and remarkable flamboyant
groups of vessels in the autumn wood (Fig. 28); pith-rays indis-
tinguishable. The wood is hard and heavy, and suitable for
turnery, but small. The other British species, *R. Frangula*, the
Alder or Berry-bearing Buckthorn, yields the wood known as
Dogwood.

Buckthorn, Canadian (*Rhámnnus Purshiiána DC.*). North America.
“Bearberry, Wild Cherry” or “Shittim-wood.” W 31.5—35.
Not more than 12 in. diam. Sapwood light-yellow, heart yellowish-
brown with purplish streaks, fine-grained. The bark is the drug
Cascara Sagrada.

Buffelsbal (*Gardénia Thunbérgiá L.*: Order Rubiáceae). Cape
Colony. Hard and heavy. Used for clubs, tool-handles, axles, etc.

Bullet-wood, Balata, Bully, or Buruch (*Mímusops gloósoa Gaertner,
Sapóta Mulléri Miquel: Order Sapotáceae). Apparently identical
with *Mímusops Bálata Crueg.* *Surinam “Balata rouge,” “Horse-
flesh wood,” “Beef wood,” “Red Lance-wood.”* S.G. 1232—
kilos. Height 100 ft.; diam. 2—7 ft. In logs 20—50 ft. long,
squared up to 36 in. or 42 in. Dark red-brown, fine, straight and
close-grained, very heavy, hard, strong, easily worked, taking a
fine polish, very durable; but subject to serious heart-shake, un-
fitting it for use in large scantlings, and to the attacks of teredo
and termites. Of three varieties, “Red,” “White,” and “Black,”
the “Red” is the best. Much used in house-building for beams,
floors, and mill-work, being said to have more than three times the
resistance of Oak, and nearly twice that of the best Teak. Used
also for shafts and bending, but limited in quantity. This tree
yields the elastic substance Balata. British Guiana and West
Indies.

The name is also applied to the wood of the allied *Sapodilla*
(*Áchras Sapóta L.*), (q.v.).

Bullet-wood, Andaman (*Mímusops líttorális Kurz.: Order Sap-
táceae*). Tenasserim and Andaman Islands. “Mowha.” A large tree,
yielding a very hard, red-brown, close-grained, durable wood, which
is, however, apt to split. W 60—70. Used for bridges and house-
posts, and recommended for sleepers. [See also *Palu*, and *Sapodilla.*]

Bullet-wood, Bastard (*Humíria floribánda Mart.* with numerous
synonyms: Order Humiríceae). Tropical America. W 74.5.
Sapwood brownish-white, heart light orange-red, heavy, hard.
Spokes and house-building. (Fig. 32.)

Bully, Naseberry (*Sapóta Sideróxylon Gr.*: Order Sapotáceae).
Jamaica. W 74. E 1.080. f/ 9.16. fc 4.31. fs 50. One of the
most valuable woods of the Colony.
Bunya-bunya (*Araucaria Bidwilli* Hook: Order *Coniferae*). Queensland. Height 100—150 ft.; diam. 2 1/4—4 ft. Light-coloured, straight-grained, beautifully veined, very strong, easily worked, susceptible of polish, not warping, durable. Suitable for cheap furniture, but seldom felled, as its seeds are eaten by the aborigines. "Mottled" outside planks showing figure are used for veneers and turnery.

Button-wood. See Plane.

Cabbage-bark. See Angelin.

Cajueyran (*Copaifera hymenoxyphilia* Moric.: Order *Leguminosae*). Cuba. A large tree, the wood of which is used in building.

Caileodra. See Mahogany, African.

Calamander or Coromandel wood (*Diospyros quesita* Thwaites, *D. oocarpa* Thw. and *D. hirsuta* Linn. fil.: Order *Ebenaceae*). Tamil "Calamander maram," Sinh. "Kalu-mediriya." W 57. One of the most valuable ornamental woods of Ceylon, but now scarce, red-hazel-brown or chocolate brown, with handsome black stripes, intermediate between Rosewood and Zebra-wood, hard, close-grained. Used for turning and veneers.

grained, tough, readily split, resisting termites. Used for building, staves, oars, sculls.

Camara (Geissospermumvellósii Allem.: Order Apocynáceae). Brazil. S.G. 746. Light-coloured, moderately heavy, strong, but small. Used in boat-building.

Camphor (Cinnamómum CAMphora Nees: Order Lauríceae). Formosa, etc. Height 30—60 ft.; diam. 2—3 ft. Light-coloured, fragrant, soft. Used for entomological and ornamental cabinets, and the source of most of the camphor of commerce which is obtained by destructive distillation.

Camphor, Nepal (Cinnamómum glandulíferum Meissn.: Order Lauríceae). India. Also known as “Nepal” or “Assam Sassafras,” and apparently identical with “Martaban Camphor-wood” and “Burmese Sassafras.” A large tree yielding timber 20—30 ft. long and 1½ ft. in diam., floating when seasoned, brown, tough, strong, durable, with the odour of Sassafras, and a grain resembling Bay-wood. Used for house-carpentry, cabinet-work, tool-handles, etc.

Camphor-wood (Australian). See Cypress-Pine.

Camwood (Báphiá nitída Afz.: Order Leguminósae). West Africa. “Irosun,” “Osrin.” Height 8—10 ft. W 59-5—67-25. Red, hard, coarse-grained. Imported from Sierra Leone in logs 4 ft. long and 1 ft. or less in diam., or powdered. Used by native women for rubbing on their bodies to check perspiration, and in England, with iron-sulphate, as a dye for red handkerchiefs.

Canary Whitewood. See Tulip-tree and Cucumber-tree.

Canary-wood (Eucalýptus hemíphóia F. v. M.: Order Myrtácáceae). South-East Australia. Known also as “Box, Grey, White, Yellow,” or “Gum-topped Box,” “White Gum.” Aborig. “Narulgun.” Height 50—60 ft. or more; diam. 2—4 ft. or more. S.G. 1230—773. W 48—74. Yellow-white or light buff, heavy, very hard, strong, tough, cross-grained, not readily split, durable, but often hollow and subject to dry-rot and termite-attack. Used in Australia for sleepers, piles, planks, pit-props, fencing, handles, cogs, naves,
felloes, screws, tree-nails, etc., but as yet of no commercial importance.

Canella or Cannelle, a name applied to various Brazilian woods belonging to the Laurâceæ, including Dicyphélleum caryophylldtum [See Rosewood, Cayenne], Aygdéndron canella Meissn., Nectândra atra, and N. mollis. The latter is brown, light, easily worked, but not durable. S.G. 744. It is procurable of a considerable size, and is used for decks, house-building, and carpentry.

Caoba. See Mahogany.

Carapa or Carapo. See Crab-wood.

Carob (Ceratónia Silliqua L. : Order Leguminósoæ). French "Caroubier." Chiefly known for its fruit, the "Locust bean" or "St. John's-bread"; but imported from Algeria as walking-sticks.

Catalpa (Catálpa speciósâ Warder : Order Bignoniâceæ). South Central United States. "Bois Shavanon." Height 80 ft.; diam. 4 ft. Brown, light, soft, not strong, brittle, coarse-grained, durable, especially in contact with the soil. Used for posts and fencing; but suited for internal fittings, and being now much planted.

Cedar, a name extended from the Lebanon Cedar (Cedrus Libâni Loud. : Order Coníferaæ) to other species of the genus, to various Junipers and other coniferous woods, and to many other woods of
broad-leaved trees, especially the Meliaceous genus Cedrela, most of which resemble the true Cedar in being brown, even-grained woods of moderate hardness and often fragrant. The true Cedar is a native of the Lebanon, Taurus, and neighbouring ranges of South-West Asia, and was introduced into England as an ornamental tree after the middle of the seventeenth century, that at Enfield being perhaps the oldest existing English tree. French "Cedre du Liban," Germ. "Libanon Ceder," Ital. "Cedro del Libano." Hebr. "Erez," Greek κιδρός. Height 50—80 ft.; diam. 3—4 ft. or more. S.G. 480. Reddish-brown, light, straight and open-grained, very porous, soft and spongy in the centre, easily worked, but rather brittle, liable to extensive heart- and cup-shakes, not strong. Mountain-grown Cedar is harder, stronger, less liable to warp and more durable. The wood has a pleasant odour, which is obnoxious to insects. It is, therefore, suitable for cabinets, internal work, carving, etc., for which purposes it seems to have been mainly employed by the ancients, with whom it had so great a repute for durability. In the Cilician Taurus it is used for the best household furniture and for church-fittings. The "Cedar" of the English timber trade is the West Indian Cedrela odorata, shipped from Cuba, Trinidad, Honduras, and Tabasco, and fetching 3d. to 4½d. per foot. [See Cedar, West Indian.]

Cedar, Atlas (Cedrus atlántica Manetti). Mount Atlas. Height 80—100 ft.; diam. up to 5 ft. W 49—85. Sometimes a deep Mahogany-red, fibrous, even-grained, not strong, very durable, neither splitting nor warping, taking glue well. The outer part of the heartwood beautifully veined, resembling in quality and value that of the Deodar of India. Used in North America for sleepers, paving, cabinet-making, and carpentry. Pliny states that the beams of the Temple of Apollo at Utica, made of Numidian Cedar, were sound after 1,178 years. The French Government in Algeria is offering a forest of this timber in the Aures Mountains for sale.

Cedar, Barbadoes (Juniperus barbadénsis L.: Order Cupressineæ). "Juniper Cedar." Barbadoes, Jamaica, etc. Closely allied to, if not identical with, the Red Cedar of the United States (Juniperus virginiâna L.).

Cedar, Bastard, in India. See Bead-tree and Mahogany, East Indian.

Cedar, Bastard, in Jamaica (Guazúma tomentósa H.B.: Order Sterculiâceæ). French "Orme d’Amerique," Telugu "Rudraksha chettu." West Indies. Introduced into Ceylon and Southern India more than a century ago and now common. Light, splitting easily. Used in Jamaica for staves for sugar hogsheads.

Cedar, Bastard Pencil (Dysóxylon rújum Benth.: Order Meliâceæ). Queensland and Northern New South Wales. Height
40—50 ft.; diam. 1\(\frac{1}{2}\)—2 ft. Red, nicely grained, easily worked. Used for cabinet-work.

Cedar, Bermuda (*Juniperus bermudiana* L.; Order Cupressineae). Bermudas. Closely allied to the Red Cedar, *Juniperus virginiana*, of which it is supposed to be a geographical variety. Height 50—60 ft.; diam. 2—3 ft. Used for boat-building and formerly exported for pencils, for which purpose the Red Cedar has superseded it.

Cedar, Borneo. See Serayah.

Cedar, Clanwilliam (*Callitris arborea* Schrad.; Order Coniferae). Cederberg Mountains, South Africa. W 36. Light-brown, soft, fine and even grained, not resinous, fragrant, durable, with silver grain resembling Maple.

Cedar, Cigar-box (*Cedrela odorata* [See Cedar, West Indian] and the allied *C. guianensis*, from the Guianas and Brazil, and *C. brasiliensis*, from Brazil and the Argentine. The supply of these woods is now so limited that they are used only for boxes for the best cigars, cheaper ones being made of the less aromatic African Mahogany.

Cedar, Cuba. See Cedar, West Indian.

Cedar, Deodar (*Cedrus Deodara* Loud.; Order Coniferae). Afghanistan to the Western Himalayas. "Indian Cedar." French "Cedre de l'Himalaya," Hind. "Devaderrn." Height 150—240 ft.; diam. 5—7 or even 10—12 ft. at base, tapering to one-third at 80 ft. up. Heartwood light yellowish-brown, compact, even-grained, moderately hard, not readily splitting or warping, fragrant, with an
abundance of resinous "oil," but no distinct resin-canals, and exceedingly durable: annual rings uniform, with well-marked autumn zones: resin-canals absent. The pillars in the Shah Hamaden Mosque at Srinagar of this wood are probably over 400 years old, and some of the bridges in the same city, though their piers are alternately wet and dry, are said to have lasted even longer. This species was introduced into England as an ornamental tree in 1831. It is the chief timber of North-West India, where it is used for sleepers, for all purposes of construction and even for furniture.

Cedar, Florida. See Cedar, Red.

Cedar, Guiana (Icica altissima Aubl.: Order Burseráceae), "Kurana" or "Carana-gum." French "Cèdre blanc, Cèdre bagasse." A large and very valuable wood of French and British Guiana, easily worked, fragrant, durable. Height up to 100 ft. S.G. 1036—842. R 226 kilos. Used for canoes, book-cases, internal house-fittings, etc.

Cedar, Honduras. See Cedar, West Indian.

Cedar, Incense (Libocédrus deccúrenrs Torr.: Order Cupressíneae). "Bastard, White or Post Cedar." French "Cèdre blanc de Californie." Germ. "Californische Flusseeder." Pacific slope of the United States. Height 100 ft. or more; diam. 6 ft. or more. Light greyish-brown, light, soft, fine- and close-grained, but brittle and not strong, very durable in contact with soil. Extensively used in California for posts, fencing, shingles, laths, internal work and furniture.

Cedar, Indian. See Cedar, Deodar.

Cedar, Japanese. See Sugi.

Cedar, Mackay. See Acacia Cedar.

Cedar, Mexican. See Cedar, West Indian.

Cedar, Moulmein (Cédréla Toóna Roxb.: Order Meliáceae). India, Java, Australia. "Bastard Cedar," "Bastard" or "Indian Mahogany," or "Chittagong wood" of India, "Cedar" or "Red Cedar" of Australia. Hind. "Tóon," "Toona." Burm. "Thitkado." French "Cèdre de Singapore." Height 70—180 ft.; diam. 2—10 ft. S.G. 508—576. W 28—36. Timber generally from 14—40 ft. long, and from 11—26 in. square. Pale brick-red, resembling Mahogany, often beautifully curled near the root or branches, fragrant, clean and straight, but open in grain, moderately hard, easily worked, does not warp, but splits somewhat in seasoning, and is liable to heart- and star-shakes, durable, termite-proof. A very valuable wood, formerly hollowed out for canoes in North-East India and largely used for tea-chests, but not now sufficiently abundant. Much employed for boat-planks in Queensland, for
furniture, door-panels and carving, and yielding beautiful veneers. The best of the woods known as Chittagong woods.

Cedar, New Zealand (Libocedrus Bidwillii Hook. fil. or L. Doniana Endl.: Order Cupressineae). Maori “Pahautea,” “Kawaka.” Height 60—100 ft.; diam. 3—5 ft. W 28. Soft, close-grained reddish woods, resembling the Incense Cedar of the Western United States. Suitable for planks and spars.

Cedar, Oregon (Cupressus Lawsoniana Murr. = Chamaecyparis Lawsoniana Sargent: Order Cupressineae). “Port Orford Cedar, Lawson’s Cypress, Ginger Pine.” South Oregon and North California. Height up to 200 ft.; diam. up to 12 ft., but generally 120—150 ft. high. S.G. 460. Light yellowish-brown, light, but heavier than other “white Cedars,” hard, strong, very close-grained, abounding in fragrant resin, easily worked, susceptible of a beautiful polish, very durable in contact with the soil. One of the most valuable timber-trees of North America, largely cut for lumber and used for ship and boat building, fencing, flooring.

Cedar, Pencil, a name applied in English commerce to Juniperus virginiana [See Cedar, Red], but in Northern New South Wales and Queensland to (i) Dysoxylon Frasériánun and (ii) D. Müllereri, Phyllinthus Ferdinandi [See Beech, White], and (iii) Podocarpus eláta, and to Lucúna galactóxylon [See Miva]; in India to Juniperus macrópoda [See Juniper, Indian], and (iv) in Cape Colony to the Coniferous Widdringtonía juniiperóides. (i) Dysoxylon Frasériánun Benth. (Order Meliácceae), known also as “Australian Mahogany,” “Rosewood” or “Bog-onion,” 50—70 ft. in height and 3—4 ft. in diameter, yields a reddish, prettily-figured, fragrant, easily-worked wood, valued for furniture, turning, engraving and ship-building, being, in fact, a substitute for Mahogany. (ii) D. Müllereri Benth., known as “Red Bean” and, from the smell of the wood when freshly cut, as “Turnip-wood,” the “Kidgi-kidgi” of the aborigines, a taller tree, yields a rich red wood, equally valuable, and sometimes figured. (iii) Podocárpus eláta R. Br. (Order Taxiócea), known also as “Pine, White,” “Brown Pine” or “She Pine,” or “Native Deal,” is a fine tree, 50—130 ft. high and 2—5 ft. in diam. W 45-7. Though seldom cylindrical, it is free from knots, sometimes beautifully figured, soft, fine, close and silky in grain, easily worked, durable, termite- and teredo-proof, and valued for joinery and cabinet-work. (iv) Widdringtonía juniiperóides, growing above the winter range of snow on the Cederberg in the Clanwilliam district of Cape Colony, sometimes reaches 12 ft. in diam. It is known as “Ceder Boom” to the Dutch, and the demand for it exceeds the supply. The allied W. Whitei Rendle, of elevated kloofs in the Shiré Highlands, Nyassaland, is
a fine tree, 150 ft. high, reaching 6 ft. diam., and yielding an ornamental, fragrant, light, yellow-brown wood, susceptible of a good polish, and suitable for building, pencils and other purposes. Though suitable for re-afforesting tropical highlands, this species is not present at abundant.

Cedar, Red, in North America (*Juniperus Virginiana* L.: Order Cupressineæ). "Florida Cedar, Savín, Pencil Cedar." French "Cèdre de Virginie," Germ. "Virginischer Sadebaum," "Virginiske Wachholder," "Bleistift-holz." Throughout the coasts of the United States, but large only in the South. Height 40—50 or even 100 ft.; diam. 1—4 ft. S.G. 330. W 20—35. Sapwood broad, yellowish; heart rose-red to brown-red, fragrant; annual rings sinuous; pith-rays very fine; resin-ducts absent; light, soft, brittle, compact, fine-grained, strong, easily split, durable, especially in contact with the soil or water, and obnoxious to insects. One of the most valuable coniferous woods of America. Formerly much used by the Spaniards in Florida for ship-building, and in England, up to fifty years ago, for cabinets, work-boxes, etc., it was occasionally employed in the United States for railway-sleepers and fencing, in the Southern States for coffins, and in Philadelphia for cooperage. It is, however, now too dear for any use but pencil-making, for which purpose several million cubic feet are cut annually. A useful paper for protection against moth is made from the refuse of the pencil factories.

Cedar, Red, in Cape Colony (*Cunónia capénis* L.: Order Cupressi-áceæ). Dutch "Rood Els" or "Elzenhout." Height 15—25 or even 60 ft.; diam. 1½—2 ft. W 46. Red; close-grained, tough, taking a good polish. Much used in cabinet-work and turnery, for railway-sleepers, and by wheelwrights.

Cedar, Pink or Red, of Sikkim tea-planters, used for tea-chests and furniture, is *Acrocirrus fraxinifólius* Wight (Order Legum-ínóseæ), the "Mandania" of the natives.

Cedar, Red, in Australia (*Cédrela Toona*). See Cedar, Moulmein.

Cedar, Rock (*Juniperus sabinóides* Sarg.), a native of Mexico and Texas. Height 20—40 ft.; diam. 1 ft. S.G. 690. W 43. Sapwood thin, nearly white; heart brown, often streaked with red, slightly fragrant, light, hard, close-grained, not strong, very durable in contact with soil. Used for sleepers, telegraph-poles, fencing, and fuel.

Cedar, Sitka, or Yellow (*Cupressus nutkaénis* Hook. = *Chame-cyparis nutkaénis* Spach: Order Cupressineæ). United States and Canada. Also known as "Yellow Cypress." W 20.75. Large, sometimes exceeding 6 ft. diam.; light reddish-brown, soft, weak, easily worked, but shrinking unless seasoned, very durable in
contact with soil and said to be teredo-proof. Sleepers, posts, boat-building, interior work, cooperage, etc.

Cedar, Tasmanian (*Athrotaxis selaginoides* Don. with *A. cupressoïdes*; Order *Taxodiaceae*). "King William Pine." Height about 45 ft. Light, yellow, or pink, straight, even-grained, tough, strong. Used for furniture and boat-building.

Cedar, Western Red (*Juniperus occidentalis* Hook. : Order *Cupressineae*). Western North America. Known also as "Yellow Cedar, Californian Juniper," or "Pencil-wood." W 36. Pinkish-brown, soft, fine, straight and even-grained, very durable in contact with soil, slightly fragrant. Used for fencing or fuel; but suitable for pencils.

Cedar, West Indian (*Cedrela odorata* L. : Order *Meliaceae*). "Cuba, Havana, Honduras, Jamaica" or "Mexican Cedar." "Cèdre Acajou." The "Cedar" of English commerce. A tall tree capable of yielding timber 18—40 ft. long and 1—2 ft. square. S.G. 372—664. W 27—47. p 7,600. p′ 7. c′ 1·0. f 3·02. jc 1·98. fs 362. e 2,870. c′ 379. v′ 586. Sapwood narrow, reddish-white; heart cinnamon-brown; annual rings broad and distinct; pith-rays numerous and distinct; vessels very large, open, scattered, but more numerous, larger and partly filled with brown resin in spring wood. Fragrant, often beautifully marked and resembling the allied Mahogany; but very much softer, light, easily split, bitter in taste and with a peppery smell. Used mainly for cigar-boxes, but also for furniture.

Cedrela fissilis Vell. (= *C. brasiliensis* Juss.), the "Cedro" used for furniture in Northern Argentina, being unseasoned, warps, but might be used for other purposes.

Cedar, White, in the United States, a name applied to the similar coniferous woods of *Libocedrus decurrens* [See Cedar, Incense], *Cupressus Lawsoniana* [See Cedar, Oregon], *Thuya gigantea* [See Cedar, Canoe], *Cupressus Thyoides*, and *Thuya occidentalis*. In Australia it is used of *Elaoëndron australé* and *Mélia compósita*.

Elaoëndron australé. See Ash, Blue.

Mélia compósita. See Bead-tree.
Cedar, Yellow. See Cedar, Sitka and Yellow-wood.

Champak (Michelia Champa L.: Order Magnoliaceae). Beng. “Champa” or “Champaka.” Sinh. “Sapu.” India, Ceylon, Moluccas. Height 30 ft.; diam. up to 4 ½ ft. S.G. 6731. W 42. R 350 lbs. Light to dark olive-brown or greenish, soft, but seasons well, taking a good polish, very durable. Used for furniture, house- and boat-building. The allied M. excelsa Blume is the “Bara-Champ” of the Eastern Himalaya, the principal building and furniture wood of Darjiling, whilst M. nilagirica Zenk., the “Pila Champa” of Southern India and Ceylon, is also used.

Cheesewood (Pittosporum undulatum Vent.: Order Pittosporeae). Eastern Australia. “Native Laurel,” “Mock Orange.” Aborig. “Wallundun-deyren.” Height 30—50 or 90 ft.; diam. 1—2 ½ ft. W 61-2.5. White or whitish-brown, very close-grained, hard. Suitable for turning, rollers for mangles, and engraving, though inferior to Box. The name is also applied to P. bicolor Hook., the “Whitewood” of Tasmania, where it was used by the aborigines for clubs. This is a smaller tree with yellower wood. S.G. 874. Used for axe handles, billiard-cues, etc.

Cherry (Prunus Avium L. and P. Cerasus L., and probably P. Pádus L.: Order Rosaceae). Europe, Northern and Western Asia. S.G. 750. W 33-5—49. Sapwood reddish or yellowish white; heart light yellowish-brown, hard, heavy, firm, fine and even-grained, but not durable; annual rings distinct; pith-rays distinct, fine; vessels fine. The wood is valued by turners and for inlaying. After soaking for several days in lime-water it becomes a beautiful brownish-red, and can be used as a substitute for Mahogany. More important, however, is the “Perfumed Cherry,” P. Maháleb L., the perfumed brown or green-streaked wood of which is grown and manufactured in Austria into pipe-stems and walking-sticks.

Cherry, Brush (Eugenia myrtifolia). See Myrtle, Native.

Cherry, Brush (Trochocarpus laurina R.Br.). See Barranduna.
Woods of Commerce

Cherry, Wild Black (Prunus serotina Ehrh.: Order Rosáceae). Eastern United States. W 36-5. "American Cherry." Height 90—120 ft.; diam. 2—3 ft. Sapwood yellowish-white; heart pale reddish to brown, often with discoloured flaws, compact, fine- and close-grained, hard, heavy, strong, shrinking in drying, but taking a good polish, durable. Valued for cabinet-work and interior decoration; but scarce.

Chestnut (Castánea vulgáris Lamk.=C. satíva Gaërtn., C. vesca Gaërtn. : Order Cupulíferce). "Spanish Chestnut." French "Châtainier." German "Edelkastanie." A large tree, sometimes reaching an enormous girth, native to the continent of Europe and represented by a closely related variety, americána, in the Eastern United States. Sapwood yellowish-white or light brown; heart darker brown, resembling Oak but distinguished by the absence of broad pith-rays; pores large, forming a broad circle in the springwood and bifurcating lines beyond; moderately hard, but much softer than Oak, light, coarse-grained, not strong, warping in drying, subject to ring-shakes and worm-boring, but durable when dry or wet. S.G. 450. E 85,621. R 696 kilos. W 28—46-5. Used for fence-posts and rails, staves, vine-props, hop-poles, cabinet-work, and charcoal. It is one of the best woods for veneering, taking glue well. The ancient roofs in England alleged to be of Chestnut are really of Oak, and can be readily recognized as such by the broad pith-rays.

Chestnut, Horse. See Horse-Chestnut.

Chestnut, Moreton Bay (Castanospírum australé A. Cunn.: Order Leguminósæ). "Bean-tree." "Black Bean." North-East Australia, introduced into India. Height 80—90 or 130 ft.; diam. 2—3 or 6 ft. W 35—46-5. Sapwood yellow, heart prettily grained, streaked with dark brown, somewhat resembling walnut, soft, fine-grained, shrinking much in drying and so requiring thorough seasoning, taking a good polish, but not durable. Used for furniture, cabinet-work, gun-stocks and veneers.

Chestnut, Wild, of South Africa (Calodéndron capénsé Thunb.: Order Rutáceae). Dutch "Kastanie." Height 20—30 or 70 ft.;
diam. 2—3 or 5 ft., the dimensions in Cape Colony exceeding those in Natal. W 36—44. White, very light, but soft, tough, strong, easily worked. Used for yokes, hoops of waggons, etc.

China-berry, an American name for Melia composita. See Bead-tree.

Chinquapin, in the Eastern United States (Castánea púmila Michx.), in the Western States (Castanópsis chrysophylla A. DC.), small trees allied to the Chestnut, with similar but slightly heavier wood.

Chir (Pinus longifólia Roxb.: Order Coniferae). India. Easily worked, but not durable. Used mainly for fuel, charcoal, tar, and turpentine.

Chittagong-wood, a name applied to several woods imported to Madras, from North-East Bengal, the best of which is Cedrélá Toóna [See Cedar, Moulmein.] Chukráśia tabuláris A. Juss. (Order Meliáceae), otherwise known as “Cedar, Bastard Cedar” or “Deodar,” Bengal. “Chikrassi,” Sinh. “Hulanhik,” Tamil “Kal-othhi,” is also so-called. Height 80 ft.; diam. 2—3 ft. W 24—45. Yellowish-brown to reddish-brown, with a splendid satiny lustre, fragrant, hard, seasoning and working well, but warping and cracking in very hot dry weather. Used for furniture and carving.

Coach-wood (Ceratopétalum apétalum D. Don.: Order Saxifrágaceae). “Light-wood” or “Leather-jacket.” New South Wales. Height 50—70 or 100 ft.; diam. 1½—2 or 3 ft. W 42. Soft, light, close-grained, exceedingly tough, with the fragrance of coumarin. Used for coach-building, tool-handles, cabinet-work, boat-building, etc., and suggested for sounding-boards and stethoscopes. The name is also applied to Schizoméria ovítá D. Don., an allied reddish wood of inferior character, known also as “Corkwood, Beech,” or “White Cherry.”

Cocus (Brya Ébenus). See Ebony, American.

high polish, handsome, and durable. Used for fencing, building, and cabinet-work.

Compass (*Koompissia malacénsis* Maingay : Order *Leguminósae*). Borneo. W 58. Red, heavy, tough, strong, coarse-grained, but liable to termite-attack and not durable.

Cooper’s wood (*Alphitonia excélsa*). See Ash, Mountain.

Cork-wood in Australia (i) (*Duboisia myoporóides* R.Br.: Order *Solánáceae*). Also known as "Elm." New South Wales and Queensland. Height 15—30 ft.; diam. 1—2 ft. W 30—30·75. White or yellowish, very soft, close-grained, and firm. Used for carving. Named from its bark resembling that of Cork Oak. The name is applied (ii) to *Schizoméria ovála* [See Coachwood], and (iii) to *Weinmännia rubifólia* F. v. M. [See Marrara.]

Cork-tree, Indian (*Millingtonia horténsis* L. fil.: Order *Big-noniáceae*). Yellow-white, soft, taking an excellent polish. Used for furniture.

Cornel and Cornelian-wood. See Dogwood.

Coromandel-wood. See Calamander.

Cotton-wood. See Poplar and Dogwood, in Tasmania.

Courbaril. See Locust.

Cowdie-pine. See Kauri.

Crab-wood (*Cárapa guíanénsis* Aubl.: Order *Méliáceae*). Guiana, Trinidad, etc. "Caraba, Carapo, Andiroba." Height 60—120 ft. upward ; diam. 1—3 ft. S.G. 894—349. W 39·25—46·25. fc 3·29. fs 4·33. R 80 kilos. Reddish-brown, moderately heavy and hard, straight-grained, resembling inferior Mahogany, but affected by shakes and splitting in seasoning, taking a good polish, little
attacked by insects. Used for furniture, internal fittings, masts, spars, staves, and shingles. *Carípa prócea* DC. (=*C. guineénis* Sweet, *C. guyanénis* Oliver), the “Touloucouna” or “Tallicoma” of Senegambia, is a very similar wood, as also is *C. grandifloru* Sprague, of Uganda.

Crow’s Ash. See Flindosa.

Crow’s-foot Elm. See Silver-tree.

Cuamara. See Tonka-bean.

Cucumber-tree (*Magnólia acuminátu* L.: Order *Magnoliáceae*). “Mountain Magnolia.” Eastern United States. Height up to 100 ft.; diam. 4 ft. S.G. 409. W 29·23. R 671 kilos. Sapwood broad, white; heart yellowish-brown, soft, light, close-grained, moderately compact and durable, taking a satiny polish. Closely resembling and often confounded with Tulip-wood (*Liriodendron tulípífera*), though generally distinguishable by its wider sapwood, this wood is used for turnery, wainscot, packing-cases, and cheap furniture. [See also Papaw.]

Cudgerie. See Flindosa.

Curupay (*Piptadéniá cebíl* Grisebach (?) : Order *Leguminósae*). Bolivia. Height 65 ft.; diam. 3 ft. S.G. 1·14. reddish, very heavy, hard, coarse-grained, durable when submerged, and therefore valuable for bridge-construction or ship-building. It is an admirable wood for the spokes of heavy motor-waggons. Another less valuable wood, yellowish-brown, with dark purple streaks, comes to England under the same name.

Cypress (*Cupréssus semprevíres* L.: Order *Cupressíneae*). Mediterraneaean region, Asia Minor, and Persia. Height up to 100 ft.; diam. sometimes 7 ft. S.G. 620—570. reddish, fragrant, moderately hard, very fine- and close-grained, and virtually indestructible. Used by the ancient Egyptians for mummy-cases; for the coffins of the Popes; in Assyria and in Crete for shipbuilding; for the gates of Constantinople destroyed by the Turks in 1453, eleven hundred years after their construction; and for the doors of St. Peter’s, which were quite sound when replaced, about the same time and after a similar duration, by brass. Perhaps the Tirzah of Isaiah xlv. 14, 15. Used, according to Evelyn, for harps and organ-pipes, and also for vine-props; but now seldom employed.

Cypress, Bald, Black, Deciduous, Red, Swamp or White (*Taxódium distichum* Richard : Order *Taxodiáceae*) Swamps of the Southern
United States. Height 80—100 or more ft.; diam. 6—8 or 13 ft., but tapering. Wood lighter and less resinous on low ground, and then termed “White Cypress,” reddening on exposure, soft, straight- and fine-grained, not strong, but very durable in contact with the soil. Formerly used in Louisiana for canoes, water-pipes, and house-frames, and now for sleepers, fencing, and, on a large scale, for shingles. So nearly identical with Redwood (Sequoia) as to be often so-called.

Cypress, Himalayan or Indian (*Cupressus torulosa* D. Don.), a light-brown, fragrant, moderately hard wood, used for building, etc.

Cypress, Japanese. See Hi-no-ki.

Cypress, Red. See Cedar, Canoe and Cypress, Bald.

Cypress-pine, the general name for the species of *Frenêla* (Order *Cupressíneæ*), in Northern and Eastern Australia, especially the varieties of *F. robûsta* A. Cunn. (*=Callitris robûsta* R. Br.), “Black, Common, Dark, Lachlan, Murray, Murrumbidgee” or “White Pine, Camphor-wood.” *Aborig.* “Marung.” Height 60—70 ft.; diam. 1½—2 ft. Light to dark brown, often with pinkish longitudinal streaks and beautifully figured, with a camphor-like fragrance, straight-grained, but very full of knots, easily worked, shrinking and warping but little, and taking a good polish, largely teredo- and termite-proof. Much used for piles, building, and furniture. *Frenêla robûsta,* var. *microcárpa* A. Cunn., the “Coorung-coorung” of the aborigines, is a similar and valuable wood, but dark-coloured and somewhat brittle, used for telegraph-poles. *F. robûsta,* var. *verrucósa* A. Cunn., sometimes known also as “Rock Pine,” “Desert Cypress,” or “Sandarae Pine,” is also dark. S.G. 691. W 43—44·5. It is used for telegraph-poles and cabinet-making, its camphoraceous smell being said to be obnoxious to insects. *Frenêla Endlicheri* Parlat., known as “Black, Red, Scrub” or “Murray Pine,” a rich brown, beautifully mottled with darker brown, presenting a superb figuring, fragrant, fine-grained, susceptible of a high polish and durable, is a valuable wood, used for internal work and for piles, sleepers, etc. *Frenêla rhomboïdea* Endl., known also as “Light” or “Illawarra Mountain Pine,” or, in Tasmania, as “Oyster Bay Pine,” is close-grained, strong, easily worked, takes a good polish and is durable, but smaller than the varieties just mentioned. W 39·25. It is used for similar purposes.

Cypress-pine, Mountain (*Frenêla Parlatórei* F. v. M.), also known as “Stringybark Pine.” Height 40—60 ft.; diam. 1—2 ft. Light straw-colour, fragrant, close-grained, soft, easily worked. Much used for joinery.

Dagame (*Calycophyllum candidissimum* DC.: Order *Rubíaceæ*). Cuba. Known also as “Degame” or “Degame Lance-
wood.” W 49. Yellow, moderately heavy and hard, very fine and close-grained. Used as Lancewood.

Daminiya (Grewia tiliaefolia Vahl : Order Tiliaceae). Ceylon and Southern India. Dark, Walnut-like, elastic, strong and tough. Used for masts, oars, and shafts.

Date, Kafir, or Plum (Harpephyllum Caferum Bernh.). Cape Colony. W 45-7. f 5-86. fc 2-94. Dull red mahogany-like, easily worked, and suitable for carpentry and cabinet-work.

Deal, a term properly describing soft (coniferous) wood sawn in thicknesses of 2—4 in., but often used with prefixes as to colour or country of origin. Thus Dantzig, Red or Yellow Deals are derived from the Northern Pine \((Pinus sylvestris \text{ L.}) \) [See Pine, Northern], White Deals from the Spruce \((Picea excelsa) \), Canadian and New Brunswick Spruce Deals, mostly from \(Picea nigra \), narrow-ringed trees yielding the “Black,” wide-ringed ones the “White Spruce” of Canadian lumbermen.

Very large quantities of White Deals are now reaching England from Galatz, of greater average length and coarser grain than Baltic White Deal, and competing with Canadian Spruce.

Deodar. See Cedar, Deodar.

Dhaura (Anogeissus latifolia Wall.: Order Combretaceae). India. Height up to 200 ft.; diam. 3 ft. or more. Sapwood wide, grey or yellowish; heart purplish, hard, very strong and tough, but splitting in seasoning and only durable when kept dry. Used for axles, axe-handles, agricultural implements, furniture, etc.

Dilo. See Poon.

Dogo. See Mangrove.

Dogwood, in the United States and Canada (Cornus flórida L. and C. Náttalli Aud.: Order Cornáceae). The former is known commercially as "Cornel" and also as "Boxwood" and as "Cornelian wood," and the latter as "Western Dogwood." W 46—50.

Small, not exceeding 15 in. diam., with white sapwood and reddish-brown heart, heavy, very hard, fine-grained and strong. Used for turnery, wood-engraving, cogs, tool-handles, mallets and shuttles, and formerly for arrows and charcoal. In the manufacture of shuttle-blocks, for which it is largely employed, the blocks are reduced by hydraulic pressure from 2 inches square to 1½ in., a test very few woods can stand without rupture of the fibres.

Dogwood, in Tasmania (Bedjórdia salícína DC.: Order Com-pósíte), the "Cottonwood" of New South Wales. Height 12—30 ft. S.G. 896. Pale brown, often beautifully mottled, hard, close-grained, fetid when cut, brittle and difficult to season. The name is also applied to Pomadérris apétala (Order Rhamnáceae). Height 30 ft.; diam. 12 in. Used for cabinet-work and furnishing burrs for veneers.

Dongon (Sterculiá eymbiformís Blanco). Philippine Islands.

Douglas Fir. See Pine, Oregon.

Durmast. See Oak, Durmast.

Ebony, a name for a very dense, hard, and generally black wood, mentioned by Herodotus and perhaps by Ezekiel, and originally applying to Diospyros Ébenum König (Order Ebeniaceae). Latin “Ebenu.” French “Ébène.” Germ. “Ebenholz.” Sính. “Kaluwara.” Arabic “Abnoos.” Hebrew “Hobnim” (Ezek. xxvii. 15). A large tree, a native of Southern India and Ceylon. S.G. 1,187. W 70—76; the heart 75—80. p 756—1,180. Sapwood dingy grey with black patches, flexible and very liable to insect attack; heart deep black, very heavy, hard, and fine-grained, the rings and pith-rays being scarcely recognizable, capable of a very high polish, but affected by weather, and, therefore, used largely as veneer, selling in England at from £5 to £10 per ton.

Ebony, Acapulco, Cuernavaca or Mexican (Diospyros Ebenáster Retz.). A native of India, cultivated in Mauritius, the Philippines and tropical America, the “Bastard Ebony” of Ceylon.

Ebony, American, Green, Jamaica or West Indian (Brýa Ébenus DC. = Amerímmnon Ébenus Sw.: Order Leguminóseae). “Cocus” or “Cocos” of Jamaica, “Granadillo” of Cuba, “Billy Web” or “Chichipate” of Honduras. A small tree. S.G. 1,206—1,210. W 61.45—87. E 1,178 tons. £ 9-10. £c 4-5. £s 529. R 480 lbs. Heavy, dark greenish-brown to purplish, very fine and even-grained, durable. Used for inlaying flutes, flageolets, etc.

Ebony, Bombay, Ceylon and Siam (Diospyros Ébenum König, Ebenáster Retz., melanóxylon Roxb. and other species). D. melanóxylon Roxb., also known as “Coromandel” or “Godavery Ebony.” Hind. “Tendu.” A large tree. S.G. 978—1,200. W 61—82. R 294 lbs. Sapwood pink; heart black, with beautiful purple streaks, irregular, heavy, very hard, strong. Used for building, shafts, carving, etc.

Ebony, Camagoon (Diospyros pilósánthera Bl.), the “Golongnita” of the Philippine Islands.

Ebony, False, the "Corsican Ebony" of ancient Rome (Cytisus Laburnum L.; Order Leguminosae). French "Faux ebénier." Sapwood broad, yellowish; heart dark-brown with a greenish tinge; rings and pith-rays distinct; vessels in spring-wood large, crowded in groups of six or eight between the rays, those of the later wood in crescentic groups; hard, capable of high polish, but not durable. Used for whip-handles, in turnery, and by the ancients as veneer.

Ebony, Gaboon, Lagos or Old Calabar (Diospyros Dendo Welw.). Tropical West Africa. "N'Dendo." W 72.5. Small, black, sometimes streaked with brown, very hard.

Ebony, German, the wood of Pear or Yew, stained black.

Ebony, Green, in the English timber trade and in the West Indies is Brýa Ébenus [See Ebony, American]; but in Southern India it is Diospyros chloróxylon Roxb. (Telugu "Nella ulímera"), a large tree yielding a hard, useful wood. In Brazil the name is applied to Tecóma leucóxylon Mart. (Order Bignonidcece), also known as "Quirapaiba," a heavy, hard, dark-green, close-grained cabinet-wood yielding logs 14 ft. long and 14—16 in. square. S.G. 1,220—1,211. R 481 kilos.

Ebony, Madagascar, Macassar or Zanzibar (Diospyros mespiliformis Hochst., haplostýlis Boiv. and microrhómbus Hiern.), weighing 49—61 lbs. per cubic foot, and also Acácia glaucóphylla Steud. and the heavier Dalbérgia melanóxylon Guill. and Perr. [See Blackwood, African], all natives of tropical Africa, with black heartwood. Some apparently occur near both the east and west coasts.

Ebony, Manila (Diospyros philippénsis Gürke and D. Ebenásté Retz.).

Ebony, Mauritius (Diospyros tesselária Poir).

Ebony, Purple (Dalbérgia sp.?). Ceylon. W 53.5. Dark purple, streaked with black.

Ebony, Red (Diospyros rúbra Gärtn.). Mauritius.

Ebony, White (Diospyros Malacapai A. DC.). Philippines. [See Tarco.]

Eki (Dipterocarpus sp.?). Lagos. W 72. R 51,154 lbs. Stiffness (taking Oak as 100) 237.7. Worth 7s. per cubic foot for piles or blocks.

Elder (Sambucus nigra L.; Order Caprifoliaceae). Europe, West Asia and North Africa. French “Sureau noir.” Germ. “Schwartzte Holder.” A small tree. W 35.5—64. Pith very large; pith-rays numerous and distinct; vessels more numerous in spring-wood; wood yellowish, hard, firm, difficult to dry, warping. Used in turnery. In Cape Colony the name is applied to Nuxia floribunda Benth. See Vlier.

Elder, Box. See Maple, Ash-leaved.

Elm, a name referring originally and mainly to species of the genus Ulmus (Order Ulmaceae), broad-leaved trees with very large vessels in their spring-wood, and the vessels in the autumn-wood in wavy peripheral lines. French “Orme.” Germ. “Ulm” or “Rüster.” Ital. “Ulmo.” Span. “Olmo.”

Elm, American, Water or White (Ulmus Americana L.). French “Orme parasol.” Alluvial ground in Eastern North America. Height 100 ft. or more; diam. 6—7 ft. S.G. 650—540. W 34—49.5. R 852 kilos. Sapwood yellowish-white; heart light-brown, heavy, strong, tough, compact, but not durable; pores in spring-wood conspicuously large and almost entirely in a single row. Valuable for tool-handles, agricultural implements, wheel-hubs, cooperage, etc., and for fuel.

Elm, Canadian, Cliff, Cork, Hickory, Rock or White (U. racemosa Thomas). French “Orme à grappe.” Germ. “Trauben Ulme, Felsen Ulme.” Canada and Eastern United States. Height 80—150 ft.; diam. 2—3 ft. S.G. 726—765. W 43—47. R 1,066 kilos. c 9,182. c’ 1.213. v’ 1.191. c’ 1.39. p’ 1.14. Sapwood greenish, not durable; pores in spring-wood small, those in summer-wood in fine rather distant lines; heavy, hard, compact, very strong, tough and elastic. Logs 20—40 ft. long and 11—16 in. square, liable to split in drying, and, therefore, preferably kept immersed; very durable under water. A valuable, but very slow-growing timber, making on an average only one inch of diameter in fourteen years. Largely used for the same purposes as the above-mentioned species, and for house- and boat-building, being one of the best timbers for bending, and exported in large quantities, in hewn logs and in the round, to Liverpool and London for coach-building, wheels, piles, boat-building, etc., fetching 3s. 6d. per cubic foot.

Elm, Cork, Common or English (U. campestris Sm.). Germ. “Korkulme, Rote Rüster.” Height 80—90 ft.; diam. 2—3 ft. S.G.
WOODS OF COMMERCE

542—909. W 34—56.7. E 445 tons per sq. in. c' 0.56. p 14,000—
13,489. p' 0.49. f 3.5. ft 6.25. c 5.460. c' 0.721. f c 4.6. v' -7.57.
/f 8.62. Sapwood narrow, yellowish-white, as durable as the heart;
heart dark-brown or brownish-red, heavy, hard, firm, elastic, very
tough, very difficult to split, susceptible of high polish, extremely
durable if kept either dry or wet. The Rialto at Venice is
said to be built on 12,000 elm piles. The wavy lines of pores in
the summer-wood consist of single rows of pores and are inter-
rupted: pith-rays hardly distinguishable: grain twisted. Though
free from shakes, Elm timber is very liable to druxy knot, and,
though not splitting, is difficult to season without twisting. On
the Continent Elm is valued for gun-carriages. In England it
was used formerly for water-pipes and is now employed for coffins,
butchers'-blocks, pulley-blocks, naves of wheels, pumps, ships'
keels, coachbuilding, turnery, etc., though for most purposes
inferior to Oak. Both this and the Scotch Elm are largely used for
chair-making at High Wycombe.

Elm, Crows'-foot. See Silver-tree.

Elm, Dutch or Sand, a large-leaved form, allied to the last-men-
tioned, grown only for ornament, its wood being subject to star-
shake.

Elm, Indian (U. integrifolia Roxb.). Hind. “Papri.” Telugu
tree. Wood light yellowish-grey to red, moderately hard and
strong. Used for door frames, cart-building, and carving.

Elm, Japanese. See Keyaki.

Elm, Moose, Red or Slippery (U. fúlva Michx.). French “Orme
gras.” Southern Canada and North-Eastern United States.
Height 60—70 ft.; diam. 2 ft. S.G. 695. W 43.35. R 869 kilos.
Brownish-red, heavy, hard, strong, compact, tough, more durable
than other Elms; pores in spring wood forming a broad band of
several rows, those in the summer wood in broken, slightly waved,
narrow lines. It is more easily split than other Elms, and is, there-
fore, much used for fence-rails, whilst its toughness and flexibility
when steamed fit it for the ribs of boats.

Elm, Scotch, Wych, or Mountain (U. montána Sm.). Also
known as “Chair-elm” and formerly as “Wych-hazel.” Germ.
“Bergrüster.” Height 80—120 ft.; diam. up to 16 ft. In Britain
most abundant north of the Trent. Wood lighter-coloured, softer,
straighter-grained, and, therefore, more easily split than English
Elm. Pores in the summer wood in complete bands. Used for
the backs of Windsor chairs, shafts, and other purposes to which
Ash is applied, and for boat-building.

Elm, Spanish. See Cypre, Bois de.
Elm, Spreading (U. effusa Willd.). Germ. “Flatterrüster.” Sapwood broad, yellowish; heart light-brown; vessels in spring wood in a single line, those in the summer wood in broad continuous wavy bands; less strong than the other species; but valued on the Continent on account of its markings for turnery, cabinet-work, gun-stocks, etc.

In Australia the name “Elm” is applied to Duboisia myoporoides [See Cork-wood] and to Aphanathe philippinensis Planch. (Order Urticaceae), known also as “Tulip-wood,” a tree introduced in the north-east, 50—90 ft. high and 1—1 ½ ft. in diam., yielding a light-coloured, close-grained wood, used for internal work in building.

Els, Klip or Rock Ash (Rhus Thunbégii Hook.: Order Anacardiaceae). Cape Colony. Hard, heavy, close-grained, and tough. Suitable for musical instruments or carving.

Els, Rood. See Cedar, Red.

Eng (Dipterocarpus tuberculatus Roxb.: Order Dipterocarpaceae). Burma. Burm. “Eng.” A large tree, 60 ft. in height and 3 ft. in diam. W 55. Reddish, hard. Used for house-posts, canoes, and planking. Other species, such as D. grandiflora Wall. and D. alatus Roxb. [See Gurjun], are confused under the same name.

Engyin (Shorea siamensis Miq.: Order Dipterocarpaceae). Burma and Siam. Perhaps the same name as the preceding. A large tree, resembling the allied Sal. W 54—55. Heart very hard, very heavy and cross-grained; pith-rays finer than in Sal. Used in house-building, and for bows, etc.

Epel of Borneo may be “Ypil” of the Philippines, “Yepi, Apa” or “Epe” in Telugu, Afzelia bijuga A. Gray [See Shoondul], Bauhinia diphylla Buch. or Hardwickia binata Roxb. [See Anjan.]

Essen-boom. See Ash, Cape.

Fiddle-wood (Citharéxylum melanocárdium Sw., cinéreum L., surréctum Griseb., and quadranguláré Jacq.: Order Verbenaceae). West Indies. French “Bois fidèle, Bois de cotelet.” Used for posts, shingles, etc.
Fig, the general name for the genus *Ficus*, few species of which yield timber of any value. That of *Ficus indica L.* (Order *Arto-carpaceae*) is used in Ceylon for common furniture; but it, and that of other species, being soft and spongy, is readily charged with oil and emery for knifeboards or polishing purposes.

Fig, Blue. See Caloon.

Fig, Leichhardt’s Clustered (*Ficus glomeratâ* Willd.). India, Burma, Northern Australia. *Aborig.* “Parpa.” *Hind.* “Kith Gúlar.” Height 40—60 ft.; diam. 1—3 ft. W 25—36. Greyish or straw-colour, coarse but straight-grained, light, soft, porous, moderately strong, not durable, except under water. Used for well-frames in India, and for furniture in Ceylon, and suggested for packing-cases.

Fig, Illawarra, Port Jackson or Rusty (*F. rubiginósa* Desf.). *Aborig.* “Dthaanam.” Eastern Australia. Height 60—80 ft.; diam. 4—5 ft. W 28.5. Light, soft, brittle, spongy. Sometimes used for packing-cases.

Fig, Large-leaved or Moreton Bay (*F. macrophylâ* Desf.). North-Eastern Australia. Height 50—100 ft.; diam. 3—6 ft. W 34. Pale-brown, with a beautiful wavy figure on a darker brown, but difficult to season, soft and not durable, so only occasionally used for packing-cases.

Fig, Prickly. See Ash, Blueberry.

Fir, a name very loosely used both in commerce and in botany, mostly for coniferous trees. Thus Dantzic, Eliasberg, Memel, Norway, Red, Riga, Saldowitz, Scots, Stettin, Swedish and Yellow Fir are all *Pinus sylvestris* [See Pine, Northern], named mainly from the port of shipment, Douglas or Oregon Fir is *Pseudotsúga Douglâsii* [See Pine, Oregon], and White Fir (“Baltic White”) is *Pícea excélsa* [See Spruce, Norway]. The name is preferably restricted to the genus *Abies*, conifers distinguished by their flat leaves with two lateral resin-canals, and by their erect cones which fall to pieces when the seed is ripe. Their wood is generally without resin-ducts, coarse-grained, soft, and perishable.

Fir, Balsam or American Silver (*Abies balsâmea* Miller). Wet ground in Eastern North America. Known also as “Balm-of-Gilead Fir.” French “Sapin baumier.” Germ. “Balsam-Tanne.” Height 30—60 or 80 ft.; diam. 2 ft. S.G. 382. W 23.8. R 515 kilos. Yellowish, very light, soft, coarse-grained, not strong or durable. Sometimes used for staves for fish-barrels. The most valuable product of this species is Canada balsam, a resin collected in Quebec. The names “Balsam Fir” and “Black Balsam” are sometimes applied to *A. côncolor* [See Fir, White].

1 Among Anglo-Indians species of *Casuarina* are known as “Fir.” See Oak, Swamp.]
Fir, Red (A. nóbilis Lindl.). Western United States. “Larch-fir.” “Noble Fir.” Germ. “Edel Weisstanne. Height 100—200 ft. or more; diam. 4—5 ft. or 9 ft. Light-brown, streaked with red, light, hard, strong, durable when seasoned. Used for internal work. The name is also applied to A. magnífica Murray, Germ. “Prächtige Weisstanne,” a loftier species of the same region, with inferior timber, used for rough work or fuel.

Fir, Scots. See Pine, Northern.

Fir, Silver (A. pectináta DC. = A. álba Miller). Mountains of Central and Southern Europe. “Swiss Pine.” French “Sapin de Vosges, Sapin de Lorraine.” Germ. “Tanne, Edeltanne, Weisstanne, Silbertanne.” Height 100—180 ft.; diam. 6—8 ft. Yellowish or pinkish-white without distinct heart, and with few or no resin-canals, with regular circular, well-defined rings, owing to the darker autumn wood, light, soft, porous, silky in lustre. strong, elastic, easily worked, not durable, taking glue well. Used by the ancient Romans for masts and ship-building. (Virgil, Georgics ii., 68, Pliny, Nat. Hist., xvi.), and still so employed. Much used in toy-making, for carving, and for packing-cases, which are largely exported from Switzerland and the Tyrol. Used also, where it grows, for fence-posts, internal work, sluices, joists, planks, general carpentry, paper-pulp, and charcoal; but inferior to Spruce.

Fir, Great or Tall Silver (A. grándis Lindl.). North-Western United States and British Columbia. “White Fir of Oregon” or “Western White Fir.” Germ. “Grosse Küstentanne.” Height 250—300 ft.; diam. 3—5 ft. or more. W 22—29. Light, soft, easily worked, not strong or durable. Used for indoor carpentry, packing-cases, cooperage, etc., and forming, with Oregon Pine, the chief lumber exported from the Pacific ports.

Fir, Indian Silver (A. Webbiána Lindl.). Himalayas. Height 120—150 ft.; diam. 3—5 ft. Whitish, scentless, non-resinous, open-grained, soft, easily worked, but not durable, if exposed. Used locally for shingles and building.

Fir, Western or Lovely Silver (A. amábilis Forbes). North-Western United States and British Columbia. “White Fir.” Height 150—200 ft.; diam. 3—4 ft. Light, hard, but not strong.

WOODS OF COMMERCE

60—70 ft.; diam. 2 ft. Nicely marked, close-grained, hard, susceptible of a good polish, durable. Used for staves and veneers.

Flindosa (*Flindérsia australis* R. Br.; Order *Meliáceæ*). North-Eastern Australia. "Crow’s" or "Mountain Ash," or "Beech." *Aborig.* "Cudgerie." Height 80—100 ft.; diam. 2—4 ft. S.G. 936. W 44·8—77·8. E 960 tons. £ 7·03. £c 4·54. £s 62. Resembling Oak, with slight or no figure, very hard, close and strong, difficult to saw, but shrinking little in drying, very durable, not discoloured by iron. Used for staves and as a substitute for Beech, and suitable for railway construction and shafts.

Flintamentosa or Wyagerie, the product of a larger tree, reaching 150 ft. in height and 6 ft. in diam. in Northern New South Wales; may be the same or some other species of *Flindérsia*. It is used in house-building.

Galaba or Galba. See Santa Maria.

Gangaw. See Ironwood, xix.

Gidya. See Myall ii.

Granadillo (*Amyris balsamífera* L.: Order *Burseráceæ*). West Indies. Known also as "Rosewood," "Mountain Torchwood," "Lignum Rhodium," or "Funera." W 74—60. E 986—565. tons. £ 6·7—4·7. £c 4—5·7. £s 35—43. Red, handsomely figured, aromatic, resinous, hard. Used for building and furniture, and exported. In Cuba the name is applied to *Brya Ébenus*. [See *Ebony, American*.]

Greenheart (*Nectandrá Rodioei* Schomb.: Order *Lauráceæ*). North-Eastern South America and the West Indies. *Aborig.*
“Bibiru,” “Sipiri.” A large tree 60—100 ft. high, yielding timber 42—70 ft. long and 1—2 ft. square. S.G. 1.079—1.210. W 58—76.5. E 1,286 tons. c' .97. p' 1.65. f 8.97. c 8,820. c' 1.165. fc 5.17. v' 2.0. fs .435. Dark-greenish or chestnut, often nearly black in the centre, fine, even, and straight-grained, the rings indistinguishable, very heavy, hard, tough, strong, elastic, and durable, the heartwood being teredo-proof, though the similar sapwood is not so. This very valuable timber is liable to heart-shake. It is largely used for piles, bridge-building and the keel-sons, beams, and planks in ships, being classed in the second-line in Lloyd’s Register, for carriage-shafts, fishing-rods, etc. All the dock-gates, piers, and jetties of the Liverpool Docks are of this wood. It is imported in hewn logs, up to 60 ft. in length, fetching 3s. 6d. per cubic foot at Liverpool. These logs have tapered or “snape” ends to facilitate their being drawn out of the forest. These “ends,” from 2 to 5 feet long, are cut off in conversion, and are useful for many purposes, such as motor-waggon spokes, belaying-pins, tobacco-peggs, etc., fetching 25s. to 50s. per ton.

Grignon (Búcidá angustifólia DC.: Order Combretáceae). Guiana. Known in Surinam as “Wane.” S.G. 714. Very large, straight-growing, pale red, rather less hard than Oak, even and straight in grain. Used for masts and for furniture.

Grignon fou (Quílea carúlea Aubl.: Order Vochysiáceae). Guiana. Known also as “Couaié.” S.G. 800. Large, reddish, soft, straight-grained, very common, but of inferior quality to the preceding. Used for masts.

Gru-gru (Astrocáryum sp. and Acrocómia sclérocarpa Mart.: Order Palmáceae). Trinidad. Height 20—30 ft.; diam. 1 ft. The outer part of the stem of these palms is hard, heavy, susceptible of a fine polish, and durable. Used for walking-sticks.

Guarabu (Termináliá acuminúta Allem.: Order Combretáceae, or Peltogíné macrólobíum Allem., or P. confertifóra Benth.: Order Leguminósáe). Brazil. “Pao roxo.” A large tree, yielding straight, dark-purple, fine-grained wood, with numerous pores filled with a hard white substance. Used in ship-building.

Guayacan, the native name of various species of Guaiácum in Central and South America [See Lignum-Vítae], is applied in Venezuela to Tecóma Guíyacan Seem. (Order Bignoníáceae), S.G. 1.3, and in Argentina to Césalpinía melanócarpa Griseb. (Order Leguminósáe), a rich, dark-brown colour, very heavy and dense in grain, said to be the hardest wood in the country, resisting moisture
well. It yields timber 18 ft. long and a foot square, and is used for
door-frames, wheel-hubs, etc.

Guijo. See Sai.

Gum, a name referring mainly to the many and valuable Aus-
tralian and Tasmanian species of the Myrtaceous genus *Eucalyptus,*
the identification and synonymy of many of which is much in-
volved.

Gum, Apple-scented (*Eucalyptus Stuartiana* F. v. M.). Eastern
Australasia. Frequently called "Turpentine" or "Peppermint-
tree"; in Tasmania "Red Gum"; in Victoria also "Mountain Ash" or "Apple-tree"; in New South Wales "Woolly Butt"; in
Queensland "Box" or "Tea-tree." Introduced in the Punjab.
Height 40—90 ft.; diam. 2—4 ft. S.G. 834—1,050. W 66 Light
red-brown, wavy, hard, difficult to split, with gum-veins, weak, but
said to be durable underground, polishing well. Used for ships'
planks, sleepers, fence-posts, and rough furniture.

"Rough Stringybark." Large, light-grey, very tough, suitable
for tool-handles.

Gum, Bally. See Bally Gum.

Gum, Bastard. See Gum, Cider.

Gum, Black, in North America (*Nyssa uniflora* Wangenh. =
N. tomentosa Michx.). See Tupelo.

Gum, Black, in South-East Australia (*Eucalyptus stellulata* Sieb.),
known also as "White, Green," or "Lead Gum," "Sally," and
"Box," from 12—50 ft. high and 1 1/2—3 ft. in diam., but used only
as fuel.

Gum, Blue (*E. globulus* Labill.). South-Eastern Australasia.
Introduced into India, South Africa, California, and Southern
Europe as a supposed preventive of malaria. Height 200—
350 ft.; diam. 6—25 ft. S.G. 698—1,108. W 43—75. c' 1.75. p' 88. c 6,048. c' 798. v' 915. Pale straw-colour,
hard, heavy, moderately strong, tough, elastic, with curled and
twisted grain, planing well, durable, partially immune from Teredo;
pith-rays very numerous, fine; pores moderate-sized, round, grouped
or in lines. Used for fence-rails, telegraph-poles, bridge-building,
piles, shipbuilding, felloes, shafts, spokes, and implements; exten-
sively for carriage-buildings, and formerly for sleepers, for which
E. rostrata is now preferred; and classed in the third-line of Lloyd’s
Register for ship-building. The whalers of Hobart Town were
built of this wood, the most durable of Tasmanian hardwoods. It
is preferred to Jarrah or Karri for the piles driven in advance of
the shield in tunnelling. For Dover Harbour piles 70—100 ft. long and 18 or 20 in. square have been employed. Being hardy and quick-growing in any soil, in districts free from frost, this species has been largely planted in many parts of the world—as, for instance, in South Africa—for firewood and for mine-timbers.

Gum, Blue (E. _saligna_ Sm.). In New South Wales known also as "Flooded, Grey, White," or "Silky Gum," or "Grey Box." Height 40—120 ft.; diam. 2—7 ft. S.G. 1.023. W 63—74. Warm red-brown, wavy, very heavy, close- and cross-grained, easily worked, difficult to season, strong and durable, but liable to shakes. Excellent for sleepers, fencing, ships’ planks, spars, paving, and building.

Gum, Blue, in Queensland (E. _tereticornis_). See _Gum, Mountain_.

Gum, Bastard Blue and _Scribbly Blue_ are names of _E. leucóxylon_. See _Ironbark_.

Gum, Brown. See _Mahogany, Swamp_.

Gum, Cider (E. _Gunnii_ Hook. fil.). Tasmania and South-Eastern Australia, being known in the latter district as "Sugar, White, Swamp, Yellow," or "Bastard Gum." Height 30 or exceptionally 250 ft. S.G. 0.700—1.021. W 44. Light reddish-brown, hard, tough, with a few gum-veins, often crooked. Chiefly valuable for charcoal and for its sap.

Gum, Creek (E. _rostráta_). See _Gum, Red_.

Gum, Drooping (E. _viminális_ [See: _Gum, Manna_] or _E. paucíflóra_ [See _Gum, Mountain White_]).

Gum, Flooded, a name applied to _E. Gunnii_ [See _Gum, Cider, E. paucíflóra_ [See _Gum, Mountain White_, _E. rostráta_ [See _Gum, Red_], _E. saligna_ [See _Gum, Blue_], _E. tereticornís_ [See _Gum, Mountain_].

Gum, Giant (E. _amygdalína_). See _Ash, Mountain_.

Gum, Gimlet (E. _salábris_ F. v. M.). West Australia. Known also as "Fluted Gum." Height 120 or 150 ft. W 65—68. Dark neutral brown, with warmer-coloured bands, tough, but easily

12—2
worked. Used for shafts, implements, rough engraving, and
furniture.

Gum, Green (E. *stellulata*). See Gum, Black.

Gum, Grey, a name applied to *E. crébra* [See *Ircnbark, Grey*], *E. goniocályx* [See *Box, Bastard*], *E. largiflórens* [See Gum, Slaty], *E. punctátá* [See *Leatherjacket*], *E. resinífera* [See Mahogany], *E. salíngua* [See Gum, Blue], *E. tereticórnis* [See Gum, Mountain], and *E. viminalís* [See Gum, Manna].

Gum, Lead (E. *stellulata*, Sieb.). See Gum, Black.

Gum, Manna (E. *viminalís* Labill.). South-Eastern Australasia. Known as "White" or "Swamp Gum" in Tasmania, as "Grey, Blue, Ribbony, Drooping," or "Weeping Gum," or as "Woolly Butt" in New South Wales, and as "Box" or "Peppermint Gum" in Victoria. Height up to 320 ft.; diam. up to 17 ft. S.G. 685—1,003. W 44—67·5. Buff to dull brick-colour or warm-brown, moderately heavy, straight coarse-grained, full of gum-veins, weak, easily worked, requiring careful seasoning, only durable underground. Used for palings, shingles, flooring, and building material. The name is also applied to *E. amygdalina*. [See Ash, Mountain].

Gum, Morrell (*E. longícórnis* F. v. M.). West Australia. W 56—73. Carmine-red, heavy, very hard, fine-grained, planing easily, durable. Used for rafters and wheelwrights’ work.

Gum, Mountain (*E. tereticórnis* Sm.). Eastern Australia. Known also as "Red, Flooded, Grey, Blue," or "Slaty Gum" and "Bastard Box." *Aborig. "Mungurra."* Height 40—150 ft.; diam. 1½—4 or 6 ft. S.G. 843. W 52·5. Red-brown, resembling Cedar, with cross, curly grain, lustrous, heavy, very hard, tough, with some gum-veins, easy to dress, but difficult to season, very durable. Largely used for fencing, naves, felloes, sleepers, telegraph-poles, building, paving, fuel, etc.

Gum, Mountain White (*E. paucifórá* Sieb.). South-Eastern
Australasia. Known in Tasmania as "Weeping Gum," and in
Australia as "White, Swamp, Drooping," or "Flooded Gum,
"Peppermint" or "Mountain Ash." Height 100 ft.; diam. 2—4 ft.
White or buff, soft, straight but short-grained, full of gum-veins.
Used for fencing, and excellent for fuel.

Gum Nankeen (*E. populífolia* Hook.). North-East Australia. Also known as "White Gum, White, Red, Poplar," or "Bembil Box." Height 50—60 ft.; diam. 2 ft. Grey or light brown, hard, heavy, close-grained, very tough, strong, hard to work, but susceptible of a fine polish, liable to gum-veins and often unsound, durable. Used for sleepers, posts, and building.
Gum, Peppermint. See Gum, Manna.

Gum, Red, a name applied in Australia to Angóphora lanceolátu [See Apple-tree], Eucalýptus amygdalína [See Ash, Mountain], E. Gánnii [See Gum, Cider], E. melliódóra [See Box, Yellow], E. punctató [See Leather-jacket], E. resínífera [See Mahogany, Forest], E. tereticórnis [See Gum, Mountain], and especially to (i) E. rostrátà and (ii) E. calophyílla. (i) E. rostrátà Schlecht. Eastern Australia. Known also as “Creek, River, Forest, Flooded, Blue, White, or Murray Red Gum,” or “Yellow-jacket.” Aborig. “Yarrah,” not to be confounded with Jarrah, though little inferior to it. Height 30—80 or 100 ft.; diam. 1—6 or 8 ft. S.G. 790—1,045. W 53.5—65. Dark red, with a pretty curly figure, moderately heavy, exceedingly hard when dry, and therefore most difficult to work, liable to twists and shakes in seasoning, but can take a fine polish, very durable, termite- and teredo-proof. Highly valued for ships’ beams, sleepers, piles, bridges, posts, building, fencing, and charcoal; but, owing to its hardness, only slightly for furniture. This is the chief wood used for paving in Melbourne, costing about £9 per 1,000 blocks, or 14s. per 100 feet super. (ii) E. calophyílla R. Br. of South-West Australia, reaching a height of 150 ft., and 3 ft. diam.; yields a yellowish-red, tough, but not durable wood, with many gum-veins. W 47—72. Used for wheels, handles, and building.

Gum, Red, in Tasmania (E. Stuartiana). See Gum, Apple-scented.

Gum, Red, in the United States, a trade name for Liquidámbar styrácíflua. See Gum, Sweet.

Gum, Rusty. See Apple-tree.

Gum, Salmon (E. salmonophloía F. v. M.). West Australia. W 60—79. Salmon-colour to dark red, fine-grained, exceedingly hard and tough, difficult to split or plane, but readily sawn, durable. Used for piles, mine-timbers, and wheelwrights’ work.

Gum, Scribbly (Eucalýptus hæmístoma Sm.). Queensland and New South Wales. Known also as “Gum-top Stringybark” of Tasmania, and as “Spotted, White,” or “Blue Gum,” “Black-butt,” “Mountain Ash,” etc. Height, 60—120 ft.; diam. 2—3 ft. S.G. 1,101. W 68.75. Grey or reddish, wavy or stripy, often crooked, close, smooth, short-grained, brittle, easily worked, not durable. Used for coach-building, flooring, and fuel.

Gum, Slaty (E. largíflórens F. v. M.). Eastern Australia. Known also as “Cooburn, Black, Yellow, Bastard, or Grey Box,” or as “Ironbark.” Height 100—120 ft.; diam. 2—3 ft. Red, hard, tough, durable, especially underground. Used for fencing, sleepers,
building, cogs, etc. The name is also applied to *E. tereticornis.* [See Gum, Mountain.]

Gum, Sour. See Gum, Black.

Gum, Spotted, a name applied to *Eucalyptus capitellata* [See Stringybark, White], *E. goniocalyx* [See Box, Bastard], *E. haemastoma* [See Gum, Scribbly], and *T. maculata* Hook. This last-mentioned species, native to Eastern Australia, reaches 100—150 ft. in height, and 3—8 ft. in diam. S.G. 1,035—1,170. W 60—67. Light yellow to walnut-brown, sometimes with a wavy figure, heavy, close but very coarse in grain, with large gum-veins, strong, tough, durable. In great demand for paving, girders, bridge, and ship-building, shafts, naves, shingles, etc. It fetches 2s. a cubic foot in London.

Gum, Sugar (*E. corynocalyx* F. v. M.). South Australia. Height 120 ft.; diam. 5—6 ft. Yellowish-white, very heavy, hard, strong and durable, termite- and teredo-proof, not warping. Used for sleepers, piles, planks, fencing, wheels. The name is also applied to *E. Gunnii.* [See Gum, Cider.]

Gum, Swamp. See Gum, Cider, Manna, and Mountain White.

Gum, Sweet (*Liquidambar styraciflua* L.: Order Hamamelidaceae). Eastern United States. "Bilsted" or "Red Gum," "Californian Red Gum" (though shipped from New Orleans). "Saturn Walnut," "Hazel Pine," *French Cypalmar," *Germ. Storaxbaum," *Span. Liquid-ambar." Height 100 ft. or more; diam. 4—5 ft. S.G. 591. W 36.8—59.5. R 651 kilos. Sapwood cream-white; heart irregular, reddish-brown, with dark false rings, rather heavy, close-grained, soft, tough, free from knots, taking a satiny polish, warping and twisting badly in drying, unless first steamed. Used for furniture, veneers, turnery, shingles, and clap-boards, and, though little suited for the purpose, for paving. It is commonly supposed in the timber-trade that "Hazel Pine" is merely a trade name for the sapwood and "Satin Walnut" for the heart, whilst, with equal ingenuity, the wood when offered for paving purposes was dubbed "Californian Red Gum." As a matter of fact, whilst the so-called Satin Walnut is often beautifully marked with the rich dark stripe of the false rings, which makes it a favourite wood for cheap furniture, the so-called Hazel Pine is the same species grown in low-lying, swampy districts where the dark colouring-matter is not developed. The vessels are filled with a hygroscopic gum, which renders the wood very susceptible to changes in the moisture of the atmosphere, and causes it to both twist longitudinally and warp transversely. Satin Walnut is, therefore, only used for cheap bedroom furniture, not being fit for rooms in which fires are lit. The Hazel Pine is largely imported in planed boards,
Hickory, in Australia, is applied to Acacia binerváta [See Wattle, Black], A. doratóxylon [See Spearwood], A. falcatáta [See Myall, Bastard], A. melanóxylon [See Blackwood], Eucalýptus punctátá [See Leatherjacket], E. resinífera [See Mahogany], and Polyósmu Cunninghámi [See Feather-wood].

Hinoki (Cupresús obtúsá Koeh: Order Cupressíceae). Japan. “Japanese Cypress.” Germ. “Feuercyprésse, Sonnen cyprésse.” Height 70—100 ft.; diam. 2½—3 ft. Sapwood yellowish-white; heart rose-red, fragrant, strong, fine-grained, taking a high polish. One of the best of Japanese timbers, held sacred by the followers of the Shinto faith, whose temples are built of it, as also are the palaces of the Mikado. It is also the best for lacquering.

Holly (Ilex Aquiólíum L.: Order Ilicíceae). Central Europe and West Asia. French “Houx.” Germ. “Stechbaum, Hulse, Christdorm.” Height 10—40 or 80 ft.; diam. 1—4 or 5 ft. W 47—60. White to greenish-white, fine-grained, with fine but distinct rings and pith-rays, vessels scarcely visible, approaching ivory in colour and texture more than any other wood, hard, heavy, susceptible of a high polish, but shrinking and warping very much. Used, in the round, for engraving, especially in calico-printing; for staining as imitation Ebony, as in the wooden handles of metal tea-pots; in veneers, especially for white or stained strings in inlaying, as in Tunbridge ware; and also for walking-sticks and tool-handles.

Honey, Locust. See Locust, Honey.

Honeysuckle, a general name in Australasia for species of Bánksia (Order Proteáceae), especially B. margináta and B. serrátá.

B. serráta Linn. fil. Eastern Australasia. S.G. 803. W 39—50. Dark red, mahogany-like, handsome, finely figured, coarse and open-grained, strong, requiring careful seasoning, much bored by beetles. Used for window-frames and boats’-knees, and might be used for furniture. (See Appendix IV.)

Honeysuckle, Silvery. See Beefwood.

Honeysuckle in New Zealand (*Rymdndra excélsa*). See Rewa-rewa.

Honeysuckle-wood in the United States (*Plátanu occidentális*). See Plane.

Hoop Pine. See Pine, Moreton Bay.

Horco Cebil (*Piptadenia communís* Benth.: Order Leguminósæ). Northern Argentina. Yielding timber 15 ft. long and 28 in. square, of a light Mahogany colour, as hard as Box, close and smooth-grained, but not withstand ing moisture. Very useful for beams, cabinet-work, etc.

Horco molló (*Buméliá obtusifólia* Roem. and Schutt.: Order Sapólaceæ). Argentina. Light red-brown, fine and even-grained, easily worked. Useful for building.

Hornbeam (*Carpínus Béatulus* L.: Order Coryláceæ). Central Europe and West Asia. French “Charme.” Germ. “Weissbuche,” “Hainbuche.” Height 40—50, sometimes 70 ft.; diam. 1, rarely reaching 3½ ft. S.G. 1,250—759. W 75-6—45. c 6,405. c' 846. v' 1,087. Yellowish-white, close-grained, heavy, hard, very tough, strong, difficult to split, somewhat lustrous, and very durable if kept dry; pores minute, in radial lines; broad pith-rays lighter than the rest of the wood; annual rings very sinuous, bending outward between the broad pith-rays. Used for handles, mallets, lasts, skittles, etc., unequalled for cogs and bearers for printers’ rollers, and excellent for fuel, and imported in considerable quantities from France. Value 2s. 3d. per cubic foot. We have
seen the similar timber of *C. duinensis* Scop. (= *C. orientalis* Lam.) of South-Eastern Europe labelled “Oriental Beech.”

Hornbeam, American (*Carpinus Caroliniana* Walt.). Eastern North America. Known also as “Blue” or “Water Beech” and “Ironwood.” Height sometimes 50 ft.; diam. 1—2 ft. S.G. 728. W 45-4. R 1,149 kilos. Used to a small extent for handles, mallets, levers, and hoops; but apparently slightly inferior to the European species.

Horse-chestnut (*Aesculus Hippocastanum* L.: Order *Sapindaceae*). Supposed to be a native of Asia; but largely grown for shade throughout Europe and the United States. French “Marronier d’Inde.” Germ. “Roszkastanie.” Height sometimes 80 ft.; diam. 3—4 ft. W 60—29-5. White, or slightly yellowish or reddish, soft, close-grained, warping little, not durable, being deficient in tannin and resin; annual rings wide, circular; pith-rays narrow, numerous, indistinct; vessels small, numerous, uniformly distributed, 1—7 together; pith large, round. Wood similar in character to Willow and Poplar. Used for flooring, cart-linings, barrows, packing-cases, blind-wood in cabinet-making, moulds for castings; and, in France, for sabots. [See Buck-eye, Tochi.]

Huon Pine (*Dacrydium Franklinii* Hook. fil.: Order *Coniferae*). Tasmania. Also known as “Macquarie Pine.” Height 60—80 or 100 ft.; diam. 3—6 ft. W 33. Light yellow, very beautifully marked with dark wavy lines and small knots, light, close-grained, tough, easily worked, susceptible of a good polish, durable, noxious to insects. Used for boat-building, carving, and bedroom furniture, and burns briskly with an aromatic fragrance; but is now quite scarce.

Illupi. See Mahwa.

Ipil. See Epel.

“Muamba-Camba” in Angola. Reaching large dimensions up to 3 ft. square. W 39—49. R 34,951 lbs. Yellowish or brownish, with dark zones, becoming with age a rich dark brown, handsome, moderately hard and strong, straight, coarse and open in grain, and very durable, proof against termites and other xylophagous insects. This wood has probably a great future on the European market, being one of the finest known substitutes for Teak, which it resembles in colour, and, when sawn tangentially, in texture. Though inferior to Burmese Teak, it is superior to Javanese, being worth 6s. per cubic foot. It is at present used in West Africa for railway-sleepers and building purposes. The grain picks out so that it will not polish.

Ironbark, a name applied to various species of *Eucalyptus* (Order Myrtáceae). In Tasmania, *E. Sieberiana* [See Gum, Cabbage]. In Australia, *E. largiflórens* [See Gum, Slaty], *E. macrorrhýnch*a [See Stringy bark], and especially *E. leucóxylon* and *E. sideróphilóia*. *E. leucóxylon* F. v. M. South-Eastern Australia. Known also as “Black” or “Red Ironbark, Black Mountain Ash, White, Bastard,” or “ Scribbly Blue Gum.” Height up to 200 ft.; diam. 2—5 ft. S.G. 1,173—908. W 73·26—63·5. Light brown, yellowish or pale pinkish-white, close- and straight-grained, hard, very strong, tough, and durable, both in water and in the ground, slightly greasy, which renders it suitable for cogs. It is also used for naves and felloes, sleepers, piles, planks, telegraph-poles, fence-posts, axe-handles, beams, rafters, tree-nails, and screws. An allied form, *E. sideróxylon* A. Cunn. in New South Wales, has darker and heavier wood, similarly employed, and furnishing one of the best fuels in the country. *E. sideróphilóia* Benth. New South Wales and South Queensland. Known also as “Red” or “Broad-leaved Ironbark.” *Aborig.* “Tanderoo.” Height 70—100 ft.; diam. 1½—4 ft. S.G. 1,171—936. W 71·5—64. c’ 2·16. p’ 1·74. c 8,377. c’ 1·106. v’ 1·348. Deep red, very hard, heavy, strong, rigid, and difficult to work, plain and straight-grained, liable to heart- and star-shake; pores very minute, filled with a hard, white, brittle secretion. Used for beams, keelsons in ship-building, piles, sleepers, and paving, being one of the strongest and most durable of Australian timbers.

Ironbark, Grey (E. crébra F. v. M.). Eastern Australia. Known also as “White, Red,” or “Narrow-leaved Ironbark,” or “Grey Gum.” Height 70—90 ft.; diam. 1½—3 ft. S.G. 1,119—1,211. Dark purplish or brown, hard, very heavy, tough, cross-grained, hard to work, durable. Used for sleepers, piles, fence-posts, spikes, etc.

Ironbark, White (*E. paniculátá* Smith). Eastern Australia. Known also as “Red, Pale,” or “She Ironbark,” and as “Bloodwood.” Height 70—150 ft.; diam. 3—4 ft. W 71—76. Brown,
heavy, very hard, tough, strong, seasoning and working well, durable. Perhaps the most valuable Ironbark: much used for sleepers and other railway work, fence-posts, beams, etc. [See also Gum, Cabbage.]

Ironwood, a name applied to many widely different timbers in various countries; but to a greater variety in Australia than elsewhere.

(i) *Acacia excelsa* Benth. (Order *Leguminosae*). Queensland. Height 70—80 ft.; diam. 2—3 ft. Violet-scented, ornamental, hard, close-grained, tough, elastic. A cabinet wood.

(ii) *A. stenophylla* A. Cunn. Eastern Australia. Known also as "Dalby Myall." Height 40—60 ft.; diam. 1—2 ft. Dark, beautifully marked, very hard, heavy, close-grained, taking a fine polish.

(iii) *Casuarina equisetifolia* Forst. (Order *Casuarinaceae*). See Oak, Swamp.

(iv) *Melaleuca genistifolia* Sm. (Order *Myrtaceae*). North-Eastern Australia. Known also as "Ridge Myrtle." Height 30—40 ft.; diam. 1½—2 ft. Greyish, close-grained, hard, durable.

(vii) *Ólea paniculata*. See Marblewood.

In Borneo and the Straits Settlements (ix) *Eusideroxylon Zwagérii* is so called. See Billian.

In Burma (x) *Xýlia dolabrifórmis* goes by this name. See Acle.

In Cape Colony (xi-xv) *Ólea laurijolíata* Lam. (Order *Oleaceae*). 60—90 ft. high and 2—3 ft. in diam. *O. undulíata* Jacq., *O. capénsis* L., *O. exasperíta* Jacq., and *O. verrucósa* Link., "Olyvenhout" or "Umguma," all very similar and nearly equal to *Lignum-Vitæ*, are known as "Black Ironwood," W 54-6, used for guides for stamps in gold-crushing; whilst (xvi) *Toddélia lauceolátá* Lam. (Order *Xanthoxylíaceae*) is known as "White Ironwood" [See Umzimbít], and (xvii) *Sideróxylon inérní* L. (Order *Sapotaceae*), which occurs along the east coast of Africa from the Cape to Zanzibar, a very heavy, hard, close-grained, durable, greyish-yellow wood, with brownish-red markings, used in ship- and bridge-building, and for telegraph-poles, is known as "White Ironwood of Mauritius," and also as "Soft" or "White Milkwood" in South Africa. *Copai-fera Mopáíné* Kirk, which occurs from Guinea to Mozambique, is (xviii) also known as "Ironwood." [See Mópane.]

In Ceylon and India the name "Ironwood" is applied to (xix)
Méusa fírrea L. (Order Guttiferae), also known as “Indian Rose-chestnut.” **Hind.** “Nagesar.” **Assam.** “Nahor.” **Andaman and Burm.** “Gangaw.” Height 20 ft. or more; diam. 1—2 ft. W 69—77. Dark red, extremely hard and difficult to work, taking a high polish, strong, durable. Used for gun-stocks, handles, wood-paving, and building, and suitable for furniture. “Black Ironwood” is here (xx) Condália fírrea Griseb. (Order Rhamnáceae). S.G. 1,300. W 85.

The Ironwood of China and Japan, used for rudders and anchors, is believed to be (xxi) Metrosidéros véri Rumph. (Order Myrtáceae), occurring in the Malay Archipelago, and known in Amboyna as “Nani”: that of Guiana and Honduras is (xxii) Lapláccea Hámat-óxylon Camb. (Order Caméliáceae), also known as “Bloodwood,” and used for cogs; whilst in Jamaica (xxiii) Slovánea jamai-cénásis Hook. (Order Tiliáceae), known also as “Break-axe,” and (xxiv) Erythróxylon arcolátum L., also known as “Redwood,” are also so named. The latter has a light reddish-brown sapwood and dark heart, with some figure. It is durable in water, and is used for mill-frames and cogs.

Ironwood, Morocco (xxv). See Argan.

In Natal, besides the White Ironwood [See Umzimbít], there is (xxvi) Ólíea laurífolía Lam., known as “Black Ironwood,” Zulu “Tambóti.” Height 40—70 ft.; diam. 2—3 ft. W 64-68—73-5. E 896 tons. f 7.64. fc 4.79. Brown with dark streaks, resembling Olive, and suitable for turnery.

In New Zealand the name is applied to (xxviii—xxix) Metrosidéros robústa and M. lúcida A. Rich. [See Rata] and to M. tomentósa A. Cunn., Maori “Pohutakawa.” This last yields timber 10—20 ft. long, and 9—16 in. square, with S.G. 1,200—858, dark red or walnut-brown, very heavy, hard, close-grained, strong and durable, suitable for ship-building.

In the United States (xxx) Carpinus caroliníána is sometimes called Ironwood [See Hornbeam, American]; but in New Mexico the name is applied to (xxxi) Olénéya Tesóla, A. Gray (Order Leguminósae). In Persia (xxxii) Párrótía pércíca (Order Hamamelidáceae); and in the island of Réunion (xxxiii) Stadmiánna sideróxylon DC. (Order Sapindáceae) is so called.

Irosun or **Osun**, the native name of several West African woods. [See Camwood and Rosewood, African.]

Ivory Wood (Siphónodón austrálé Benth.: Order Celastráceae). North-East Australia. Not plentiful, tall, straight, diam. 1 ft., white, very close-grained, firm, easily worked. Used for spools and turnery, but suitable for engraving.

Jacaranda, the Brazilian name for various species of Dalbérñia and Machánderium (Order Leguminósae), known in English commerce
as Rosewood, including *Jacaranda cabiuna* (*Dalbergia nigra* Allem.), *Jacaranda roxa* (*Machecarium firmum* Benth.), and *Jacasanda preto* (*M. legálté* Benth.). See Rosewood.

Jack (*Artocárpus integrifólia* L.: Order *Moráceae*). India. Beng. “Kanthal.” Sinh. “Kos.” Brazil. “Jaqueira.” Sometimes known as “Orangewood.” Height 80—100 ft.; diam. 2—5 ft. S.G. 554—676. W 35·6—45. Yellow or orange, darkening on exposure to a dull red or mahogany colour, somewhat coarse and crooked in grain, moderately hard, requiring thorough seasoning to check warping, taking a good polish; but brittle when dry and not tolerant of alternations or dryness and damp. Used as a yellow dye, for house- and boat-building, furniture, musical instruments, grain-measures, and in England for cabinet-work, marquetry, turning, and the backs of brushes.

Jack, Jungle. See Angelly.

Jack, Long (*Flindérsia Oxleyána* F. v. M.: Order *Meliáceae*). North-Eastern Australia. Known also as “Light Yellow Wood.” Height 80—100 ft.; diam. 2—3½ ft. Yellow, often pretty, light, fine-grained, strong, durable, almost tremite-proof. Used for hand-screws and buggy-shafts, in boat-building and cabinet-work as a substitute for Cedar and often coming to market as “Beech”—i.e., *Gmelina Leichhárdtii* [See Beech]; but not so valuable.

Jam-wood. See Myall (iii).

Jarrah (*Eucalyptus marginíta* Sm.: Order *Myrráceae*). South-Western Australia. Sometimes known as “Mahogany” or “Bastard Mahogany,” a name which has led to ruinous customs-tariffs. Height 90—150 ft.; diam. 3—5 or sometimes 10 ft. S.G. 837—1,120. W 48—76. E 620 tons. e' .66. p 2,113—10,000. p' .85. j 413. ft 7·20—4·6. f.c 3·04. c 2,940. c' .388. v' .937. Straight-grown, and, even when unsound in the centre, yielding timber 20—40 ft. long and 1—2 ft. square, red, mahogany-like in colour, sometimes exhibiting a ray of light across the grain and a beautiful mottling, and sometimes curled in grain, very heavy, hard, close-grained, working smoothly, taking a good polish, and, when sound, extremely durable, resisting the action of damp, water, earth, or rust, and very uninflammable. This most valuable
of Australian timbers is stated to cover 14,000 square miles; but
the best timber grows only on the ironstone ridges. It should be
cut when the sap is at its lowest ebb and banded if in the round, or
seasoned one month for every inch in thickness if in scantlings.
Its durability is due to from 16—20 per cent. of a powerfully
astringent gum, mainly consisting of an acid allied to tannic, which
is present in the heartwood when sound. Burrs are sometimes
formed on the trees, from 6—10 ft. across, and equal to those of
Oak or Walnut in their figure. For ship-building Jarrah is classed
in line 3 of Lloyd's Register: it can be used without copper-sheathing;
while cheaper in India than Teak when in the log, and only
half its price in scantlings, roof-shingles made of it are almost
uninflammable; and it is largely used for sleepers, telegraph-poles,
piles, dock gates, and keelsons, but especially for wood paving-
blocks, for which purpose it has been largely employed. Jarrah
sleepers are apt to split in manufacture, and when in small scantlings
this timber twists and changes in shape for years. It can appar-
etly be much improved in this respect by impregnation. Its price
in England is about £7 per ton, or from £9 10s. to £13 10s. per 1,000
blocks, the freight alone being 50—60 shillings a ton. The orna-
mental varieties are valued for furniture, in spite of their great
weight; and the wood also yields an excellent charcoal.

Jarul (Lagerstræmia flos-reginæ Retz.: Order Lythrïceæ). India,
Burma, and Ceylon. "Queen Lagerstræmia." Sansk. "Stotu-
Height 30 ft. to first branch; diam. 4 ft. S.G. 744. W 41—46.5.
E 544 tons. / 5·22. fe 2·76. fs ·337. R 822 lbs. Light red,
hard, lustrous, durable under water. The most valuable timber of
North-East India and second only to Teak in Burma. Chiefly
used in boat-building, often yielding compass-timber suitable for
knees; but also for naves, felloes, waggon-frames, gun-carriages,
and building.

Jati. See Teak.

Jelutong (Dýera costulïta Hook. fil.: Order Apoeynïceæ). Malay
peninsula. Used locally for planks, etc.

Jhand (Prosópis spicígera L.: Order Leguminóseæ). Persia,
Afghanistan, Western India. A moderate-sized tree, yielding
timber 9 in. square, purplish-brown, straight-grained, very hard,
tough and strong, easily worked, but not durable. Used for wheels,
carts, agricultural implements, weavers' shuttles, furniture, and
building.

Judas-tree (Cércis Siliquïstrum L.: Order Leguminóseæ). Southern
Europe and Warmer Temperate Asia. Known also as "Love-tree."
French "Arbre de Judée, Gainier." Germ. "Judasbaum." Sap-
wood white; heart brownish-yellow, veined with black, handsome,
hard, taking an excellent polish; rings distinct; pith-rays moderately broad; vessels in spring-wood large, those in the summer-wood much smaller, 1—8 together.

Juniper (Juniperus communis L.: Order Cupressineæ). Europe, Northern Asia, and North America. Amer. “Ground Cedar.” French “Genévrier.” Germ. “Waehholder.” Height 15—20 ft. or more; diam. seldom considerable. S.G. 660. W 33—41. Sapwood narrow, yellowish; heart light yellowish-brown, fragrant, fine and close-grained, with no resin-duets, no distinguishable pith-rays, wavy annual rings marked by narrow reddish-brown zone of autumn-wood, tolerably heavy, soft, difficult to split, very durable. Used, on the continent of Europe, for whip-handles, vine-stakes, buckets, and turnery. Very similar in character to the wood of Cupressus and Thuja, and with similar burrs.

Juniper, Indian (Juniperus macrópoda Bois.). Afghanistan, Biluchistan, Himalaya to Nepal. “Himalayan Pencil-Cedar.” Height 30—45 or 70 ft.; diam. 1—7 ft. Light, moderately hard, very fragrant, deep red, often purplish, easy to work, durable. Often the only valuable timber, as near Quetta. Used for building and carpentry.

In Australia the name “Native Juniper” is applied to Myopórum serrátum R.Br. (Order Myoporineæ), known also as “Blueberry, Native Currant, Native Myrtle,” and “Cockatoo Bush.” S.G. 809—819. White, hard, durable when protected, but small. Used for inlaying.

Kaddam (Stephegyne parvífolia Korth.: Order Rubiáceæ). India, Burma, Ceylon. Height 70—80 ft.; diam. 2—5 ft. W 37. Light pinkish-brown or deep yellow, easily worked, taking a good polish, durable if kept dry. Used for building, furniture, carving, and turnery.

Kafir Date or Plum. See Date, Kafir.

Kahikatea. See Pine, White, of New Zealand.

Used for cabinet-work, planes and other carpenters' tools, and suitable for engraving.

Kapor. See Camphor, Borneo.

Karamatsuy. See Larch, Japanese.

Karri (*Eucalyptus diversicolor* F. v. M.: Order **Myrtáceae**). South-West Australia. Sometimes known as "Blue Gum." Height 300—400 ft.; diam. 3—12 ft. S.G. 1,023—885. W 50—72. E 760 tons. e' 2.10. p' 1.05. ft 6.20. fc 2.92. c 7,070. c' .934. Reddish, very heavy, slightly wavy or curled in grain, but without ornamental figure, hard, tough, strong, elastic, not so easily wrought as Jarrah, subject to star-shake and gum-veins, durable under water or when exposed to alternate drought and wet, but not between wind and earth, comparatively non-inflammable, but more liable to dry-rot than Jarrah. Much used locally for wheels, ship-building, and planks, being classed in the third-line of Lloyd's Register, suited for piles and bridges, and coming into use for paving-blocks, waggon-building, and for furniture. Stated to cover 2,300 miles of country.

Katsura (*Cercidiphyllum japonicum* S. and Z.: Order **Magnoliaceae**). Hokkaido, Japan. Height 80 ft.; diam. 3 ft. Used in building, carpentry, and turnery.

Kauri (*Agathis australis* Salisb. = *Dámmara australis* Lamb.: Order **Araucaríaceae**). North Island, New Zealand. "Kauri" or "Cowdie Pine." Height 120—200 ft.; diam. 4—10 or 20 ft. at base. S.G. 498—623. W 38.96—37.4. E 470 tons. e' 1.78—1.39. p' 1.01—.79. ft 2.16. fc 2.03. c 4,543. c' .6. v' .769. Sapwood 3—5 in. wide, very resinous: heart yellowish-white to brown, clean, fine, close and straight in grain, moderately hard for Pine, very firm, strong and elastic, generally sound or with slight heart-shake, shrinking very little in seasoning, planing up well, with a beautiful silky lustre like the plainest Satinwood, taking a good polish, staining well, wearing even, without splintering, and more durable than any other Pine, except where exposed to the teredo. It is sometimes richly mottled or "curly." Unrivalled for masts and spars, valuable for the decks of yachts owing to its freedom from knots and regularity of grain, used also for sleepers, telegraph-posts, house-building, and joinery. It is the most valuable forest-tree of New Zealand and the soft wood of the country; but the supply is limited, and, though there is a considerable export trade to Australia, the cost of freight limits its employment elsewhere. It is imported only in the form of sawn planks, its price in London auctions being from 3s. 3d. to 4s. 6d. per cubic foot.

Kauri, Queensland. See Pine, Dundatha.

Keurboom (Virgilia capensis Lam.: Order Leguminosae). Cape Colony. Height 15—40 ft.; diam. 1½—2 ft. W 44-2. Light, moderately hard, open-grained. Occasionally used for rafters, spears, etc.

Khat (Cétha édulis Forsk.: Order Celastrinaceae). East Africa. Seldom more than a shrub, but yielding a beautiful reddish-white wood, with zones of darker red, very hard and heavy.

Kiabooca. See Amboyna-wood.

Kino. See Rosewood, African.

Kino, Indian. See Teak, Bastard.

Kirton-wood. See Ash, Mountain.

Knobthorn (Zanthoxylum capense Harv.: = Fagaràstrum capensé D.Don.: Order Rutaceae). South Africa. “Knobhout, Paardepram.” Height 50—60 ft.; diam. 1 ft. W 44.75—48.5. Sapwood greenish-yellow, heart brown, heavy, hard, close-grained. Used for axles, tools, etc.

Kretti (Nectandra sp.? : Order Lauraceae). British Guiana. Height 80 ft.; diam. 2 ft. W 32. Brown, resembling the heavier Black Cedar, but with the fragrance of West Indian Cedar.

Kurumi (Juglans mandshurica Maxim.: Order Juglandaceae). Japan. Resembling the European Walnut in characters and uses.

Laburnum. See Ebony, False.
Lacebark. Under this name and the Maori name "Powhiwhi" are confused the two Malvaceous trees *Hókeria popúlnea* A. Cunn. and *Plagíanthus betulinus* A. Cunn., both confined to New Zealand. The former is brown, coarse-grained, soft, and brittle. W 42. It is used for furniture. The latter is lighter in colour and weight (W 36·5), and finer in grain.

Lacewood. See Plane.

Lancewood in Honduras, etc. (*Guattéria virgíla* Dun: Order Anonáceæ). "Yaya." Yellow, light, elastic, hard, fine-grained. W 52—63. Used for shafts, fishing-rods, bows and arrows, and imported in spars fetching about 7s. each. In Guiana the allied or identical "Yariyari" (*Dugéétia quitarrénsis* Benth.) is exported under the same name. Diffuse-porous, with minute pores and fine rays. The ladder-like cross-bars of soft tissue between the rays, which are characteristic of the Order Anonáceæ, are in this species white and finer than in some others. [See also Myrtle, Scrub, and Shad-bush.] In Tasmania the name is applied to *Eriostémon squáneus* (Order Rutáceæ). Height 20 ft.; diam. 1 ft. S.G. 801. W 50. A scarce, yellow wood, used for shafts and tool-handles.

Lancewood, Red. See Bulletwood.

Larch (*Lárix européu* DC.: Order Abietíneæ). Alps of Central Europe, and represented by a variety in Siberia. French "Mélèze." Germ. "Lärche." Ital. "Larice." Height 80—100 or 120 ft.; diam. 2—4 ft. at base. S.G. 809—519. W over 68, when green 32—38. E 400—600 tons. c' 1·45. p' 78. f' 43. ft 4—5·5. c 4,203. c' 555. fe 2·5. v' 783. js 75. Yellowish - white, generally straight and even, but sometimes rather coarse in grain, soft, tough, strong, very easily split and very durable, being rich in tannic and phenolic antiseptic substances, shrinking excessively and warping in seasoning, but lustrous and working up tolerably well. In its native cold uplands, though there may be an inch of yellowish-white sapwood, the heart is reddish-brown and harder. The pith is small; the pith-rays with tracheids with bordered pits.
above and below, and parenchyma with simple pits in the middle; resin-ducts smaller and fewer than in \textit{Pinus}; knots irregularly distributed; annual rings wide, defined by a broad dark zone of autumn-wood, finely sinuous. Its durability rendered Larch a favourite wood in ancient Rome. Caesar styles it "\textit{lignum igni impenetrabile.}" Augustus built his forum with it; Tiberius brought this timber for the repair of bridges from the forests of Rhaetia and preserved one tree, which was 120 feet long and 2 feet in diameter throughout, as a curiosity; and Vitruvius attributes the decay of the buildings erected in Rome at the time to the disuse of Larch on the exhaustion of the forests near the city.

Much of Venice is built on Larch piles, which, after ages of exposure to alternate wet and drought, are still sound. Being of rapid growth, Larch is much used for scaffold-poles, ladders, pit-props, sleepers, and fencing; and, being more free from knots than Spruce, is much prized by carpenters and wheelwrights. In ship-building, though its durability is in its favour, its shrinking is against it; but it is classed with Douglas, Huon, Kauri, and Pitch Pines, in the eighth-line of Lloyd’s Register. Larch is not largely imported; that from Italy being small, crooked, and coarse-grained, that from Poland rather larger and straighter, and that from Northern Russia the largest. When growing in the plains the Larch has proved so susceptible to the fatal attacks of the fungus \textit{Peziza Willkómmii} that it seems likely to be replaced as an object of cultivation by the Douglas Spruce.

\textbf{Larch, American, Black, or Red.} See \textit{Tamarack}.

\textbf{Larch, Chinese or Golden} (\textit{Pseudolarix Kämpferi} Gord.: Order \textit{Abietinæ}). China. Height 120—130 ft. Very heavy and hard.

\textbf{Larch, Japanese} (\textit{L. leptolépis} Gord.). Central mountains of Japan. "Toga, Kara-matsu, Fuji-matsu." Height 60—80 ft. or more; diam. 1\frac{1}{2}—4 ft. Heart red-brown, heavy, hard, and strong; but little used, as it grows at altitudes of 5,000 or 6,000 ft. This species is, however, now being largely cultivated in Europe.

\textbf{Larch, Western}. See \textit{Tamarack, Western}.

\textbf{Lasrin} (\textit{Albizzia odoratissima} Benth. = \textit{Mimósa odoratissima} Roxb.: Order \textit{Leguminósae}). India, Burma, and Ceylon. \textit{Sinh. Hurihi." This species and \textit{A. Lebeck} constitute the \textbf{East Indian Walnut} of commerce. [See \textit{Walnut, East Indian.}] W 42—60. Dark brown with darker streaks, very hard, seasoning and polishing well, and fairly durable. Used for wheels, oil-mills and furniture, suitable for carving.
LAUAN—LAURIER_MADAME

Laurel is a name not applied to any timber-tree in Europe. The true Laurel or Bay (Laurus nobilis L.), though 50—60 ft. high in Southern Europe, is always more of a shrub; and though the Cherry-Laurel (Prunus Laurocerasus L.) is recorded with stems of large girth, its wood does not seem to be used. In Australia the name is applied (i) to Panax elegans and (ii) to Cryptocarya australis. Panax elegans F. v. M. (Order Araliaceae). North-Eastern Australia. Also known as “Light” or “White Sycamore” or “Mowbulan Whitewood.” Height 30—40 ft.; diam. 1 ft. W 31. White, with a pretty grain, much resembling Ulmus in structure, light, soft, easily split, not durable, warping and cracking unless very carefully seasoned. Might do for cricket bats or blind-wood.

Cryptocarya australis Benth. (Order Laurinae). North-Eastern Australia. Also known as “Moreton Bay Laurel” and “Grey Sassafras.” Height 80—100 ft.; diam. 1—1? ft. White, light, easily wrought, obnoxious to insects, not durable if exposed.

In Northern Argentina the name is applied to Nectandra porphyria Griseb. (Order Laurinae), yielding timber 10—12 ft. long and 3 ft. square, of a rich dark-brown colour, well figured. Abundant, used for beams, furniture, and railway-carriage fittings; but liable to crack in the sun.

Laurel, Alexandrian. See Poon.

Laurel, Big. See Magnolia, Large-flowered.

Laurel, California (Umbellularia californica Nutt.; Order Lauraceae). California. Also known as “Myrtle.” Light brown, heavy, hard, susceptible of a high polish. A local substitute for Oak.

Laurel, Native. See Cheesewood.

Laurel, White. See Beech, She.

Laurier Cypre (Ocotéa cérnua Mez. = Oreodaphne cérnua Nees; Order Laurinae). West Indies. Durable, useful timber of moderate size.

Laurier Madame (Nectandra sanguinea Rottb.; Order Laurinae). West Indies. Light, used for staves and planks.
Laurier marbré (N. concinna Nees). A cabinet wood.

Leatherjacket, a name applied in Australia to (i) Alphitonia excelsa [See Ash, Mountain], (ii) Ceratopetalum apétalum [See Coachwood], (iii) Cryptocarya Meissnérii F. v. M. (Order Laurineæ). North-Eastern Australia. Height 80—100 ft.; diam. 2—3 ft. White, close-grained, tough. Used for staves.

(iv) Eucalyptus punctata DC. (Order Myrtaeæ). New South Wales. Also known as “Hickory, Turpentine, Bastard Box,” “Grey Red,” or “Yellow Gum.” Height 40—100 ft.; diam. 1—2 ft. Sapwood yellow; heart pale reddish-brown, heavy, hard, close-grained, tough, with gum-veins, difficult to split, but seasoning well and very durable. Used for sleepers, fence-posts, ship- and house-building, wheelwrights’ work, and fuel.

Lightwood. See Blackwood and Coachwood.

Lign-Aloes. See Eagle-wood.

Lignum-vitæ (Guáidcum officinálé L.: Order Zygophylldceæ). Colombia, Venezuela, Jamaica, Cuba, Hayti, but chiefly St. Do-
Lignum-vitæ, Cuban. Height 20—40 ft.; diam. 1—2 ft. S.G. 1.393—1.248. W 60—83. E 508—498 tons. \(\frac{ft}{ft} \) 7·14. \(\frac{fc}{fc} \) 3·4—4·4. \(\frac{fs}{fs} \) 447—1·246. R 246 lbs. Sapwood dingy yellow, \(\frac{1}{4} \)—1 in. broad, as durable as the heart, some of it being, therefore, left on to preserve the rest from splitting; heart blackish with a greenish tint; pith-rays not recognizable and annual rings scarcely so; very heavy, hard, strong, and close-grained, with fibres running obliquely both radially and tangentially, so that it can hardly be split, and containing 25 per cent. of gum-resin, which renders it almost imperishable. It is liable to cup-shake when more than 10 in. in diameter. Imported in lengths of 6—12 ft. up to 10 in. diam. and 3—6 ft. when of greater diam., realizing £5—£18 per ton. Used for ships' blocks, pestles, mortars, skittle-balls, rulers, heads of croquet-mallets, string-boxes, etc. Among the ancients and in France the name has been applied to Tetraclinis articulata. [See *Arar.*]

Lignum-vitæ in Australia (i) *Acácia falcáta* [See Myall, Bastard], (ii) *Mýrtus semeníóides* [See Myrtle, White], (iii) *Eucalýptus polyánthema* [See Box, Red], (iv) *Phyléanthus Fédéríndi* [See Beech, White], (v) *Vítex lígnum-vitæ* A. Cunn. (Order Verbenáceæ). North-Eastern Australia. Height 50—70 ft.; diam. 1\(\frac{1}{2} \)—2 ft. Blackish, hard, close-grained. Useful, but not yet known to cabinet-makers. (vi) *Dodoná viscósa* L. (Order Sapíndáceæ). Found throughout the tropics. "Switch-sorrel" of Jamaica. "Birch" of Tasmania. Sapwood white, heart dark-brown, in some varieties greenish-black, streaked with rose, very hard, close-grained, and durable. Used in India for engraving, turning, tool-handles, and walking-sticks, and suited for all the uses of the true Lignum-vitæ.

Lignum-vitæ, Bahama (*Guíaicum mántum* L.). Florida and the Bahamas. W 89. Sometimes as much as 26 ft. long and 12 in. in diam., resembling *G. officinálé* and similarly employed.

Lignum-vitæ in British Guiana (*Ixóra férréa* Benth. = *Sídero-déndron triflòrum* Vahl: Order Rubíáceæ). Known also as "Hackia," or "West Indian" or "Martinique Ironwood." Height 30—60 ft.; diam. 1—2 ft. W 65·8—73. E 1,027 tons. \(\frac{ft}{ft} \) 6·72. \(\frac{fc}{fc} \) 4·85. \(\frac{fs}{fs} \) 457. Dark-brown and hard. Valuable for cogs, shafts, or furniture.

Lignum-vitæ, Guayaquil, an unknown species, nut-brown, hard, fine-grained, having nothing in common with the true Lignum-vitæ, to which it is inferior. W 49. Shipped from Guayaquil.

Lignum-vitæ in New Zealand (Metrosidéros scándens Banks and Sol.; Order Myrtáceæ). Known also as "Akibaum." A creeper "growing up the stem and over the tops of the tallest trees in the New Zealand forests . . . so exceedingly like the Rata (M. robústa) in wood, bark, leaf, and flower, that I could never distinguish any difference between them" (Laslett).

Lilac, Persian. See Bead-tree.

Lima-wood. See Peach-wood.

Lime, a corruption of Line, also known as Linden (Tilia cordáta Miller, platyphíllos Scop. and argéntea Desf.: Order Tiliáceæ). Europe, the last-named only in the south-east. French "Tilleul." Germ. "Linde," T. cordáta being known as "Winterlinde," T. platyphíllos as "Sommerlinde." Russ. "Lipa." Height 20—90 ft.; diam. 1—4 ft. S.G. 794—522. W 29—5—32—5. Pale yellow, white, or reddish-white, light, soft, close-grained, easily split, with a feebly silky lustre, not very durable, being liable to become "worm-eaten"; annual rings indistinct; pith-rays fine but distinct; vessels scarcely visible, equally distributed. Though not durable where exposed to the weather, Linden wood stands fairly well when thoroughly dried and kept in a uniform atmosphere or protected by paint or varnish. Used for sabots, and in Japan for "getta," or sandals, as blind-wood in pianofortes and other furniture, in turnery, especially for druggists’ boxes, for carving, as in the beautiful work of Grinling Gibbons, for leather-cutters’ planks, and for gunpowder-charcoal. It makes good sounding-boards for pianos, and has been imported from Lithuania for this purpose.

Lime, American. See Bass-wood.

Locust or Black Locust in the United States are names used indiscriminately for the allied \textit{Robinia pseudacacia} and \textit{Gleditschia triacanthos}, the former known distinctively as the Yellow, the latter as the Honey or Sweet Locust.

\textit{Robinia pseudacacia} L. (Order \textit{Leguminósa}). Southern United States. Height 75 ft. or more; diam. 3 ft. or more. W 36—52. Sapwood very narrow, comprising generally only five rings, yellowish-white; heart yellowish-brown, with shades of red and green, very heavy, hard, strong, tough, firm, offering the greatest resistance to compression in the direction of the fibres, elastic, shrinking considerably in seasoning, but very durable, especially in contact with soil. Vessels all plugged with thin-walled tyloses and appearing as clear yellow spots: those in the spring-wood very large, forming a broad pore-circle, those in the autumn-wood often in peripheral lines. Used for sleepers, piles, waggon-hubs, and tree-nails in America; and in Europe, where it is considerably grown, under the name “Acacia,” especially on railway-banks to protect forests from sparks, for vine-props, wheel-spokes, turnery, and cabinet-work. It has recently acquired increased importance both here and on the Continent from its suitability for the spokes of motor-cars.

\textit{Gleditschia triacanthos} L. (Order \textit{Leguminósa}). Central United States. Known also as “Three-thorned Acacia.” French “Févier à trois épines.” Germ. “Dreidorniger Honigdorn.” Span. “Algarrobo de miel.” Height 90—100 ft.; diam. 3—4 ft. S.G. 674. W 42. R 923 kilos. Sapwood broad, yellowish to greenish-white; heart rose or brownish-red, heavy, hard, fine- and close-grained, strong and very durable, especially in contact with the soil, resembling \textit{Robinia} in character and uses; but with open vessels—i.e., without tyloses.

\textit{Logwood} (\textit{Haematóxylon campechiánun} L.; Order \textit{Leguminósa}). Central America, naturalized in Jamaica and introduced into India. “Campeche.” Germ. “Blauholz, Blutholz.” Height 40 ft.; diam. 1½ ft. S.G. 995. Deep dull brownish-red, very heavy and hard, violet-scented. The heartwood is used exclusively as a red or black dye. We import 40,000 to 60,000 tons annually, and it fetches from £5 to £10 per ton. It comes to market in logs about 3—4 ft. long. The colouring-matter, “\textit{hæmatein},” forms metallic green crystals, but gives a port-wine coloured solution with water. For purple dyes stannate of soda is used as a mordant: with lime, baryta and tin chloride logwood gives a blue precipitate; and “woaded blacks” are dyed first in indigo and then in logwood extract and potassium bichromate. Logwood is also extensively used in the manufacture of ink.

Magnolia, Large-flowered (*Magnólia grandiflóra* L.; Order *Magnoliáceae*). Southern United States. "Big Laurel," "Bull Bay." Height 70 ft. or more; diam. 3 ft. White, heavy, soft, not strong. Suitable for cabinet-work and interior finish.

Mahogany originally (*Swieténia Mahágoni* L.; Order *Meliáceae*). Central America, Mexico, Cuba, and other West Indian islands. "Spanish" or "Cuba Mahogany," and "St. Domingo" are local names. French "Acajou." Germ. "Mahagoniholz." Span. "Caoba." Height 5—50 ft. to the branches; diam. 1—4 ft. S.G. 560—880. W 35—67. E 560—650 tons. e' 1:11—1:9. p' 97—1:06. j 4:46. ft 76—7. f 5s 15—25. c 2,998—3,791. c' 396—5. fc 3:3—3:5. v' 772—953. When freshly felled light reddish-brown, soon darkening on exposure to light; vessels equally distributed; annual rings distinct; pith-rays fine, but distinct; sapwood only 3—1 in. thick; heart generally heavy, hard, close, and straight in grain, difficult to split, susceptible of a very high polish, with a beautiful satiny lustre, and sometimes with a wavy figure that much enhances its value as a furniture wood. The figures are known as "roe," "mottle," "cross-mottle," "dapple," "fiddle-back," "plum-pattern," and "curls." It does not, as a rule, shrink or warp, and is superior to all other woods in taking a firm hold of glue; it is also durable, and almost non-inflammable. Of the varieties above enumerated Cuba or Spanish Mahogany yields accurately squared timber 18—35 ft. long and 11—24 in. square, very solid at centre, rarely affected by cup- or star-shake, and with insignificant heart-shake. Its specific gravity ranges from 720—817. W 53. e' 1:71. p' 1:06. c 3,791. c' 5. v' 953. From the time of Cortez and Raleigh, in the sixteenth century down to the eighteenth, Mahogany was used as an Oak-substitute in ship-building for beams, planks, and stanchions, whilst figured logs demand high prices for furniture, but are now only seen in very small sizes. St. Domingo Mahogany is very similar in quality, but much smaller, generally 8—10 ft. long and 12 or 13 in. square, though occasionally 25 ft. long and 15 in. square. It is very hard, almost horny, a stress of 4,300 lbs. per square in. being required to indent it 1/10 in. transversely to the fibres. It is mostly figured, presenting a rich curl or feather at the bases of its branches. It is now very seldom exported, and appears to be almost exhausted in the accessible districts. There seems, in fact, to be very little American Mahogany in the market which is truly *Swieténia Mahágoni*, the distinctive anatomical characters of which seem to be
a nearly continuous ring of pores in the spring-wood and few pores in the outer part of the annual ring.

The Mahoganies of the Central American mainland, which form the bulk of the rapidly shrinking American supply, and are known as Honduras, Tabasco, Bay-wood, Colombian, Panama, Mexican, or Bermuda, are probably the wood of species of Cedrela, a genus closely allied to *Swietenia*. They are almost always considerably lighter in weight than the old Spanish or Cuban Mahogany, weighing 35 lbs. or less per cubic foot as against from 35 to 67 lbs., and are also decidedly softer. Anatomically they are marked by the general absence of a continuous pore-ring in the spring-wood and by the presence of almost as many scattered pores in the outer as in the inner part of each annual ring.

Honduras Mahogany, shipped from Belize, Trujillo, and Tabasco (the largest logs, which frequently have heart-shakes, coming from the latter port), reaches 50 ft. at its first branch and 3 ft. in diam., and yields logs 25—40 ft. long and 12—24 in. square, or even larger. It is seldom figured, becomes somewhat brittle on drying, and is apt to develop deep star-shakes. S.G. 644—684. W 35. e' 1.11. p' .99. c 2.998. e' .396. v' .806. Stress required to indent it \(\frac{1}{29} \) in. transversely to its fibres 1,300 lbs. It is known commercially as "Baywood," and, besides being used as an Oak-substitute in ship-building, is largely used in cabin fittings and by cabinet-makers, turners, and carpenters. Some Mahogany sold as Honduras is really Guatemalan. Mexican Mahogany reaches the largest dimensions, sometimes squaring 48 in., but generally coming to market in logs 18—30 ft. long and 15—36 in. square. It is generally somewhat soft and spongy at the centre, often affected by star-shake, and plain in figure. S.G. 612—780. e' 1.9. p' .97. c 3.427. c' .451. v' .772. We import some 75,000 loads of Mahogany annually, the value of which is about £730,000.

Mahogany, African, is the trade-name for several allied woods belonging to the Order Meliaceae, and not distantly related to the *Swietenia* of the West Indies, and the genus Cedrela, which is represented in the tropics of both hemispheres by valuable timber-yielding species. The species most frequently represented on the Liverpool market are *Khaya senegalensis* A. Juss., *K. grandifolia* Stapf, *K. Pucrhiu* Stapf, *Trichilia Pricuriana* A. Juss., *Entandro-phryga* Candollei Harms, *E. Candollei*na De Will. & T. Dur, and *E. angolensis* C. DC.; but it is probable that many other species are also sent to market as Mahogany, which accounts for the great variation in the nature of the wood so named. So-called African Mahogany is shipped from settlements as far apart as Senegal and Angola; but though some reaches Liverpool, the chief European port of import from French territory, such as Grand Bassam and Assince, on the Ivory Coast, the bulk of the supply
at present reaches us from the British settlements on the Gold Coast and in Southern Nigeria. *Khaya senegalensis* seems to be the chief species north and west of the Gold Coast, being known to the French as “Cail-Cedra,” as “Gambia Mahogany” in our Northern colonies, as “Hie” in Jolop, “Jallow” in Mandingo, “Dubina” and “Oganwo” on the Gold Coast. It does not appear to be in any quantity south-east of Sekondi on that coast; but is reported from Angola and Nyassaland. W 34° 5. Between Sekondi and Lagos no Mahogany is shipped; but from Lagos to Benin *Trichilia Pirciriäna* is the predominant species, and from Benin to Sapeli *Entandrophragma Candollei*. Some of the trees reach very large dimensions, being often 100 ft. to the first branch, and squaring 2 ft. at that height. The wood is, however, mainly shipped in logs from 10—29 ft. long, and mostly between 15 and 20 ft., and from 13—52 in.—or mostly 20—30 in.—deep at the butt. There is an apparently illimitable demand for logs 30—36 in. deep. The wood shipped from Assinee and Axim reaches the largest dimensions, that from Sekondi seldom exceeding 50 cubic ft. per log, and that from Lagos being also small. In colour the woods vary from yellow to brown, with dark zones, and it is sometimes so finely figured as to realize 5s. to 12s. per superficial foot for veneers. Bathurst wood is the hardest; but whilst those from Guinea are mostly of good quality in this respect, that from the Gaboon is little better than Birch, fetches much lower prices, and is probably quite a distinct species. Some of the best wood is shipped from the Ivory Coast; but, owing to the surf, it is difficult to get the logs off, so that but little reaches Liverpool. Very large quantities are shipped from Axim, and the logs fetch good prices, up to 5, 7, 9, and even from 12 to 19 pence a foot. Sekondi is increasing in importance as a port of shipment, the small logs brought down by rail from north of Tarquah being firm and of good colour. More than a quarter of the whole supply is now shipped from Lagos: the Benin wood is excellent, and that from Sapeli (*Entandrophragma ?*) is fine, large, well-squared, and scented like a Cedar. *Entandrophragma Candolleána* De Wild. & T. Dur., known locally as “Cail-Cedra,” is a large tree, 100 ft. high, described, from the neighbourhood of Stanley Falls in the Congo Free State, as “un bel Acajou,” and as yielding abundance of a yellowish resin. *E. angolénsé* C.DC. (=Swietenia Angolénsis Welw.), “Quibaba da Qûcta,” is also a large tree; but, perhaps, yields inferior wood. *Khaya anthothéca* C.DC. “Quibaba da Mussangue,” described by Welwitsch, from the south-west, as a large tree, 40—60 ft. high and 4—5 ft. in diam., is stated by Mr. M. T. Dawe to occur in the Semliki Forest and in Unyoro in Eastern Tropical Africa. In this region the last-named botanist also records a *Trichilia* near to *T. emética* Vahl as yielding a useful
timber near Lake Victoria Nyanza, *Kháya senegalénsis* as only a small or medium-sized tree, *Pseudocedrela excélsa* Dawe & Sprague, from the West Ankole Forest, as a valuable timber-tree reaching 100 ft. in height, and *P. útilis* Dawe & Sprague, from Unyoro, reaching an equal height, from 3—5 ft. in diam., and yielding a valuable light Mahogany.

African Mahogany is very strong and termite-proof, and the demand during the last few years has more than kept pace with the supply. The Liverpool import of 9 million feet in 1894 grew to 13 million in 1897, 18 million in 1900, 21 million in 1903, and 20 million in 1906. The logs are mostly hewn square when imported, and a very large proportion of them, especially of those that are figured, are re-exported to America. It seems to have been first imported about 1833, when fifty-eight logs sold in Liverpool at 5d.—6d. a foot; but as a real business the trade dates from 1886, when some 94,000 ft. from Assinee sold at 4d.—6d. Of the 20 million cubic feet which reached Liverpool in 1906, over 6 million came from Lagos, 4 million from Axim, nearly 24 million from Benin, over 17 million from Assinee, 14 million from Grand Bassam and a million from the Gaboon. In 1903 a log from Assinee fetched the record price of £2s. 6d. per foot.

Mahogany, Australian. See Cedar, Pencil, and Jarrah.

Mahogany, Bastard (*Eucalyptus botryoides* Sm.: Order *Myrtaceae*). Known also as “Swamp” or “Gippsland Mahogany,” “Blue Gum,” “Bastard Jarrah,” “Woolly Butt,” and “Bangalay.” South-Eastern Australia. Height 40—100 or 160 ft.; diam. 2—4 or 8 ft. S.G. 891. W 55-59. Light dull red to warm rich brown, heavy, hard, tough, close, even and straight in grain, easy to work, but somewhat subject to gum-veins and shakes, durable. Valuable for ship- and waggon-building, yielding compass-timber suitable for ships’ knees. The name is also applied to Jarrah.

Mahogany, Bay (*Cercocárpus ledifólius* Nutt.: Order *Rosáceae*). California. Dark-coloured, hard, and heavy.

Mahogany, Borneo or Penagah, is probably *Calophyllum inophíllum*. See Poon.

Mahogany, Forest or Red (*Eucalyptus resinifera* Sm.: Order *Myrtáceae*). North-East Australia. Also known as “Red, Grey,” or “Botany Bay Gum, Hickory, Red Stringybark,” and “Jimmy Low.” Height 80—130 ft.; diam. 1½—5 ft. W 61—72.5. Light brown or dark or very dark red, very heavy, close and smooth in grain, very strong, not shrinking, affected with gum-veins, but very durable in air, water, or soil, teredo- and termite-proof. Used for ships’ knees, piles, fence-posts, paving, rafters, and shingles. The name “Forest Mahogany” is locally applied also to *E. microcorys*. [See Tallow-wood.]

Mahogany, Horseflesh (*Cæsalpinia* sp.: Order *Leguminósae*). Bahamas. Very strong and durable. Used for ships’ knees. This name, or that of Horseflesh-wood, is also applied to the allied species *Swártzia tomentósa* DC., which has S.G. 1.020, and is known in Venezuela as “Naranjillo.” Horseflesh Mahogany is exported from the Bahamas to England as “Sabieu.”

Mahogany, Indian. See Cedar, Moulmein.

Mahogany, Madeira (*Pórsea indica* Spreng.: Order *Lauríceae*). Teneriffe. Known also as “Veñatico” or “Viñacito.”

Mahogany, Mountain (*Bétula lénita* [See Birch, Cherry] and *Cercocárpus parvifolíus* Nutt. (Order *Rosáceae*). South Africa. W 48. Light yellowish Mahogany-coloured, soft, fine-grained.

Mahogany, Swamp, a name applied in Australia to (i) *Eucalyptus botryoídes* [See Mahogany, Bastard], (ii) *Tristánia laurína* [See Box, Bastard], (iii) *T. suávióleus* [See Gum, Broad-leaved Water], and (iv) *Eucalyptus robústa* Sm. (Order *Myrtáceae*). This last species, a native of New South Wales, is known also as “White Mahogany” and “Brown Gum.” Height 100—150 ft.; diam. 2—4 ft. S.G. 1.098—889. W 58.5. Light-brown to dark-red, generally containing some gum-veins, often cross-grained, difficult to split, seasoning well, but with some warping, and becoming rather brittle. Durable in damp situations, and obnoxious to insects, probably owing to its containing no less than 19 per cent. of kino-red, the astringent gum-resin so characteristic of this genus, a higher percentage than in any other species. It is valued for shipbuilding, shingles, inside work, wheelwrights’ work, mallets, rough furniture, and fuel.

Mahogany, White. See also Stringybark (vi).

"Mee." These trees are rarely felled, being valued for their edible flowers. In Central India the wood is pinkish, weak, invariably rotten at the heart, so as only to square 4—6 in., though approaching 2 ft. in diam.; but in the Upper Provinces it is Mahogany-like in colour, harder, strong and tough, and is used for the naves of wheels, furniture, and sleepers. The southern species is light-reddish, hard, close-grained, flexible, and durable. W 61. It is apt to split on exposure to wind and sun; but is used for spars, keels, tree-nails, bridges, house-building, etc.

Maire, Black (Olea Cunninghamii Hook. fil.: Order Oleáceae). New Zealand. Height 40 ft. S.G. 1,159. W 74:5—60. p 314-2. Light-brown, very heavy and hard, dense and durable, averaging eleven fairly even rings to the inch, with vessels in flamboyant groups, somewhat as in Buckthorn. Used for wheels and mill machinery. The strongest wood in the Dominion.

Mammee-apple (Mámméa americáná L.: Order Guttíferae). West Indies. Also known as "Wild" or "St. Domingo Apricot." Height 50 ft. W 59—61. E 763—857 tons. f 6:95—7:4. f e 2:2—3:5. fs ·36—55. White or reddish, light, durable under ground or water. Used in building and carpentry.

Mammcth-tree. See Big-tree.

Manchineel (Hippománé Manchinélá L.: Order Ephorbiáceae). Sandy shores in Central America and the West Indies. Tawny yellow, variegated with brown, with odour of lavender, and yielding a poisonous milk. W 50. Furniture.

Mango (Mangifera indica L.: Order Anacardiaceae). Tropical and sub-tropical Asia. Introduced in the West Indies. Hind. “Am.” Telug. “Mamidi.” S.G. 597. Dull grey, porous, becoming a light chocolate colour, harder, closer-grained, and more durable in the centre of very large old trees, holding a nail faster than any other wood, and standing exposure to salt-water, but not to fresh. It could readily be creosoted. Used for solid cart-wheels, canoes, rough furniture, planking in the interior of houses, for packing-cases, as blind-wood and as ground for veneers, being the cheapest light wood obtainable in Madras.

Manoao. See Pine, Silver.

Maple, originally Acer campéstré L. (Order Acériaceae). England, Central Europe, Northern Asia. “Common” or “Field Maple.” French “Érable champêtre.” Germ. “Gemeiner, Feld” or “Kleiner Ahorn.” Welsh “Masaran.” Height 10—20 or 40 ft.; diam. 9—12 in. S.G. 750. W 61-5 when green, 52 when dry. Light-brown or reddish-white, hard, fine-grained, compact, tough, with a beautiful satin-like lustre, sometimes containing dark pith-flecks, and not uncommonly curled or speckled (“Bird’s-eye Maple”); annual rings slightly wavy; pith-rays fine but distinct;
vessels minute. Curled or mottled specimens were prized in former days for "mazer-bowls," which were mounted in silver. These when cut into veneers, as by the rotary knife, are equal to American Bird’s-eye Maple. In France the wood is sought after by turners and cabinet-makers. It makes excellent fuel and the very best charcoal.

In Australia the name "Maple" is applied to Villarésia Móorei F. v. M. (Order Olacínæ) of New South Wales, also known as "Scrub Silky Oak." Aborîg. "Belbil." Height 80—120 ft.; diam. 3—6 ft. W 41:36. White, close-grained, prettily figured, durable. Suitable for bedroom furniture. The name is also applied in Queensland to Flindèresia Chatawaiâ. [See Beech, Red.]

Maple, Ash-leaved (Negúndo aceróides Mœnch.: Order Acerínæ). South Central United States, California, and Manitoba. Also known as "Box-Elder" or "Black Ash." "Negundo." French "Erable à giguières." Height 50 ft. or more; diam. 2 ft. or more. S.G. 438. W 27. R 529 kilos. White or yellowish, light, soft, not strong or durable. Of inferior quality, used to some extent for interior finish and cooperage, and for fuel, but chiefly for paper-pulp.

Maple, Bird’s-eye or Pin. See Maple, Rock.

Maple, Black. See Maple, Rock.

Maple, Blister. See Maple, Rock.

Maple, Broad-leaved. See Maple, Oregon.

Maple, California. See Maple, Oregon.

Maple, Great or Sycamore. See Sycamore.

Maple, Hard. See Maple, Rock.

Maple, Himalayan. Several species of Acer are of some importance in this region; viz. (i) A. Cumpbélii Hook. fil. & Thbg., in the Eastern Himalayas, a greyish-white, hard, and dense wood, used for tea-boxes and planking; (ii) A. oblongum Wall., in Nepal and Kumaon, a reddish-brown, hard and dense wood, used for agricultural implements; (iii) A. Lóbéli Tenore, growing from the Eastern Mediterranean to the Himalayas, a brownish-white, hard, dense, elastic wood; (iv) A. ñevigótum Wall., in Nepal, reaching 30—40 ft. in height and 3—4 ft. in diam., and used for beams, rafters, etc.

Maple, Japanese (A. pictum Thumb., A. polymórphun, etc.). "Itaya-Kaycede." Several ornamental species in Japan yield timber similar to that of the European species.

Maple, Norway (A. platanóides L.). Norway to Central Europe. "Plane Maple." French "Erable plane." Germ. "Spitz Ahorn." Height 60—70 ft.; diam. 2—3 ft. W 43. White, but inclining to grey, when mature, easily worked, and taking a fine polish, with the satin-like lustre of the pith-rays characteristic of the group, and slightly wavy annual rings, hard, heavy, tough, cracking
and warping, but durable if kept dry. Used in turnery, for musical instruments, gun-stocks, etc., being practically identical with the wood of the Sycamore.

Maple, Oregon (*A. macrophyllum* Pursh.). Pacific slope of North America. Also known as "California" or "Broad-leaved Maple." Height 90 ft. or more; diam. 4 ft. or more. W 40-5. Rather light, hard, and strong. Used in Oregon for axe- and broom-handles, snowshoe-frames, and furniture, and on radial sections exhibiting occasional curly figure, which is highly prized for cabinet-work. This figure is produced by an unexplained waviness or spiral twist in the elements of the wood, which is rarely recognizable in the growing tree, but produces transverse corrugations on the surface of the log when the bark is removed, these curls or corrugations varying in number in different trees from one, or less than one, to several to the inch. Though scarcely visible in a transverse section, this beautiful figuring is seen on all longitudinal or oblique sections, appearing on the planed surface so like the light and shadow on an undulating surface that it is difficult to believe it smooth. It is sometimes called "Fiddle-backed Maple" from its resemblance to a variety of Sycamore used for the backs of violins.

Maple, Red (*A. rubrum* L.). Canada and Eastern United States. Known also as "Soft, Swamp" or "Water Maple." Height 70—90 ft.; diam. 3—4 ft. S.G. 618. W 38-5. R 811 kilos. Sapwood brownish-white, with a small, irregular brown or reddish-brown heart, moderately heavy, hard and elastic, close-grained, compact, taking a very smooth polish, not strong or durable. Used in turnery, chair-making, for wooden dishes, shovels, and other small ware. Occasionally curled, when it is valued for gunstocks and for veneers. The bird's-eye figure is rare in this species. This wood does not enter into American export trade.

Maple, Rock (*A. barbatum*, Michx.). Eastern North America. Also known as "Hard" or "Sugar Maple," and a variety as "Black Maple." Height 50—100 ft. or more; diam. 1—4 ft. S.G. 691. W 43. R 1,149 kilos. White when first cut, becoming rosy on exposure and when seasoned; sapwood light yellowish; heart brown, heavy, very hard, fine and close in grain, compact, strong, tough, taking a fine polish, with a satiny lustre. The most valuable species, but not durable if exposed, requiring two or three years' seasoning. Used in New England as an Oak substitute, in preference to Beech, Birch, or Elm, for house-frames, ships' keels, axles, spokes, chairs and other furniture, flooring and interior finish, wooden bowls, considered the best in the market, shoe lasts, pegs, saddle-trees, etc., and also for fuel. It is but little imported, except when figured. "Blister" or "Landscape," "Bird's-eye" or "Pin," and "Curly" or "Fiddle-back" figures all occur in this
species, the first two being almost confined to it. The Blister figure is produced by wart-like prominences on the wood beneath the bark, and is cut tangentially by a rotary lathe in a veneer the length of the log, and running spirally inwards to the centre of the tree. The name “Landscape Maple” is appropriate in that this figure much resembles a contoured map. The Bird’s-eye or Pin figure, which is more common, is produced by pittings, which are visible on the bark. These appear in transverse section as “pins,” and in tangential section as “eyes.” This figuring does not extend more than 6—8 in. from the surface, the centre being invariably plain wood. Veneers of these varieties are imported at Liverpool, and three-ply wood, faced on one side with Bird’s-eye Maple, is in request for the panels of railway-carriages.

Maple, Silver (A. saccharinum, Wang.). Eastern North America. Otherwise known as “Soft” or “White Maple.” Height 90—100 ft.; diam. 4—5 ft. S.G. 527. W 32.8—54. R 1,019 kilos. Sapwood delicate creamy white; heart reddish-brown, lighter and softer than Rock Maple, brittle, not very strong or durable if exposed, shrinking moderately, seasoning and working well, taking a fine polish, wearing smoothly. Used for flooring, cheap furniture, interior finish, turnery, wooden ware, and fuel. Sometimes curled.

Maple, Sycamore. See Sycamore.

Marblewood (Ólea paniculata R. Br.: Order Oleáceae). New South Wales and Queensland. Known also as “Ironwood” and “Native Olive.” Height 50—70 ft.; diam. 13⁄4—2 ft. Whitish, darkening towards the centre, prettily mottled, hard, tough, close-grained, durable. Used for staves, and suitable for turning or engraving.

Marblewood, Andaman (Diospyros Kurzii Hiern; Order Ebenáceae). Andaman Islands. “Zabra-wood.” Sapwood light yellow-brown, heart handsomely streaked with black and grey, very heavy, hard, close-grained and durable. Used for handles and furniture, and valuable as a substitute for the scarce Calamander wood of Ceylon.

Matai. See Pine, Black.

Mee. See Mahwa.

Meranti (Hopea Marinti Miq.: Order Dipterocarpaceae). Malay peninsula. Over 100 ft. high; 3 ft. in diam. W 55. Resembling Bay-wood, red, heavy, but soft. Used for planks, furniture, and boxes, and yielding a dammar resin.

Messmate, a name applied in Australia (i) to Eucalúptus amygdalina [See Ash, Mountain], (ii) to E. obliqua [See Stringybark], (iii) to E. piperita [See Peppermint], from their association with the Stringybarks.

Milkwood. See Ireland (xvii).

Milla or Mililla (Vitex altissima L. fil.: Order Verbenáceae). Ceylon and Southern India. Sinh. "Milla," "Mililla." W 60-9. E 721 tons. f 6-59. fc 3-12. fs 448. A large tree yielding a grey or yellowish, heavy, very hard, fine and close-grained wood, which in Ceylon is one of the most valuable for building purposes.

Mirabow (Afzélia palémbánica Baker in Hook.: Order Leguminósceae). Andaman Islands, Malay Islands, Borneo. "Meraban" or "Merban." A large tree, 100—150 ft. high, yielding timber 30—40 ft. long, and 1½—2½ ft. in diam. W 52—55. Dark yellow or brown, darkening and reddening with age, prettily figured, hard, moderately heavy, of fine even grain, very tough, durable, termite-proof, working freely and taking a fine polish, thus resembling Mahogany. The most important timber in the Malay peninsula, suitable for sleepers, building, or furniture.

Miro. See Pine, Black.

Molavé (*Vílex altíssima* [See *Milla*] and *V. geniculáta* Blanco: Order *Verbenaceae*). Philippines. S.G. 819. W 51·2. \(e' \ 1·87. \ p' \ 1·54. \ c \ 7,812. \ c' \ 1·032.\) Straw-coloured, heavy, hard, close-grained, strong, with a figure resembling Satin-wood, not shrinking or splitting in seasoning, very durable even when exposed. Used extensively for all kinds of work, and considered almost equal to Teak in building, while it might prove useful in cabinet-work.

Monkey-pot (*Lécythis grandíflóra* Aubl.: Order *Myrtaceae*). Guiana. "Wadadura." French "Canari Macaque." Height 100 ft.; diam. 2—3 ft., yielding logs 20—50 ft. long, and squaring 16—28 in. S.G. 1,032. Light brown, very heavy, hard, close-grained, tough, working easily, taking a fine polish, and very durable. Used extensively for all kinds of work, and considered almost equal to Teak in building, while it might prove useful in cabinet-work.

Moose-wood. See Maple, Striped.

Mopane (*Copaifera (Colophospérmum) Mopíné* Kirk: Order *Leguminosae*). Guinea—Mozambique. "Iron-wood." Height 50—75 ft., straight, dark-coloured, heavy, very durable, but difficult to work. Suitable for furniture.

Mora (*Dimorphándra excelsa* Baill. = *D. Móra* Benth., *Móra excésa* Baill. & Benth.: Order *Leguminosae*). Guiana and Trinidad. Height 100—150 ft., frequently 60—70 ft. to the first branch; diam. 2—2½ ft., yielding logs 18—35 ft. long, squaring 12—20 in. S.G. 1,075—1,094. W 57—72·3. \(E \ 1,068—1,465\) tons. \(e' \ 1,05. \ p' \ 1·64. \ j \ 6·87—9·42. \ c \ 9,240. \ c' \ 1·220. \ fc \ 3·14—5·34. \ v' \ 1·117. \ fs \ 456—655.\) Chestnut-brown or red, very heavy, hard, straight-grained, tough, strong, sometimes with a beautiful curled figure, taking a good polish, durable, but very liable to star-shake. Suitable for keelsons, beams, and planking in ship-building, classed in line 2 of Lloyd’s Register, and also fitted for house-building and as a substitute for Rosewood or Mahogany for furniture and cabinet-work, especially when figured.

Moricypré (*Byrsónima spicáta* Rich.: Order *Malpighiáceae*). Brazil and West Indies. Height 30—40 ft.; diam. 2 ft. Used in building and cabinet-work.

Morrel (*Eucálýtus macrocárrpa* Hook.: Order *Myrtáceae*). West Australia. Very hard. Used for spokes, shafts, and furniture. [See also Gum, Morrell.]

Morung Sal. See Sal.

Moutouchi (*Pterócárpus Dráco* L. = *Moutóouchi suberósa* Aubl.: Order *Leguminosae*). Guiana. Introduced into India in 1812.
S.G. 1,018—875. R 255 kilos. With long streaks of pale violet, light brown and white, easily sawn or worked.

Mountain Ash. See Rowan and Ash, Mountain.

Mulato-wood. See Bois Mulatre.

Mulberry (Mörus álba L.; Order Moríceae). Said to be a native of China introduced into Europe in the fifteenth century. French "Mürier." Germ. "Maulbeerbaum." Span. "Moral." Height 20—30 ft.; diam. 1—2 ft. Sapwood narrow, yellowish-white; heart yellowish-brown, becoming reddish, like old Mahogany, on exposure, heavy, hard, lustrous, difficult to split; vessels in the spring-wood very large, forming a very broad and distinct pore-circle, most of them open, but a few filled with a white secretion; those in the autumn-wood regularly distributed, very minute; pith-rays fine, but very distinct. A durable wood, similar to that of the Black Locust (Robínia). Used chiefly in veneers and inlaying.

Mulberry, Indian (i) M. índica L., a native of the Himalayas, India, China, and Japan, has a wood very similar to that of M. álba, used for tea-boxes and furniture, (ii) more generally used of Morínda citríjólia L. [See Canary-wood.]

Mulberry, Native. See Holly, Smooth.

Mulberry, Red (Mörus rúbra L.). Eastern United States. Height 60—70 ft.; diam. 3—4 ft. S.G. 589. W 36·76. R 775 kilos. Sapwood very narrow, whitish; heart, orange-yellow, of moderate weight and hardness, tough, coarse-grained, strong, taking a satiny polish, and very durable in contact with the soil. Largely used for fence-posts and cooperage, and to some extent for agricultural implements and in boat-building.

Musk-tree (Márlea vitiénsis Benth.: Order Corníceae). Fiji Islands, introduced in Australia. Height 20—30 ft.; diam. 6—12 in. Bright yellow, with black centre, pretty curl, musk-like odour, and close grain. An excellent cabinet-wood.

Mutton-wood (*Myrsine variabilis* R. Br.; Order *Myrsinaceae*). East Australia. Also known as “Jemmy Donnelly,” a name also applied to the totally dissimilar *Euroschínus falcátus*. Height 45—50 ft.; diam. 12—15 in. S.G. 714. Yellowish or pinkish, hard, tough, somewhat resembling Oak in figure, easily worked, durable.

Myall, a name applied in Australia to various species of *Acácia* (Order *Leguminosce*), especially (i) *A. péndula* A. Cunn. “True” or “Weeping Myall,” “Violet-wood.” *Aborig.* “Boree.” North-East Australia. Height 20—30 ft.; diam. 6—12 in. W 76. Rich dark brown, beautifully marked, heavy, hard, close-grained, violet-scented as long as it is unpolished. Used for boomerangs, veneers, fancy boxes, and especially for tobacco-pipes, and often imitated by artificially scenting the wood of other species, a perfume which does not last. Suggested for parquetry.

(ii) *A. homalophylla* A. Cunn. Also known as “Spear-wood.” *Aborig.* “Gidya.” South-East Australia. A similar tree, similarly employed. Used also for briar pipes and in turnery, and formerly for spears. S.G. 1,124. W 66—76-75.

(iii) *A. acuminata* Benth. West Australia. Known also from its fragrance as “Raspberry Jam” or “Jamwood.” Height 38—40 ft. W 54—78. Similar, reddish-brown, but with a perfume resembling raspberries. Used for weapons and fence-posts; but suited for ornamental work and now coming into use for furniture.

(iv) *A. aneúra*. See Mulga.

(v) *A. glaucéscens* Willd. Also known as “Mountain Brigalow” and “Rosewood.” South-East Australia. Height 30—45 ft.; diam. 1—1½ ft. W 54. Resembling Walnut or Rosewood, prettily marked, slightly fragrant, hard, close-grained, tough. Used for spears and handles, and suitable for turnery or veneers.

Myall, Bastard (i) (*A. falcátu* Willd.). Also known as “Hickory, Lignum-vitae” and “Salee.” East Australia. Height 20—30 ft.; diam. 6—12 in. Sapwood yellow; heart light-brown, heavy, hard, tough. Used for whip-handles and coach-building.

(ii) *A. Cunningháimi* Hook. East Australia. Height 20—30 ft. diam. 9—12 in. W 46-75. Dark, resembling the wood of Red Cedar (*Cedrélá Toóna*), but heavier, close-grained, and taking a good polish. A useful cabinet wood.

Myall, Dalby. See Ironwood (ii).
My Lady, a West Indian wood, perhaps *Nectandra sanguinea* Rottb. [See Laurier, Madame.]

Myrtle, a name not applied to any useful wood in the Northern Hemisphere. In Tasmania and Victoria it refers generally to *Fagus Cunninghamii* [See Beech, Evergreen]; but in New South Wales and Queensland to *Syncarpia leptopetala* F. v. M. (Order *Myrtaceae*) and to *Backhousia scadiophora* F. v. M.; belonging to the same Order. *Syncarpia leptopetala* (= *Metrosidéros leptopetala* F. v. M.), which is known also as "Ironwood" or "Brush Turpentine," reaches a height of 50—60 ft., with a diameter of 2 ft., is heavy, hard, and durable, and is used in turnery. *Backhousia scadiophora,* 80—90 ft. high, with a diameter of 2 ft., is hard, close-grained, and prettily marked; but, though possibly useful for engraving, is not yet in use.

Myrtle, Brush. See *Barranduna.*

Myrtle, Drooping (*Eugénia Ventenátii* Benth.: Order *Myrtaceae*). North-East Australia. Height 40—60 ft.; diam. 2—3 ft. Grey or pinkish, beautifully marked, heavy, hard, close-grained, tough. Used for handles, ribs of boats, and floors of verandas.

Myrtle, Grey. See *Myrtle, Scrub.*

Myrtle, Native or Red (*Eugénia myrtijólia* Sims: Order *Myrtaceae*). North-East Australia. Known also as "Brush Cherry." Height 50—80 or 100 ft.; diam. 1—2 ft. W 47-75. Light reddish or yellowish, strong, elastic, seasoning and working well. Used for boomerangs, shields, staves, oars, boat-building, and tool-handles. [See also *Myrtle, Scrub,* and Juniper.]

Myrtle, Ridge. See Ironwood (iv).

Myrtle, Scrub (*Backhousia myrtijólia* Hook & Harv.: Order *Myrtaceae*). North-East Australia. Known also as "Grey" or "Native Myrtle" and as "Lancewood." Height 20—40 ft.; diam. 9—12 in. Light yellow, often prettily marked with dark
brown, walnut-like stains, hard, close-grained, tough, durable. Used for mallets, handles, bows, and suitable for turnery and perhaps engraving.

Myrtle, Three-veined. See Turpentine, Brush.

Myrtle, Water. See Gum, Water.

(ii) (Rhodamnia argétea Benth., in the same Order). North-East Australia. Aborig. “Muggle-muggle.” Height 80—100 ft.; diam. 2—3 ft. Close-grained, hard, and durable; but seldom used.

Nagesar or Nahor. See Ironwood (xviii).

Nani. See Ironwood (xx).

Narango, Palo. See Fustic.

Narra. See Sanders, Red.

Neem. See Margosa.

Needle-bush. See Pin-bush.

Nettle-tree (Celtis australis L.: Order Ulmaceae). Mediterranean. French “Micocoulier.” Germ. “Zürgelbaum.” Height 30—50 or 70 ft.; diam. 6—12 in. Yellowish, heavy, hard, compact, elastic, taking a high polish; vessels in spring-wood few, but large, the smaller, later ones arranged dendritically; pith-rays fine but distinct. When cut obliquely it resembles Satinwood. Used for furniture, carving, turnery, whip-handles, walking-sticks, flutes, etc. [See Hackberry.]

Nettle-tree, Small-leaved (L. photiníphylla Wedd.). A smaller tree, from the same region, yields an even lighter wood. W 13.8. It might be used for floats for fishing-nets.

Niaouli. See Cajeput.

Nicaragua-wood. See Peachwood.

Nispero. See Sapodilla.

Nogal (Juglans australis Griseb.: Order Juglandaceae). Northern Argentina. Height 20—25 ft., yielding timber squaring 1½ ft. In colour resembling European Walnut, straight-grained, and easy to work. Much used for beams, door- and window-frames, furniture, and railway-carriage fittings.

Nut. See Hazel.

Oak, originally *Quercus Róbur* L. (Order Cupuliferae), the principal hardwood of Europe, afterwards extended to other species of the genus in Southern Europe, North America, the Himalayas, and Japan, and to various other entirely unrelated timber-trees, chiefly species of *Casuarina*, in Australia. It will be convenient to depart from the strictly alphabetical arrangement of the many kinds of *Oak* in use, in favour of a geographical enumeration. Beginning, therefore, with the Common Oak of Europe, we will then describe the other European and North African forms, taking those of North America next, and then those of the Himalayas and of Japan, and relegating the so-called Oaks of Africa and Australia to the last.

Oak, Common, British or European (*Q. Róbur* L.). Syria, Mount Taurus and Mount Atlas to 60° N. lat. *French* “Chêne.” *Germ.* “Eiche.” *Span.* “Roble.” *Japan.* “Gashi.” Height 60—100 ft.; diam. 1—22 ft., often with a straight stem 30—40 ft. high, and 2—4 ft. in diam. S.G. 1,280 when fresh cut, to 780 or 597 when seasoned. “It must be borne in mind, however, that these weights refer to the wood as a structure, and do not give the specific gravity of the wood-substance itself. This latter may be obtained by driving off all the air and water from the wood, and is found to be 1,560” (Marshall Ward). W 62—43. E 535—800 tons. *c* Mr. Laslett takes the mean elasticity of British Oak as unity for the comparison of other woods. Other specimens of the species range from 64—1·41. *p* 6,500—11,300. *p*’ Here, too, Oak is unity, its range being 6—1·06. *f* 5·27. *ft* 1·9—8·8. *c* 7·571—8,102. *c* English Oak being taken as unity, French-grown Oak is 1·071. *fc* 2·7—4·5. *v*’ English Oak unity, Dantzic Oak, probably the same species, 0·99, French 1·04. *fs* 4—1·03. R 10,000—13,600 lbs. Sapwood narrow, yellowish; heart of various shades, from greyish or yellow-brown (fawn-colour) to reddish or very dark brown, darkening on exposure. “Oak is neither the hardest and heaviest, nor the most supple and toughest of woods, but it combines in a useful manner the average of these qualities. Good Oak is hard, firm, and compact, and with a glossy surface, and varies much; young Oak is often tougher, more cross-grained, and harder to work than older wood” (Marshall Ward). A stress of 1,900 lbs. per square inch is stated as the average requisite to indent Oak 1/20 in. transversely to its fibres. Oak timber is apt to be affected by star- and cup-shakes, especially in
certain districts; and, though it can be readily seasoned, it is very liable to warp and shrink during the process.

When Oak was largely in use in our royal dockyards the rules as to specifications were that only logs would be accepted 10 ft. or more in length that would side 9 in. and upwards in proportion to their length; and that each piece was measured for contents by calliper measurement as far as its spire (or top-end) "will hold 12 in. in diameter." Thirty inches calliper will yield sided timber of about 21 in., 24 in. calliper 18½ in the side, or on an average a "siding" of about seven-tenths of the calliper measurement, or more precisely 70 in. from 99. For fencing or staves Oak splits easily, with a moderately smooth surface; and, for ornamental purposes, it is susceptible of a high polish.

The sapwood is very liable to insect attack, and cannot be termed durable; but the heart, whether under ground, under water, or exposed to alternations of drought and damp, is remarkably so, few woods changing so little when once seasoned. The "life" of a railway-sleeper of young Oak is stated to be from seven to ten years if not treated with any preservative, or sixteen years if treated with zinc chloride. The piles of Old London Bridge, taken up in 1827, sound after six and a half centuries' use, are a striking instance of these lasting qualities; whilst the "Bog-oak" blackened by the action of the iron salts in peat-mosses on the tannin it contains—a natural ink—remains sound after far longer periods. The durability of Oak timber is undoubtedly affected by the time of year at which it is felled, the best season being winter, when there is least water and sap or fermentable matter in the wood. The greater amount of tannin in the bark and the greater ease in stripping it in the spring have, however, often led to the trees being felled at that time. Incipient decay often shows itself in the heartwood of ancient Oak-trees as "foxiness," a warm deepening of the colour that actually enhances the value of the wood for some ornamental purposes. It is then known as Brown Oak, and is often cut into veneers, sometimes fetching very high prices for this purpose. A tree felled at Welbeck, for instance, realized £100, and one from Lord Fitzwilliam's seat, Wentworth Woodhouse, £110; while six at Burghley House averaged £75 apiece.

The minute structure of Oak has already been to some extent described and fully illustrated in Part I. The pith, at first white, then brown, is pentangular, and from 1—4 millimetres across: the pith-rays are of two kinds, very broad, lustrous, light-coloured ones—the "silver-grain"—sometimes 3⁄4 in. apart, and others, far more numerous—about 300 to the inch—very fine and less straight. The annual rings undulate slightly, bending outwards between the broad pith-rays: they vary in width from 1—8 or more millimetres, and they are conspicuous owing to the pore-
circle of very large vessels in the spring-wood, which is only a single row when the rings are narrow, or four rows when they are wide. Into the autumn-wood there radiate outwards straight or bifurcating bands of finer vessels, tracheids, and cells. Numerous, very narrow, wavy, peripheral lines ("false rings") of wood-parenchyma, recognizable by their contents, but seldom more than a single row of elements each, are generally visible, especially when the annual rings are broad.

Owing to the large proportion that the pores bear to the fibre when the annual rings are narrow, such slow-growing unthrifty Oak, growing on poor soil or in severe climatic conditions, is, though often beautifully marked, softer than the broad-ringed, thrifty, quick-grown wood of good soils and a favourable climate. They may differ to the extent of their specific gravities—a fair criterion of their hardness and strength—varying from 691 to 827 respectively.

Quercus Robur is a somewhat variable species, three somewhat inconstant types being recognized as British—viz., *pedunculata*, *sessiliflora*, and *intermédia*. *Q. Robur pedunculata* derives its scientific name from the long stalks to its acorns, for which reason also the Germans call it "Stieleiche," whilst from the situations in which it grows they call it "valley Oak" (Thaleiche), and from its early production and shedding of its leaves it is called "Early Oak" (Früheiche) and "Sommereiche." It is generally quick-growing, but does not, perhaps, produce so great a length of clear stem as *sessiliflora*. Its wood may be lighter in colour, whence, apparently, it gets its French name, "Chêne blanc"; but it is generally more compact, denser, and tougher, and therefore better for purposes where strength is a primary consideration.

Q. Robur sessiliflora, known from a supposedly greater resemblance in its wood, as "Chestnut Oak," by the French as "Chêne rouge," and by the Germans as "Traubeneiche" "Red (Rothieche), Hill (Bergeiche), Late" (Spateiche), or "Winter Oak," has long stalks to its leaves, but not to its acorns, and is apparently generally less dense in its timber. It is also, perhaps, more liable to shakes; but it must be admitted that, in the absence of any record as to the source of the logs or of any exact measurement of specific gravity, timber-dealers cannot discriminate the wood of these two varieties. Stunted specimens, grown on rocky hill-sides, produce crooked, hard, knotty wood, difficult to split, formerly of considerable value in ship-building; and Coppice Oak is of a similar character.

Q. Robur intermédia, the Durmast Oak, is not common. It has short stalks to both leaves and acorns, and its leaves are downy on their under-surfaces. It has a broad sapwood and a dark-brown heart, and is considered of inferior quality.
There is, perhaps, greater difference between the woods of *Q. Rôbur* imported from various parts of the Continent than there is between these home-grown varieties. French Oak, largely *Q. Rôbur pedunculata* grown in Brittany and Normandy, is generally smaller, shorter, and more tapering than English; but with S.G. 992—720, e' 1·39—1·41, p' 1·01—1·06, c' 1·071, v' 1·04, and shrinking and splitting less in seasoning than English, it would appear, in spite of some former prejudice, to be better all round, always presuming that a good sample be selected. Dantzie Oak, shipped partly from Memel and Stettin, mostly brought down the Vistula from Poland, but also from Odessa, which comes to market as staves, in logs 18—30 ft. long and 10—22 in. square, or in planks about 32 ft. long, 9—15 in. wide, and 2—8 in. thick, is brown, straight, and clean-grained, and free from knots. It would seem to be largely *Q. Rôbur sessiliflóra*, and is sometimes so figured as to be classed as "wainscot-oak," this term being the equivalent of the American "quartered." It has S.G. 897—768, e' 4·3, p' 5·9. c' 4·214. v' 5·56. v' 9·99, and is, therefore, decidedly inferior in strength to good English-grown Oak. It is carefully sorted or "bracked" for market, the planks of best, or "crown," quality being marked W, those of second-best, or "crown brack," quality WW. Riga Oak, a very similar wood, also probably *sessiliflóra*, only comes to market in "wainscot logs" of moderate dimensions, for furniture or veneers, for which purposes it is the finest quality in the trade.

Oak, Holm. From Italy and Spain a variety of Oak timbers were formerly imported to our dockyards, partly the produce of varieties of *Q. Rôbur*, but partly apparently from the evergreen Cork and Holm Oaks (*Q. Suber* L., and *Q. Ílex* L.). Most of this wood was comparatively small, curved, brown, hard, horny, tough, difficult to saw or work, and very liable to shakes, and, therefore, unsuitable for boards. The Holm Oak abounds in Algeria, where it is much used in joinery and carriage-building and for fuel. Its wood, which has a density of 900—1,180, becomes with age a deep brown or jet-black.

**Oak, Kermes (Quércus coccífera* L.)*. South Europe and North Africa. Heavy, hard, and compact. Used for building and for charcoal.

**Oak, Turkey (Quércus Cérris* L.)*. Middle and Southern Europe and South-West Asia. Known also as "Adriatic, Iron, Wainscot," or "Mossy-cupped Oak." *Germ. "Zerreiche." A tall species, with straight, clean stems, hard-wooded in the south and in plains, softer in the north or on hills, very liable to ring- and star-shakes. Sapwood broader than in *Q. Rôbur*; heart a redder brown; broad pith-rays more numerous. On the whole inferior, not standing
exposure, and being more liable to "worm" attack than British Oak.

Throughout Europe, and more specially in Britain, Oak was employed for every purpose both of naval and civil architecture until about the beginning of the eighteenth century, when Pine was first largely imported from the Baltic and North America. In our dockyards Oak continued to be in large demand until about 1865, all other hard and heavy woods used in shipbuilding being compared with it as a standard, and described as "Oak-substitutes." Oak has, however, one serious drawback in this connexion—viz., the presence of a powerful wood acid, which exerts a rapidly corrosive action upon any iron in contact with it, this rusting being apt in turn to react upon the timber, producing rot. With the introduction of armour-plating and steel ships, wood of any kind has become far less important in ship-building, and Teak has largely superseded Oak. In Lloyd's Register, however, English, French, Italian, Spanish, Portuguese, and Adriatic Oak, and Live Oak, Q. virens of the United States, are classed together on line 2. Though the greater cheapness and lightness of coniferous wood have led to its being now generally preferred in building, Oak is still in request where strength and durability are objects. Large quantities are used for palings, shingles, staves, parquet-floors, wheelwright's work, wainscot, furniture, and carving. For these last three purposes the softer, more figured, wood is preferred, whilst for gate-posts, doors, stair-treads, door-sills, etc., the harder sorts are employed. The ancient Romans are said to have used the evergreen Holm Oak (Q. Ilex) for axles, and hard Oak is still used for this purpose on the Continent. Walking-sticks are also made of Oak, and it furnishes an excellent charcoal. Excellent Oak is imported from Roumania.

Oak, Zeen (Quercus Mibéckii Durien). North-West Africa. Height 100—110 ft.; diam. up to 6 ft. S.G. when green 924. Breaking-weight per square millimetre 7·4 kilos, as against 4·7—7·2 kilos for European Oak. Yellowish or rose-coloured; pith-rays numerous, broad, close; heavy, horny, straight-grained, very durable, but liable to shakes and warping. Used for sleepers, bridge-girders, piles, and wine-barrels; and, when winter-felled and seasoned for six or twelve months, is one of the most valuable timbers of Tunis, where it covers about 26,500 acres.

Oaks in America are somewhat numerous, three well-marked kinds—White, Red or Black, and Live Oak—being distinguished in commerce. The evergreen or Live Oak (Q. virens) of the Southern United States, formerly much employed in ship-building, though smaller than White Oak, is one of the heaviest, hardest, and most durable timbers of the country. White Oak is more compact, tougher, stronger, and more durable than Red Oak.
We will, however, briefly describe the various species alphabetically.

Oak, Baltimore. See Oak, White.

Oak, Basket (Q. Michaúxii Nutt.). South-Eastern States. Known also as "Cow" or "Swamp Chestnut Oak." French "Chêne de panier." Germ. "Korb-Eiche." Span. "Roble de canasto." Height 100 ft. or more; diam. 3 ft. or more. Sapwood white; heart fawn-colour; rings fairly broad; pores in about two rows in spring-wood; very heavy, hard, tough, very strong, very durable in contact with soil. Largely used for agricultural implements, cooperage, fencing, baskets, and fuel.

Oak, Black. See Oak, Red, and Oak, Yellow.

Oak, Burr (Q. macrocarpa Michaux). Canada and the North-Eastern and Central States, westward to the Rocky Mountains. Known also as "Mossy-cup" or "Over-cup Oak." French "Chêne à gros gland." Germ. "Grossfrüchtige Eiche." Span. "Roble con bellotas musgosas." Height 100 ft. or more; diam. 4—7 ft. S.G. 745. W 46-45. R 982 kilos. Sapwood pale buff, heart rich brown; rings fairly broad; pores in about three rows in spring-wood; heavy, hard, strong, tough, rather more porous than White Oak, more durable, in contact with soil, than any other American Oak. Classed with and used as White Oak.

Oak, Chestnut (Q. Prinus L.). Southern Ontario and North-Eastern United States. Known also as "Rock Oak." French "Chêne de roche." Germ. "Gerbereiche," "Felsen Eiche." Height 80 ft. or more; diam. 3—4 ft. or more. S.G. 750. W 46-7. R 1,031 kilos. Sapwood brownish white; heart rich brown; rings narrow; pores hardly more than a single row; heavy, hard, rather tough, strong, durable in contact with the soil. Chiefly valued for its bark, but used for fencing, railroad-ties, and fuel. The name is also applied to Q. Muhlenbergii [See Oak, Chinquapin]. The Californian Chestnut Oak is Q. densiflóra [See Oak, Tan-bark], and the Swamp Chestnut Oak, Q. Michaúxii [See Basket-Oak].

Oak, Cow. See Oak, Basket.

Oak, Duck. See Oak, Water.

Oak, Iron. See Oak, Post.
Oak, Live (Q. virens Ait.). Southern States. French “Chêne vert.” Germ. “Lebenseiche, Immergrüne Eiche.” Height 60 ft. or more; diam. 5 ft. or more. Sapwood light-brown; heart dark-brown; rings of moderate width; pores very few and small; pith-rays distinct and bright; very heavy, compact, hard, tough, strong, fine, and close, but somewhat twisted in grain, and consequently very difficult to work, durable. Seldom yielding large straight timber, but with many crooked pieces, it was formerly much used for knees in shipbuilding. It is, perhaps, stronger than any known Oak, and is now used by wheelwrights, millwrights, and tool-makers.

Oak, California Live (Q. chrysolepis Liehm.). Pacific States at altitudes of 3,000—8,000 ft. Known also as “Thick-cup Live Oak, Maul Oak,” and “Valparaiso Oak.” Height 80 ft. or more; diam. 5 ft. or more. Very heavy, hard, tough, very strong. Considerably used in waggon-building, and for agricultural implements.

Oak, Mossy-cup. See Oak, Burr.

Oak, Peach. See Oak, Tan-bark and Oak, Willow.

Oak, Pin (Q. palustris Du Roi.). South-Central States. Known also as “Swamp Spanish” and “Water Oak.” French “Chêne marécageaux.” Germ. “Sumpf Eiche.” No distinct heart; rings wide, very wavy; pores very numerous, forming a wide zone; light brown.

Oak, Possum. See Oak, Water.

Oak, Post (Q. obtusiloba Michaux). Eastern and Southern States. Known also as “Iron Oak.” French “Chêne poteau.” Germ. “Pfahl Eiche, Posteiche, Eiseneiche.” Height 60 ft. or more; diam. 3 ft. or more. Sapwood light brownish; heart sharply defined, dark brown; rings rather narrow; pores small, in about three rows; very heavy and hard, very durable in contact with soil. Used chiefly for railroad-ties, fencing, and fuel; but occasionally for cooperage and carriage-building.

Oak, Punk. See Oak, Water.

Oak, Quebec. See Oak, White.

Oak, Quercitron. See Oak, Yellow.

Oak, Red (Q. rubra L.). Canada and North-Eastern States. Known in commerce as “Canadian Red” and as “Black Oak.” French “Chêne rouge.” Germ. “Rotheiche.” Height 80—100 ft. or more; diam. 4—6 or 7 ft. S.G. 654. W 40—49.25. R 990 kilos. Sapwood almost white; heart light-brown or reddish; rings wide; pores numerous, in a wide zone; pith-rays indistinct; heavy, hard, strong, but inferior to White Oak, coarse-grained, and so
porous as to be unfit for staves for liquor casks, shrinking moderately without splitting, easy to work. Used for flour- and sugar-barrels, clapboards, chairs, and interior finish, and imported from Canada to London and still more to Liverpool for furniture-making. It is valued for its bark. [See also Oak, Spanish.]

Oak, Rock. See Oak, Chestnut.

Oak, Scarlet (\textit{Q. coccinea} Wang.). Eastern United States. Height 100 ft. or more; diam. 3—4 ft. S.G. 740. W 46. R 1,054 kilos. Sapwood whitish; heart ill-defined, pinkish-brown, heavy hard, strong; rings narrow, wavy; pores in 3—4 rows, making a rather broad zone; pith-rays prominent. Used in cooperage, chair-making, and interior finish, being treated in trade as Red Oak, and of small value.

Oak, Spanish (\textit{Q. falcáta} Michx.). Eastern and Southern States. Known also as “Red Oak.” Height 70 ft. or more; diam. 4 ft. or more. Heavy, very hard and strong, but not durable. Valued for its bark; but used in building and cooperage, and as fuel.

Oak, Swamp Spanish. See Oak, Pin.

Oak, Tan-bark (\textit{Q. densiflóra} Hook and Arn.). Pacific coast. Known also as “Peach” or “California Chestnut Oak.” Height 60—70 ft.; diam. 2—3 ft. Heavy, hard, strong. Classed as an inferior White Oak; but valued chiefly for its bark.

Oak, Water (\textit{Q. aquática} Wult.). Central, Southern, and South-Eastern States. Known also as “Duck, Possum” or “Punk Oak.” Height 50—80 ft.; diam. 3—4 ft.; heavy, hard, strong. Sapwood whitish; heart ill-defined, light brown; rings of moderate width, wavy; pores in 1—2 rows, graduating into those of the autumn-wood; pith-rays numerous and prominent, but not very wide. Used in cooperage, but chiefly as fuel. The name is also applied to \textit{Q. palústris}. [See Oak, Pin.]

Oak, White (\textit{Q. álba} L.). South-Eastern Canada, Eastern United States. Height 70—130 ft.; diam. 6—8 ft. S.G. 1,054—695. W 46.35—65.75. \(f\) 1.5—2.3. \(e\)' 1.19—1.58. \(p\)' 1—9. \(c\) 7,021—3,832. \(c\)' 927—506. \(v\)' 912—771. R 905 kilos. Sapwood whitish; heart defined, reddish-brown; heavy, hard, tough, straight-grained, strong, durable in contact with soil; rings narrow, slightly wavy; pores in spring-wood in 1—2 rows, those in summer-wood very fine; pith-rays numerous and prominent; wide radial groups of dense woody fibre extending across the summer-wood crossed by several concentric lines of fine pores. One of the most generally useful of American hard-woods, being so elastic that “planks cut from it may, when steamed, be bent into almost any form,” shrinking and splitting very little in seasoning, but liable to some twisting, free from knots, and shipped in logs from 25—50 ft.
long and 11—28 in. square, or in thick-stuff or planks. Largely used in ship-building, house-frames, interior finish, door-sills, staves for wine-casks, railway and other carriage-building, agricultural implements, fence-posts, sleepers, piles, furniture, and fuel. Though beautifully marked when quarter-sawn, it is inferior to the best European Oak. "Quebec Oak" is the trade name of an excellent quality, and "Baltimore Oak" that of a somewhat inferior one, both named from their port of shipment, and realizing from 2s. 6d. to 2s. 9d. per cubic foot in London. The name "White Oak" is applied in the Southern States to Q. Durándii Buckley, and in the West to Q. Garryána Dougl.

Oak, Weeping or Western (Q. lobáta Née). California. Germ. "Westliche Weisseiche." The largest-growing species on the Pacific coast. Classed as "White Oak."

Oak, Willow (Q. Phéllos L.). Eastern States. Known also as "Peach Oak." Heavy, hard, very elastic, but small.

Oak, Yellow (Q. tinctória Bartram). Eastern United States. Known also as "Black" or "Quercitron Oak." French "Chêne jaune." Germ. "Färber Eiche." Height 80 ft. or more; diam. 3 ft. or more. Sapwood white; heart reddish-brown, heavy, hard, coarse-grained, porous, strong, but not tough; rings narrow, wavy; pith-rays numerous; pores in spring-wood in 3—5 rows. Valued for its bark for tanning and dyeing yellow, and used as a substitute for White Oak in building, cooperage, etc., and for fuel. [See also Oak, Chinquapin.]

In the Himalayas there is a considerable variety of species of Oak, most of which are evergreen. The wood of these species is often hard, durable, and valuable, resembling English Oak, but not having distinct annual rings, these being replaced by partial zones of wood-parenchyma or "false rings." Among them are:

Oak, Brown (Q. semecarpifólia Sm.). Afghanistan to Bhotan, at altitudes of 8,000—10,000 ft. Wood large, reddish-grey, very hard. Used for all kinds of building and for charcoal.

Oak, Green (Q. dilatáta Lindl.). Afghanistan and the North-West. Wood large, hard, seasoning well without warping, durable. Used for building. The name is also applied to Q. giaúca Thunb., which grows from Kashmir to Bhotan and in Japan, and yields
a brownish-grey, very hard wood, used in house- and bridge-building.

Oak, Grey (Q. incána Roxb.). From the Indus to Nepal, at altitudes of 8,000—3,000 ft. Known also as "Himalayan Ilex" or "Ban," and in Kumaon as "Munroo." Heartwood reddish-brown, very hard, but warping and splitting considerably in building. Used in building.

Oak, Holm (Q. Ílex L.), the same species that occurs in Southern Europe, occurs also in the North-West.

Oak, Ring-cupped (Q. annulátá Sm.). Sikkim, up to altitudes of 10,000 ft. A well-marked, handsome, but not durable wood.

Q. fenestrátá Roxb., of the Eastern Himalaya, from Sylhet to Burma, and of the Khasia Hills, growing down to 50 ft. above the sea, yields a red, very hard, good and durable heartwood, somewhat inferior to English Oak.

Q. Griffithii Hook. fil. & Throm., of Bhotan, Sikkim and the Khasia Hills, yields a brown, very hard, strong wood, much resembling English Oak, used in building.

Q. lamellósá Sm., occurring from Nepal to Bhotan, has a grey-brown wood with a beautiful silver grain, used in building, but not very durable if exposed.

Q. lanceaefóliá Roxb., of the Garrow Hills and Assam, yields a light-coloured wood, resembling English Oak, but harder and very durable.

Q. lappácce Roxb., of the Khasia Hills, has a strong wood, resembling English Oak, but hard and more close-grained.

Q. pachyphyllá Kurz, of the Eastern part of the range, at altitudes of 8,000—10,000 ft., yields a greyish, very durable, damp-resisting timber, used for fencing, shingles, and planks.

Q. serrátá Thunb., which ranges from the Himalaya into China and Japan, yields a brown, very hard, building wood, resembling that of Q. Griffithii.

Q. spícátá Sm., the range of which extends from the Himalayas to Malacca and the Sunda Islands, yields a reddish, very hard and durable wood, used in India for building.

hard, coarse-grained. A very showy wood for turnery and furniture.

In Australia, where there are no true Oaks, many very diverse species are so named; but the name is chiefly applied to species of *Casuarina* (Order *Casuarinaceae*), from a fancied resemblance in the colour and broad pith-rays of their wood to that of true Oak. These woods have been known in English trade as "Botany Oak," and used in veneer and inlaying.

Oak, Bull (*Casuarina glauca* Sieb.). Also known as "Swamp-Oak, Desert" or "River She Oak." *Aborig.* "Billa." Height 40—50 ft.; diam. 1—2 ft. Red with small darker veins, somewhat resembling *Quercus Illex*, the Holm Oak, close-grained, strong. Used for staves, shingles, and fence-rails, but not suited for posts. The name is also applied to *C. equisetifolia* [See Oak, Swamp.]

Oak, Forest (*C. tortulosa* Ait.). North-East Australia. Known also as "Beefwood," "She Oak," "Botany-bay," "River," and "Mountain Oak." Height 60—80 ft.; diam. 1½—2 ft. W 48·5—64. Heart well defined, prettily marked, close-grained. Much used for shingles and fuel, and also used for furniture, either solid or in veneer. The name is also applied to *C. equisetifolia* [See Oak, Swamp] and to *C. suberósa* [See Oak, Erect She].

Oak, River, a name applied to *Callistémon salignus* [See Bottle-brush, White], *Casuarina Cunninghamiana* [See Oak, Scrub, She] *C. distyla* [See Oak, Stunted She], *C. stricta* [See Oak, Shingle], and *C. tortulosa* [See Oak, Forest].

Oak, She, a usefully distinctive name for the species of *Casuarina*, viz.: *C. Frasériána, C. stricta* [See Oak, Shingle], *C. glauca* [See Oak, Bull], *C. subcrósa, Cunninghamíana* and *distyla*. *C. Frasériána* Miq. West Australia. W 45—60. Sapwood light-brown, heart light-red, hard, fine-grained, beautifully figured, easily worked, but liable to heart-shake, durable. Used for furniture and roof-shingles.

Oak, Erect She (*C. suberósa* Ott. and Dietr.). Central and Eastern Australasia. Known also as "Beefwood, Forest, Swamp," or "Shingle Oak." Height 30—50 ft.; diam. 1—2 ft. W 59·6. Reddish, beautifully marked, very apt to split in drying. Used for shingles, handles, mallets, etc., and formerly for boomerangs; but would be valuable for veneers.

Oak, Scrub She (*C. Cunninghamíana* Miq.). North-East Australia. Known also as "River Oak." Height 60—70 ft.; diam. 2 ft. Prettily marked, hard, close-grained. Used for shingles, staves, and fuel.
Oak, Stunted She (C. distýla Vent.). Southern and Western Australasia. Known also as "River Oak." Height 40—60 ft.; diam. 1\(\frac{1}{2}\)—2 ft. Brown to deep-red, light, tough, strong. Used for bullock-yokes.

Oak, Shingle (C. strícta Ait.). South-East Australasia. Known also as "Coast She Oak," "Salt-water Swamp Oak," and "River Oak." Height 20—30 ft.; diam. 9—15 in. S.G. 1,037—935. W 57—63. Reddish, with dark longitudinal bands, giving a beautifully mottled appearance to the outer part of the heart, the darker centre being less handsome, heavy, close-grained, very hard, tough, working up splendidly, but not durable. Used for shingles, staves, spokes, axe-handles, turnery, and furniture.

Oak, Swamp (Casuarína equísetiólia Forst.). North-East Australia; introduced near Madras. Known also as "Beefwood," "Forest," and "Bull Oak," and in the South Seas as "Ironwood." Anglo-Indian "Fir," from an external resemblance to Larch. Madagascar and Mauritius "Filaof." Dekhán "Sarv" (cypress). Indian Archipelago "Aroo." Tam. "Chouk." Height 50—70 ft.; diam. 1—1\(\frac{1}{2}\) ft. W 55—63. Reddish, coarse-grained, beautifully marked, hard, tough, strong, straight in growth, and very durable. Used for fencing and shingles, and largely for fuel, for which it is excellent. The name is also applied to C. glauca [See Oak, Bull] and C. suberósa [See Oak, Erect She].

Oak, White (Lagunáриa Patersóni). See Tulip-tree.

In addition to these the name "Oak" is applied in Ceylon to
Scléichera trijúga [See Kosum], and in New Zealand to Aléctryon excélsum Gaertn. (Order Sapindáceae), the "Titoki" of the Maoris, which is used in building. S.G. 916. W 57·1. p 248.

Olive (Óleá europáea L.: Order Oleácceae). Mediterranean region; introduced into California, India, and other countries. French "Olivier." Germ. "Oelbaum," "Olivenholz." Hebr. "Zaith." Greek Ὠλαῖα. S.G. 940. W 57—69·5. Height seldom more than 20 ft. Very close- and fine-grained, light yellowish-brown, with irregularly wavy dark lines and mottlings, especially near the root, resembling Box in texture, but not so hard, and rather brittle, taking an excellent polish, with no distinguishable rings or pith-rays, and minute, evenly distributed vessels. Used chiefly in turnery and carving for small articles. fancy boxes, paper-knives, etc.

Olive or Wild Olive in Cape Colony (Óleá verrucósa Link.). Boer "Olivenhout." Also known as "Olina-wood." Zulu "Umguna." Height 14—16 ft.; diam. 8—15 in. W 68·95. E 669 tons. £ 6·65. f 3·90. js 8. Dark, very hard, heavy, dense, taking a good polish. Used in waggon-building and for furniture.

Olive, Indian (Óleá dióica Roxb.). Silhet and Assam southward. White, compact, strong. Used in building, and might be creosoted. Other Indian species are O. glanduliféra Wall., light-brown, dense, hard, susceptible of a good polish, and durable, used in building; and O. cuspidáta Wall., resembling the Common Olive.

Olive, Mock. See Axe-breaker.

Olive, Native. in Australia (Notéléa ovíta R. Br.: Order Oleácceae). Eastern Australia. Aborig. "Dunga-runga." Small and crooked in growth, light-coloured, with irregular dark-brown blotches, fine, close and even in grain, hard, firm, working easily, and taking a good polish, but requiring careful seasoning. W 60·3. Used for tool-handles. [See also Marblewood.]

Olive, Spurious. See Ironwood (vi), and for other allied species, Ironwood (vii), (xi-xv), and (xxiv).

Olivier (Terminália Búceras Wright : Order Combretáceae). West Indies. Known also as "Black Olive" and "Olive-bark." Height 30—50 ft.; diam. 2—4 ft. Not flammable, durable in water, insect-proof, between Olivewood and Satinwood in character.

Omatsu. See Pine, Japanese Black.

Opepe (Terminália sp.: Order Combretáceae). West Africa, especially Lagos and Toruba. W 47°5—50°7. R 14,347—17,907 lbs. A beautiful reddish-yellow or golden-red, moderately hard, and heavy, coarse and open in grain, planing well, and taking an excellent polish. Mr. Stone describes it as "a splendid cabinet wood," and Mr. Weale is of opinion that it has a future in the Liverpool timber market.

Orange, Black. See Broom.

Orange, Mock. See Cheesewood.

Orange, Native, in Australia (i) (Citrus australís Planch.). Height 30—40 ft.; diam. 9—12 in. Resembling the Common Orange; (ii) from the shape of the fruit (Cúpparís Mitchelli Lindl.: Order Capparídeae), known also as "Small Native Pomegranate." Height 14—20 ft.; diam. 1 ft. Whitish, hard, close-grained, closely resembling Lancewood. Suitable for engraving; (iii) Endiántra virens F. v. M.: Order Lauráceae). North-East Australia. Known also as "Bat and Ball," "Native Pomegranate," and "Ullagal Mabbie." A tall shrub, with grey, close-grained, firm, apparently useful wood.

Orange, Osage (Maclúra aurantiáca Nutt.: Order Moráceae). Arkansas and Texas. Known also as "Boxwood." French "Bois d'arc." Height 50 ft. or more; diam. 2 ft. Sapwood yellow, heart brown transversely, yellow longitudinally, soon turning greyish on exposure, very heavy, hard and strong, not tough, flexible, of moderately coarse texture, shrinking considerably in drying, very durable in contact with soil. Formerly used for bows and wheelwrights' work, now for fence-posts, railway-ties, waggon-building, and paving-blocks; but suitable for turnery and carving.
Orham-wood (*Ulmus* sp.?): Order *Ulmaceae*. Canada. W 32. Brownish, soft, coarse-grained, twists badly, and is not durable, but is cheap, fetching 1s. 10d. per cubic foot for prime quality in Liverpool. Now considerably used as a cabinet-wood.

Pacara (*Enterolobium Timboíva* Mart.: Order *Leguminosae*). Northern Argentina. Yielding logs 15 ft. long and 1½ ft. square. Light-brown, loose-grained, not strong. Used for door-frames, furniture, etc.

Pader or Padri (*Stereospîrmum chelonoïdes* DC: Order *Bignoniáceae*). India and Burma, Ceylon and Sunda Islands. Height to first branch 30 ft.; diam. 1—2 ft. Grey, reddish-brown or orange, wood hard, elastic, easy to work, moderately durable. Used in house-building, and for canoes, furniture, and tea-chests.

Padouk (*Pterocârpus indicus* Willd.: Order *Leguminosae*). Burma, Sunda and Philippine Islands and Southern China. Known also as “Burmese Rosewood,” or “Tenasserim Mahogany.” Fiji “Cibieibi.” Height to first branch 35 ft.; diam. 2—5 ft., yielding timber 15—30 ft. long. W 56—81. R 1,000 lbs. Dark-red, beautifully variegated and darker near the root, resembling Mahogany, but heavier, slightly aromatic, very heavy, moderately hard, coarse but close-grained, working fairly well, taking two years to season, termite-proof, and susceptible of a high polish, but fading in colour on exposure, and will not take glue. It is used by the Burmese for musical instruments and cart-wheels; in India for gun-carriages and furniture; and is recommended as a Teak-substitute for railway-carriages and for counter-tops and ball-room floors.

Padouk, Andaman (*Pterocârpus dalbergioïdes* Roxb.). Andaman Islands. Squaring 60 ft. and 2 ft. in the side. W 40—60. Handsomer than *P. indicus*, being comparable to the best Spanish Mahogany, but browner. Used for furniture, parquet, etc. The root gives a closer-grained, darker, and more beautifully figured wood than the stem. Good samples of the wood fetch £10 per ton in London, or 4s.—4s. 6d. per cubic foot.

Pahautea. See Cedar, New Zealand.

Pai’cha (*Euônymus europèus*, var. *Hamiltoniánus* Wall.: Order *Celastríneae*). Ning-po. Perhaps also known as “Tu chung mu.” Yellowish-white, very hard, close- and fine-grained. Inferior to Box; but one of the best substitutes yet found for it as an engraver’s wood. Used by the Chinese for carving and typography.

Palisander-wood (i) *Jacarânda brasiliâna* Pers.: Order *Bignoniáceae*. Brazil. Sapwood very narrow, grey; heart dark chocolate-brown, marked by deep black veins and bands, very heavy, hard, difficult to split, almost brittle; rings scarcely visible; pith-rays
invisible; vessels large, appearing like strings of pearls on longitudinal, and as light-red spots on transverse, sections. A valuable wood, chiefly used in pianofortes. (ii) Possibly Dalbéria nigra Allem., or some species of the allied genus Machérium (Order Leguminosae) may be the source, in whole or in part, of this wood. Dalbéria nigra, sometimes apparently known as "Jacaranda caiuna," is dark-coloured, porous, and open-grained. S.G. 768—841. It is a valuable furniture-wood. Probably most of the Palisander-wood of commerce is Dalbéria or Machérium [See Rosewood], and not Bignoniaceous. The best in figure, and therefore the most valuable, comes from Bahia, but is a very wasteful wood, as the tree rots at the heart before reaching maturity, so that the roughly-hewn, semi-cylindrical billets of half a log each, in which form it is imported, are never sound. The wood from Rio Janeiro, though in less unsound round logs, is less figured.

Palo Cruz (Tabebúia nodosa Griseb.: Order Bignoniáceae). Northern Argentina. Yielding timber 11½ ft. long and 1 ft. square. Light yellow, loose-grained, but of good quality. Used for wagon-frames, axe-handles, etc.

Palo Maria. See Poon.

Palo Mulato. See Bois Mulatre.

Palo Narango. See Fustic.

Palu (Mimusops hexándra Roxb.: Order Sapotáceae). Ceylon. W 68. Large, very heavy, hard, red-brown, Walnut-like in tint; but monotonous, valuable for purposes of construction.

Panacoco (Robinia Panacóco Aubl. = Swártzia tomentósa DC.: Order Leguminosae). French Guiana. Height up to 50 ft.; diam. 8 ft., imported in logs squaring 17 in. and upwards of 32 ft. long. S.G. 1,231—1,181. R 400 kilos. Sapwood white; heart black, more lustrous than ordinary Ebony, very compact and durable. Used in fencing; but most valuable for cabinet-work.

Pao d'arco (Tecóma speciósa DC.: Order Bignoniáceae). Brazil. Height 100 ft.; diam. 10 ft. or more. Very hard, compact, and elastic.

Pao precioso (Mespilodáphné pretiósa Nees: Order Laurínáceae). Brazil. Very hard, compact, with beautiful grain, fragrant. Used in building and in perfumery.

Papaw (Asimina trilóba Dunal: Order Anónáceae). Middle, Southern, and Western United States. Also known as "Custard-

Papri. See Elm, Indian.

Parcouri (Clusia insignis Mart.: Order Clusiáceae). Guiana. Known in Demerara as “Wild Mammee, Coopa,” and “Cowassaa.” S.G. 816 for the black, 784 for the yellow variety. Fine, compact, and even in grain.

Partridge-wood in South America may be *Andira inérmis* [See Angelin], or *A. Aublétrie* [See Wacapou]. In Northern Australia it is the outer part of the Palm *Livistóna inérmis* R.Br., also known as “Cabbage-palm.” Height 14—40 ft.; diam. 1 ft. Light grey, streaked with a darker colour, the fibro-vascular bundles, producing a beautiful effect, very hard, and taking a good polish.

Peach-wood (Caesalpínia echináta Lam.: Order Leguminósae). Central and South America. Known also as “Lima, Nicaragua,” or “Pernambuco-wood,” or “Bresil de St. Martha.” Small and little known, hard, heavy, and susceptible of a good polish. Valuable as a red, orange, or peach-coloured dye; but inferior to Brazil-wood.

Pear (Pyrus communíinis L.: Order Rosáceae). Europe and Western Asia; cultivated as a fruit-tree in other temperate climates. French “Poirier.” Germ. “Birnbaum.” Span. “Peral.” Height 20—50 ft.; diam. 1—2 ft. S.G. 680. W 44—52. No true heart, but sometimes a darker, more chocolate-brown in the centre, light pinkish-brown, moderately heavy, hard, close-grained, tough, firm, difficult to split, but easily cut in any direction, taking a satiny polish, and very durable, if kept dry. Rings recognizable by the dark zone of the autumn-wood; pith-rays and vessels not visible to the naked eye. Highly esteemed for turnery, cabinet-work, T-squares, and other drawing instruments, calico-printing blocks, coarse wood-engraving and, when “ebonized” or stained black, for picture-frames.

Pear, Native, in Australia (i) (Xylomelum pyrifórmé Knight: Order Proteáceae). New South Wales and West Australia. Known
also as “Wooden Pear.” Height 20—40 ft.; diam. 6—8 in. W 40—56. Sapwood narrow, light; heart a rich dark reddish, with a beautiful rich figuring on tangential sections, taking an excellent polish. Occasionally used for picture-frames, veneers, and walking-sticks. (ii) (Hákea sericéa Schrad. (= aciculáris R. Br.) var. líssospérmá: Order Proteáceae). South-East Australasia. Height 20—30 ft.; diam. 8—10 in. Hard, and used in turnery.

Pear, Red (Scolópia Ecklónii Benth. and Hook. fil.: ’Order Flacourtiáceae). South Africa. Height 30—35 ft.; diam. 2—3 ft. Heavy, hard, close-grained. Used chiefly by wheelwrights and in mill-work.

Pear, Thorn or Wolf (Scolópia Zéyheri Benth. and Hook. fil.). Cape Colony. “Klipdoorn.” Zulu “Igumza elinameva.” Height 60—70 ft.; diam. 2—3 ft. Straight-growing, very hard and close-grained, very difficult to saw. Used for cogs.

Pear, Wooden. See **Pear, Native.**

Penagah. See **Poon.**

Pencil Cedar. See **Cedar, Pencil.**

Pencil-wood (Pánax Múrrayí F. v. M.: Order Araliáceae). North-East Australia. Height 50—60 ft. S.G. 348. Light-coloured, the lightest in weight of any wood in the district, soft. Pith large. The wood hardens externally in drying, so that the outside is often harder than the centre. Cuts well, and is recommended for lining-boards.

Pepperidge. See **Gum, Black.**

Peppermint, a name applied in Australia to various species of Eucalúyptus, including (i) E. amygdalína, which is known as “Brown, Dandenong, Narrow-leaved,” or “White Peppermint” [See Ash, Mountain]; (ii) E. capítelláta [See Stringybark, White]; (iii) E. microcórys [See Tallow-wood]; (iv) E. paucíflóra [See Gum, Mountain White]; (v) E. Stuartlána [See Gum, Apple-scented]; (vi) E. píperíta; and (vii) E. odorítá E. píperíta Sm. (Order Murtáceae). Eastern Australia. Known also as “Blackbutt, Redwood, Messmate, White,” or “Almond-leaved Stringybark.” Height 80—100 ft.; diam. 2—3 ft. S.G. 1,109—922. W 69:22. Red, very heavy,
but works with difficulty, and is very subject to shakes, durable. Used for posts, shingles, and rough house-building.

E. odorata Behr. South-East Australia. Also known as “Red Gum, Box,” and “White Box.” Small. W 60—70. Yellowish-white or light-brown, heavy, very hard, tough, close- and straight-grained, generally hollow. Used for fencing, wheels, and fuel.

Peppermint, Bastard. See Gum, Broad-leaved Water.

Pernambuco-wood. See Peach-wood.

Peroba branca or _Peroba de campos_ (_Sapóta gonocárpa_ Mart.: Order _Sapotáceae_). Brazil. A large tree, yielding straight timber, 60—70 ft. long, siding 24—40 in. S.G. 868—739. W 50. Yellow, moderately heavy, stronger than Teak, but not so heavy, close and fine-grained, easily worked, taking a high polish, very durable, even when in contact with iron. Used in building Brazilian ironclads, and is suitable for engineering or building-work, or for furniture.

Peroba vermelha (_Aspidosperma_ sp.: Order _Apocynáceae_). Brazil. Red, moderately heavy, smooth, close and fine in grain, somewhat resembling Pencil Cedar. Used in ship-building.

Pine is the general name originally applied in the Northern Hemisphere to the trees and wood of the coniferous genus _Pinus_, and subsequently extended—mainly in Australasia—to the allied genera _Agathis_, _Frenéla_, _Araucáaria_, _Dacrydium_, _Podocárpus_, and _Pseudotsúga_. Curiously enough, however, the wood of the various local varieties of the Northern Pine (_Pinus sylvéstris_) imported from Baltic ports, especially Dantzic, Memel, and Riga, is known in commerce as “Fir,” or “Red,” and “Yellow Deals,” the name “Pine” being used for the timber of other species of the same
genus imported from North America. The pines, often called firs, are known in French as “pin,” in German as “Kiefer, Föhre,” or “Pynbaum,” in Italian and Spanish as “Pino,” in Swedish as “Fura,” in Danish as “Fyr,” and in Russian as “Sosna.”

The wood of Pines, as also of those other trees that are so-called and of all Conifers, is of the simple structure described in our first chapter, consisting only of tracheids, with the pith-rays, and, in most cases, resin-canals. That of the true Pines—the genus *Pinus*—has numerous resin-canals, uniformly scattered through the annual rings, and has a distinct dark-coloured heart, though when the wood is freshly cut this last is often not recognizable. The pith-rays are rarely more than one cell thick, and are, therefore, invisible to the naked eye, but vary in depth, having generally from three to eight radial rows of elements, of which the central rows are parenchyma or cellulose-walled cells, with simple pits on their radial walls—*i.e.*, on those in contact with the tracheids of the xylem, whilst the upper and lower row or two consist of tracheids with bordered pits. The rings are rendered distinct by the darker and firmer zone of autumn-wood in each, consisting of more compressed, thicker-walled elements. This simplicity of structure and resinous character renders the wood uniform and even in texture, easy to work, and of considerable durability. It is also, on the whole, soft, light, elastic, stiff, and strong, characters which, coupled with its abundance in pure forests—forests, that is, mainly made up of a single species—combine to render the Pines the most generally useful and among the cheapest of woods.

The wood even of a single species of Pine varies very much, according to the condition under which it is grown; but, though connected by intermediate cases, most of the species fall into two fairly well-marked groups, known in America as the “Hard” and “Soft” Pines. The Hard Pines are harder, heavier, and darker-coloured, ranging from yellow to deep orange or brown; their autumn-wood forms a much broader proportion of the ring, and is somewhat abruptly marked off from the spring-wood; and the tracheids of their pith-rays have their walls very unevenly thickened with tooth-like projections. This group includes the Northern (*Pinus sylvestris*), Austrian (*P. austriaca*), and Mountain (*P. montana*) of Europe, and the majority of the North American species. The Soft Pines are softer and lighter; range in colour from light-red to white; have a narrow autumn zone gradually merging into the spring-wood on its inner surface; and have smooth walls to the tracheids of their pith-rays, with no tooth-like projections. The group includes the Cembra Pine (*P. Cémbra*) of Europe, and the Yellow, or, as it is there called, White (*P. Stróbus*), Sugar (*P. Lambertiana*), and a few other species in America.
Pine seasons rapidly and with but little shrinkage, this being, however, greater in the harder kinds. It is never too hard to nail, and when once well seasoned, is not subject to the attacks of boring insects. It is not, therefore, to be wondered at that Pine has become by far the most extensively used of all woods. The straight-growing, tapering stem fits it for masts and spars; its strength and lightness recommend it for ships' timbers, planking, bridges, and carriage-building, its durability for sleepers, its resinous character for torches or fuel, the refuse yielding charcoal and lampblack, and its cheapness for street-paving, general carpentry, common furniture and boxes and paper-pulp.

Pine, Adventure Bay. See **Pine, Celery-topped.**

Pine, Aleppo (P. halepensis Mill.). Mediterranean region; introduced in Australia. Height 50—80 ft.; diam. 2—3 ft. Yellowish-white, fine-grained. Valued locally for telegraph-poles, turnery, joinery, or fuel, and as a source of turpentine. This was probably the Oren, πίτον, or "Ash" of Isaiah xliv. 14; and also the Berosh, κυπαρισσός, or "Fir" of Isaiah xxxvii. 24. It was used for flooring, ceiling, and doors in the Temple, for harps, and for ships' decks.

Pine, Austrian (Pinus austriaca Höss.= P. Lariéio in part). Lower Austria and the north of the Balkan Peninsula. Known also as "Black Austrian Pine." Germ. "Schwarzkiefer." French "Pin noir d’Autriche." Height 80—120 ft., relatively slender. Wood very similar to that of the Northern Pine (P. sylvestris); but, when grown in poor soil, apt to be knotty. Suitable for fencing or fuel.

Pine, Bastard. See **Pine, Cuban.**

Pine, Bhotan (P. excélsa Wall.). At altitudes of 6,000 to 12,000 ft., from Bhotan to the Kuram Pass in Afghanistan. Also known as "Indian Blue, Five-leaved," or "Himalayan Pine." French "Pin pleureur." Germ. "Thränen Kiefer." Chinese "Tongschi." Height 50—150 ft.; diam. 2—3 ft. Reddish, compact, close-grained, very resinous, durable. Used for torches; but the most valuable wood of its district for building or engineering work, and second only in durability to the Deodar.

Pine, Big-cone (P. Coûlteri Don.= P. macrocarpa Lind.). Coast-range of California. Reported to be of small value as timber.

Pine, Bishops'. See **Pine, Obispo.**

Pine, Black, in North America (P. Jeffreyi Balf.). California and Oregon, above 6,000 ft. Known also as "Bull Pine." Height 100 ft. or more, up to 300 ft.; diam. 4 ft. or more, up to 10 or 12 ft. Light, hard, strong, very resinous. One of the "Hard Pines," closely allied to the Bull Pine (P. ponderosa). Used locally, chiefly as coarse lumber. See also **Pine, Lodge-pole.**
Pine, Black, in New Zealand (i) (*Prumnopitys species* Masters: Order *Taxineae*). Maori “Matai.” Height 80 ft.; diam. 2—4 ft S.G. 787. W 35—40.25. p 197.2. Cinnamon-brown, heavy, close, smooth, and even in grain, strong, easily worked, very durable. Used for piles, sleepers, house-building, millwrights’ work, etc. (ii) (*Podocarpus ferruginea* Don.: Order *Taxineae*). Maori “Miro.” Germ. “Mirobaum.” Height 50—80 ft.; diam. 1—3 ft. S.G. 1,214 when green, 752—658 when seasoned. W 52—40. p 190. Light to dark reddish-brown, sometimes nicely figured, moderately heavy and hard, close, straight, and even in grain, strong, elastic, planing up well, and taking a good polish, durable in contact with sea-water, but not in contact with the soil. Used for piles, and suited for house-building, cabinet-work, or turnery.

Pine, Black, in Australia. See Cypress Pine.

Pine, Bull (*P. ponderosa* Doug.). Western North America. Known also as “Yellow” or “Heavy-wooded Pine.” Germ. “Westliche Gelbkiefer.” Height 100—150 ft. or up to 300 ft.; diam. 5—6 or 15 ft. Sapwood wide; heart very variable in weight, strength, and durability, generally hard, brittle, strong, resinous, but not durable in contact with the soil. Furnishing most of the hard Pine of the West, being largely used for lumber, railway-ties, mining-timber, and fuel. See also Pine, Black, and Pine, Nut.

Pine, Bunya. See Bunya-bunya.

Pine, Canadian Red (*P. resinosa* Sol. = *P. rúbra* Michx.). Michigan and Minnesota to Newfoundland. Known in Canada as “Norway Pine” and in Nova Scotia as “Yellow Pine.” French “Pin rouge d’Amérique.” Germ. “Rothkiefer” or “Harzige Fichte.” Height 60—100 ft. or more; diam. 2—2½ ft. S.G. 578—485. W 30—44. E 650—850 tons. c’ 1.32. p’ 81. f’ 3.71. ft 5.1—6.3. c 2,705. c’ 357. fc 2.4—2.76. v’ 62. fs 22—35. R 800 kilos. Sapwood yellowish-white; heart slightly reddish, light, harder than Yellow Pine (*P. Stróbus*), tough, elastic, moderately strong, fine-grained, working up well, with a silky lustre, very resinous, durable, not shrinking or warping much in seasoning. Used for spars, ship-building, and piles; but chiefly for flooring, for which it is preferable to Yellow Pine, with which it grows, it being, in fact, a hard Pine, resembling resinous examples of Scots Fir.

Pine, Canadian Yellow. See Pine, White.

Pine, Carolina. See Pine, Short-leaf.

Pine, Cedar. See Pine, Lowland-Spruce.
Pine,Celery-topped (*Phyllocladus rhomboidalis* Rich.): Orde: *Taxinæa=Podocarpus asplenijolia* Labill.). Tasmania. Known also as "Adventure Bay Pine." Height up to 60 ft., usually too slender to be useful. Even-grained, and easily worked, strong, durable. Occasionally used for spars, flooring, and railway-cars. See also *Tanekaha.*

Pine, Cembra (*P. Cembra* L.). From Kamtschatka to the Urals, Carpathians, and Alps. Known also as "Swiss Stone Pine." French "Cembrat, Tinier." Germ. "Zirbelkiefer, Zirbe, Arve." Swiss "Alvier, Arolla." Height 60—70 or 90 ft. Sapwood broad, yellowish-white; heart, when dry, white or yellowish-brown, light, soft, fine-grained, easily split, shrinking little, susceptible of a fine polish, fragrant, and obnoxious to insects; annual rings regularly circular; narrow autumn wood scarcely distinguishable; resin-ducts numerous and very large; pith-rays with one row of smooth-walled tracheids above and below, with small bordered pits, and generally three rows of parenchyma in the middle, with large simple pits. A soft pine, in request for wainscoting, carved work, lining clothes'-chests, turnery, etc.

Pine, Chile (*Araucária imbricata* Pavon; Order *Araucarínæ*). Southern Chile. Known also as "Pehuen, Piñon," and "Monkey Puzzle." Germ. "Chilitanne, Schmucktanne." Height 70—100 ft.; diam. 5—7 ft. at base. Wood in English-grown specimens cross-grained, and not seemingly of value; but in Chile yellowish, beautifully veined, and susceptible of a fine polish. Used in Chile for masts.

Pine, Cluster (*P. Pinaster* Sol. = *P. maritima* Lam.). Mediterranean region; naturalized in South Africa, Northern India, Australia, etc. French "Pin de Bordeaux, Pin maritime, Pin des Landes." Germ. "Sternkiefer, Strandkiefer." Height 50—60 ft. W 33—48. reddish, soft, coarse-grained, not durable. Used mainly for coarse carpentry, packing-cases, and fuel; but of great value as a source of turpentine, charcoal, and lamp-black being manufactured from the refuse. Large numbers of pit-props of this species are imported into South Wales from Bordeaux.

Pine, Colonial. See Pine, Moreton Bay.

Pine, Common, of Australia. See Cypress-Pine.

Pine, Cuban (P. cubenis Griseb.). Southern United States. Known also as “Bastard, Meadow, Slash, or Swamp Pine,” and in British Honduras as “Yellow,” or “Pitch Pine.” Height 75 ft. or more; diam. 2 ft. or more. Heavy, exceedingly hard, very strong, tough, and durable, little inferior to Long-leaf Pine (P. palustris), with which it is classed in Florida, but with wider sapwood and coarser grain. Used in carpentry.

Pine, Cypress. See Cypress-Pine.

Pine, Dantzic. See Pine, Northern.

Pine, Dark. See Cypress Pine.

Pine, Digger. See Pine, Nut.

Pine, Dundatha (Agathis robusta Salisb. = Diammara robusta C. Moore, and A. Palmerstóni F. von Muell.: Order Coniferae). Queensland. Known also as “Queensland Kauri.” Height 80—130 ft.; diam. 3—6 ft. Light yellow, soft, close-grained, free from knots, and easily worked. Largely used by joiners and cabinet-makers, for pattern-making and in house-building.

Pine, Flexible (P. flexilis James). Rocky Mountains at altitudes of 4,000—12,000 ft. Height 40—50 ft.; diam. 2—4 ft. Light, clear yellow, turning red on exposure, light, close-grained, compact, very pliable, but very knotty and coarse-grained. Known and used locally as “White Pine.”

Pine, Fox-tail (P. Balfouriána Murray). California at altitudes over 5,000 ft. Known also as “Hickory” or “Awned Pine.” Height 30—50 ft.; diam. 1—5 ft. Light, and apparently soft, and not strong; but used in Nevada for mine-timbers.

Pine, Frankincense. See Pine, Loblolly.

Pine, Georgia. See Pine, Long-leaf.

Pine, Grey (P. Banksiána Lambert). Canada and Labrador from the Arctic Circle to Michigan and Maine. Known also as “Scrub, Jack, Yellow,” or “Prince’s Pine.” Germ. “Strauchkiefer.” Height 25—60 or 70 ft.; diam. 1—2 ft. Light, soft, not strong. Used chiefly for fuel and railway-ties, but recommended for planting in swampy or arid soils.

Pine, Hazel. See Gum, Sweet.

Pine, Hickory (P. pungens Michx.). Alleghany Mountains. Known also as “Table Mountain Pine.” Germ. “Stechende Kiefer.” Height 25—40 ft. Light, soft, coarse-grained, not strong. Chiefly used for charcoal. [See also Pine, Fox-tail.]

Pine, Himalaya. See Pine, Bhotan.

Pine, Hoop. See Pine, Moreton Bay.

Pine, Jack. See Pine, Grey.

Pine, Japanese Red \((P. \text{densifl}^2\text{ora S. and Z.})\). Japan "Me-matsu, Aka-matsu." Height 50—70 or 100 ft. Slender, coarse-grained, moderately strong, more ornamental than that of the preceding. Used for all kinds of carpentry, and a favourite species in a dwarfed condition.

Pine, Jersey \((P. \text{virgini}^2\text{ana Mill.} = P. \text{inops Sol.})\). Eastern United States. Known also as "Scrub Pine." French "Pin chétif." Height up to 75—100 ft.; diam. up to 2—3 ft. East of the Alleghanies used only as fuel; to the west, where it reaches timber size, used in carpentry, especially in contact with water.

Pine, Kauri. See Kauri.

Pine, Loblolly \((P. \text{T}^2\text{eda L.})\). Southern United States. Known also as "Torch, Frankincense, Slash, Rosemary, Sap, Short-straw," or "Old Field Pine." French "Pin à l'encens." German "Weihrachkiefer." Height 80—100 or 175 ft.; diam. 2—5 ft. Sapwood wide; heart hard, though less so than in the Long-leaf Pine \((P. \text{sph}^2\text{iratrix})\), with which it is generally confounded, lighter, coarser in grain, and with wider rings than that species, not strong or durable. Used for common lumber; but suited rather for fuel; rich in resin.

Pine, Lodge-pole \((P. \text{Murray}^2\text{ana Balf.})\). Mountains of Western North America. Known also as "Tamarack Pine, Black Pine," or, in the smaller form \((P. \text{cont}^2\text{ório Doug.})\) as "Oregon Scrub Pine." Height 70—80 or 150 ft.; diam. 4—6 ft. Light, hard, straight-grained, easily worked, but not strong or durable. Used locally for railway-ties and carpentry, and more generally for fuel.

Pine, Long-leaf, in America \((P. \text{sph}^2\text{iratrix Mill.} = P. \text{austr}^2\text{alis Michx.})\). Southern pine-barrens from North Carolina to Texas. Known also in the Northern States as "Southern, Georgia," or "Red Pine"; in the Southern States as "Turpentine-tree," "Yellow, Broom," or "Long-straw Pine"; and generally, especially in foreign trade, as "Pitch Pine," associated with the name of the port of origin, such as Darien, Pensacola, Savannah, etc. Height 50—100 ft.; diam. 1\(\frac{1}{2}\)—4 ft. S.G. 932—498. W 37—44. E 950 tons. \(c'\) 1·93—1·53. \(p'\) 91—1·3. \(f\) 3·57. \(ft\) 4—5·09. \(c\) 4,666. \(c'\) 616. \(fc\) 3·99. \(v'\) 847. Imported in logs and planks, 20—45 ft. long, squaring 11—18 in., or 3—5 in. thick, and 10—15 in. wide.
Reddish, resembling the Northern Pine (*P. sylvestris*), but heavier and more resinous, owing to which latter character the broad zone of autumn-wood appears greasy, tough, compact, clean, regular, straight, and sometimes fine and sometimes rather coarse in grain, susceptible of a high polish, rigid, rather difficult to work, but harder and stronger than other American Pine, liable to heart and cup-shake; but, I believe, very durable. "There are," says Mr. Stevenson, "numerous architects and civil engineers who rigidly adhere to the use of Memel and Dantzie Fir, and who will not allow the use of Pitch Pine, whilst there are others who rank it almost with the Oak, and state that in piling, and in jetties, exposed to the tides and weather, it will last double and treble the time allotted to Memel and Dantzie Fir." It is still the most abundant, and by far the most valuable, Pine in the Atlantic States, occupying a belt from 80 to 125 miles wide, once covering 130,000 square miles. "Invaded from every direction by the axe, a prey to fires, which weaken the mature trees and destroy the tender saplings, wasted by the pasturage of domestic animals, and destroyed for the doubtful profits of the turpentine industry, the forests . . . appear hopelessly doomed to lose their commercial importance at no distant day" (Sargent). Millions of feet of marketable timber are constantly destroyed by the carelessness of the turpentine-workers. As a source of turpentine it is the most important species in the world. Its timber is used in ship-building for spars, beams, and planking, the redder wood ("Red Pine" of the dockyards in the Northern States) being specially valued for durability and a greater power of resisting the ship-worm than that possessed by Oak. In English shipbuilding it has almost extinguished the use of Baltic timber for spars, England importing, in all, over 500 million feet, or nearly 870,000 loads—more than a third of the entire export. In America it is largely used for fencing, railway-ties, mine-timbers, wood-paving, house-building, and fuel; whilst in this country it is largely used for wainscoting and church and school fittings, and to some extent in cabinet-making.

Pine, Long-leaf, of the Himalayas (*P. longijolia* Roxb.). From Bhotan to Afghanistan at altitudes of 1,500 to 7,500 ft. *Hind. "Chir."* Height 100 ft. or more. Soft, not durable, easily worked. Used for tea-boxes, shingles, and building; but chiefly valuable for its resin, one tree yielding 10—20 lbs. the first year. The wood is also used for torches and for charcoal, so that this is, on the whole, the most valuable Himalayan species.

Pine, Lowland Spruce (*P. glabra* Walt.). South-Eastern United States. Known also as "Cedar" or "White Pine," and in Florida as "Old Field Pine." Height 80 ft. or more; diam. 3 ft. or more. Light, soft, brittle, easily worked, not strong or durable, resembling
the Loblolly Pine (\textit{P. \textit{Táeda}}), not resinous. Employed chiefly for inside work.

\textbf{Pine, Maritime.} See \textit{Pine, Cluster}.

\textbf{Pine, Meadow.} See \textit{Pine, Cuban}.

\textbf{Pine, Monterey (\textit{P. \textit{insignis} Doug.} = \textit{P. \textit{radiáta} Don.}).} South California. Height \textit{80—100 ft.; diam. 2—5 ft.} Light, soft, brittle, not strong. Used only for fuel.

\textbf{Pine, Moreton-Bay (\textit{Aracuária Cumnighami} Lamb.: Order \textit{Aracuáriaeae}).} North-East Australia and New Guinea. Known also as “Colonial” or “Hoop Pine, Coonam,” Cumburtu. Height \textit{150—200 ft.; diam. 3—5½ ft.} S.G. \textit{763—500.} W \textit{30—33.75.} Yielding spars \textit{80—100 ft. long, light-coloured, light, straight-grained, hard and strong, the sapwood liable to rot, but the heart durable if kept constantly dry or wet, working very easily, sometimes exhibiting a peculiar figure from groups of small knots.} In request for flooring-boards, carpentry, punt-bottoms, and to some extent for cabinet-work and spars, mountain-grown timber being preferred. The chief softwood of Queensland; but far inferior to European or American Pine.

\textbf{Pine, Mountain (\textit{P. montána} Mill., including \textit{P. Pumílio} Haenke, of Thuringia and the Carpathians, \textit{P. \textit{Múghis} Wild. of the Tyrol, and \textit{P. uncináta} Ram. of the Pyrenees).} Central and Southern Europe, at altitudes of \textit{500—8,000 ft.} French “Pin nain.” Germ. “Bergkiefer, Krummholziefer, Zwergkiefer.” Resembling the Northern Pine (\textit{P. \textit{sylvéstris}}), but small, often eccentric in growth, narrow-ringed, harder, and heavier.

\textbf{Pine, Murray, and Pine, Murrumbidgee.} See \textit{Cypress Pine}.

\textbf{Pine, New York.} See \textit{Pine, Short-leaf}.

\textbf{Pine, Norfolk Island (\textit{Aracuária excílsa} R. Br.).} Germ. “Norfolkianne.” Height \textit{150—200 ft.; diam. 5—7 ft.}, yielding excellent timber, but now scarce.

\textbf{Pine, Northern (\textit{P. \textit{sylvéstris} L.}).} Europe and Northern Asia, up to \textit{700 ft. above sea-level in Northern Norway and 6,500 ft. on the Sierra Nevada of Southern Spain.} Known in Scotland as the “Scots,” in England as the “Scotch Fir,” and in the timber trade by various names, according to its origin, such as “White Sea,” “Baltic,” “St. Petersburg,” “Riga,” “Memel,” “Dantzie,” “Gefle,” “Soderhamn,” “Eliasberg,” “Saldowitz,” “Swedish,” or “Norway Fir,” “Redwood,” “Red” or “Yellow Deal.” French “Pin sauvage.” Germ. “Gemeine Kiefer, Föhre,” or “Weissföhre.” Dutch “Pynboom.” Danish “Fyrre.” Russ. “Sosna.” Height \textit{80—100 ft.; diam. 2—4 ft.} S.G. \textit{774—478.} W \textit{19—47.} e’ \textit{1.3—1.69.} p’ \textit{74—108.7.} ft \textit{2.5—5.5.} fc \textit{2.5—3.} e 4,051—
3,231. $c' \cdot 535 - 427. \ v' \cdot 93 - 618$. The characters and quality of the wood vary much, according to climate and soil. Conversely to what is the case with Oaks, the more slowly grown Pines of high latitudes or mountains, having narrower annual rings, with a proportionally smaller amount of spring-wood, are heavier, denser, and stronger than those of the South, or of plains, or from rich soils. English-grown Pine is thick-baited, carrying a great amount—often 4 inches—of sapwood, and is generally only used locally, not being nearly as durable as Larch. Scotch-grown wood is of better quality, and is imported into the North of England, chiefly as mine-timber. The Pine from Prussia and Central Russia is large, heavy, hard, resinous, and of excellent quality for sleepers, paving-blocks, masts, beams, and planks; that from Archangel being the strongest and most durable imported, though subject to heart-shakes and surface-checks, and that from St. Petersburg sounder, but more sappy; whilst from farther North—as from Gefle and Soderhamn in Central Sweden—a wood of high quality is shipped, and from the White Sea a closer-grown, less resinous kind, more suitable for joinery.

The sapwood is yellowish to reddish-white, the heart only becoming distinct as brownish-red in drying, and the wood being on the whole whiter when grown on plains, redder when on hills. The annual rings are very distinct, owing to the broad, sharply defined zone of dark autumn-wood that characterizes the "hard Pines," and they are slightly wavy. The resin-ducts are numerous, very large and distinct, and mostly in peripheral zones near the outer margin of the rings. The pith-rays consist of two or three rows of thin-walled parenchyma, with large oval pits on their radial walls, each almost as wide as a tracheid, and two or three rows of tracheids above and below, with very unevenly thickened walls and small bordered pits. As the branches are in whorls, the knots serve to distinguish Pine from Larch, in which they are scattered. In Northern Europe the Pine is the chief timber used in house-building, both for framework of hewn logs, walls of logs in the round, and clapboards; in Russia Pine-logs are used for corduroy roads, and the use of the wood for fuel is universal. Baltic Pine was imported to and used in our east-coast towns for flooring, wainscoting, and joinery in the fifteenth, sixteenth, and seventeenth centuries, when Oak was the chief building timber employed in England. Not till the beginning of the eighteenth was it recognized that the Scots Fir was the same species; the high price of foreign timber during the Napoleonic wars led to the clearing of the indigenous pine-forests of Northern Scotland; and the excellence, easy working, and great durability of the timber obtained from them broke down the prejudice in favour of Oak, and resulted in the great consumption of Baltic, White Sea, and Canadian Pine during the nineteenth
century. Dantzie Fir, floated in rafts down the Vistula to that port, comes into the market in lengths from 18—50 ft., squaring from 11—20 in., in deals 2—5 in. thick, and as irregularly grown logs for sleepers. The longest and straightest logs most free from knots are selected at Dantzie as ‘‘inches-masts,” “hand-masts,” and “spars,” or “poles”; “inches-masts being over 6 ft. in circumference, and dressed octagonally or square; “hand-masts,” from 2—6 ft. round, their length being measured in hands; and “spars” or “poles,” less than 2 ft. round. This wood is valued for deck-planking, beams, joists, scaffolding, railway-work, etc. Its average specific gravity is given by Mr. Laslett as 582, and it is described by him as light, moderately hard, even and straight in grain, tough, elastic, and easily worked. Riga Fir, with fewer knots, but a slight tendency to heart-shake, which makes it more wasteful in conversion into plank, averages about 541 in specific gravity, and so is, on the whole, inferior to Dantzie. Swedish Fir is yellowish-white, liable to heart-, star-, and cup-shakes, and does not exceed 35 ft. in length, or 16 in. square. It furnishes cheap building material, deals for rough carpentry, and much wood for matches and firewood. Norway Fir comes over in cheap prepared flooring and matchboarding, and as firewood.

Pine, Norway. See Pine, Canadian Red.

Pine, Nut (*P. Sabiniána* Doug.). California, up to 4,000 ft. Known also as “Digger” or “Bull Pine.” Germ. “Nusskiefer, Weisskiefer.” Height 40—50 or 80 ft.; diam. 1—4 ft. Light, very soft, resinous, cross-grained, not durable. Valuable only as fuel.

Pine, Old Field. See Pine, Loblolly and Short-leaf.

Pine, Oregon (*Pseudotsúga Douglsíi* Carr.). Western North America from lat. 55° N. southward to lat. 23½° N., up to 11,000 ft. Known also from its discoverer as “Douglas Fir” or “Douglas Spruce,” or as “Yellow” or “Red Fir.” French “Sapin de Douglas.” Germ. “Douglas-Tanne, Douglas-Fichte.” Height 100—300 ft.; diam. 4—6 or 12 ft. S.G. 605. Though more nearly allied to the Firs and Spruces, resembling Larch or hard Pine in the general appearance, quality, and character of its wood. Sapwood narrow, yellowish, heart variable, usually reddish-white, heavy, hard, strong, coarse-grained, with well-defined summer wood, but sometimes yellowish, lighter and finer in grain; close,
straight and regular in grain, with few knots scattered as in Larch, firm, tough, elastic, not in the least liable to warp, more nearly resembling Canadian Red Pine (P. resinosa) than any other wood, rapid in growth, averaging 2 ft. in diam. at 100 years of age, very durable; annual rings well defined; resin-ducts small, often in groups of 8—30; pith-rays with tracheids with bordered pits as upper and under rows and parenchyma with simple pits in the centre; tracheids in the xylem with a spiral thickening, which distinguishes it from all allied wood. Coming to market in clean, straight spars 40—110 ft. in length, and 9—32 in. in diam., this timber is excellent for lower masts, yards, bowsprits, etc., though less adapted for top-masts, where there is much friction, than Riga, Dantzic, or Kauri timber. Used in its native country also for house-building, engineering work and fuel, its freedom from fungoid disease and durability, even when grown rapidly in Scotland, suggests that Douglas Fir may well supersede Larch for sleepers, etc. It is 25 per cent. cheaper than Archangel wood of the same quality. Of the two varieties var. macrocarpa, the Californian, is better worth growing than the slower var. glauca of Colorado.

Pine, Pitch (P. rigida Miller). Ontario and New Brunswick to Florida. Height 40—80 ft.; diam. 2—3 ft. S.G. 515. W 32. R 739 kilos. Small, coarse-grained, resinous, knotty, light, soft, brittle. Used chiefly for fuel, for which it is unsurpassed in the North, and for charcoal; but formerly much used in New England for building. The name in trade outside the United States belongs to the Long-leaf Pine (P. palustris).

Pine, Pond (P. serotina Michx.), little more than a southern variety of the last-named.

Pine, Prince’s. See Pine, Grey.

Pine, Red, of New Zealand. See Rimu.

Pine, Sand (P. clausa Vasey). South-East United States. Known also as “Upland Spruce” or “Scrub Pine.” Height 15—20 or 80 ft.; diam. 1—2 ft. S.G. 557. W 34·75. Sapwood
broad, nearly white; heart light orange, light, soft, brittle, not strong. Sometimes used for small masts.

Pine, Sandarac. See Cypress Pine.

Pine, Sap. See Pine, Loblolly.

Pine, Scrub, of Australia. See Cypress Pine.

Pine, Scrub, of California or Oregon. See Pine, Lodge-pole.

Pine, Scrub, of North-Eastern America. See Pine, Grey. [See also Pine, Jersey, and Sand.]

Pine, She. See Cedar, Pencil.

Pine, Short-straw. See Pine, Loblolly.

Pine, Silver. See Pine, Westland.

Pine, Slash. See Pine, Loblolly, Cuban, and Short-leaf.

Pine, Southern. See Pine, Long-leaf.

Pine, Spruce. See Pine, Short-leaf.

Pine, Stringybark. See Cypress Pine, Mountain.

Pine, Swamp. See Pine, Cuban.

Pine, Table Mountain. See Pine, Hickory.

Pine, Umbrella (Sciadópitys verticilláta S. and Z.: Order Taxo-
Schirmtanne." Japan "Kóya-maki." Height 100 ft.; diam.
2—3 ft. Wood nearly white, yellowish, or reddish-white, strong,
straight-grained. Used at Osaka, to which port it is floated down
the Kisiogaiva.

Pine, Upland Spruce. See Pine, Sand.

Pine, Westland (Dacrydium Westlándicûm T. Kirk: Order
timber 50 ft. long and 2½ ft. diam. W 4½. Light-coloured, very
fine- and even-grained, working well, heavier, harder, stronger,
tougher and more durable than Kahikatea. Excellent for sleepers
or piles.

Pine, White, of Australia. See Cypress-Pine.

Pine, White, of America (P. Stróbus L.). Newfoundland and
Quebec to Georgia. Known also as "Soft, Apple, Sapling, New
England," or "Pumpkin Pine," and in England as "Weymouth
Pine," having been largely planted by Lord Weymouth at Longleat,
or in the English timber-trade as "Yellow Pine." Germ. "Wey-
mouths-Kiefer, Strobe," French "Pin du Lord, Pin blanche." Height
140—180 ft., sometimes 100 ft. to first branch; diam. 3—4 or 8 ft.
S.G. 385—600. W 20—30. E 600 tons. e' 1·46—6·94, averaging
3·48. p' 6—78. j 3. f t 1·5—5·1. c 2,027. c' 267. fc 2·24—
2·5. R 626 kilos. Straight-growing; sapwood yellowish-white;
heart pinkish-yellow to pinkish-brown, light, very soft, straight-
grained, compact, not strong, free from resin, easily worked, sus-
ceptible of a fine polish, but not durable in contact with soil, subject
to cup and heart-shake, and in old trees to a slight sponginess at
the centre, very closely resembling the Cembra Pine (P. Cémbra),
the narrow zone of autumn-wood merging into the spring-wood,
the tracheids of the pith-rays having smooth walls, and the cells
one or two large simple pits on their radial walls to each tracheid
of the xylem. This is the most useful of American timbers, being
very valuable for every description of joinery, doors, sashes, blinds,
interior finish, laths, shingles, clap-boards, cabinet-work, and
spars, and used also for fuel. Masts of this timber are much
inferior to Baltic or Douglas Pine in strength, and cannot be relied
upon for more than eight or ten years, especially if in the tropics.
They should be very thoroughly seasoned before being painted,
and the paint then renewed almost annually. Trees of a size
suitable for masts were protected in our American colonies at the beginning of the eighteenth century; but a century later seventeenths of the houses in North America, except in the large towns, were built of wood, and of these about 75 per cent. were of this species. Reference has already been made to its reckless destruction by the axe and by fire.

Pine, White, of Western North America (*P. monticola* Don.). British Columbia to California, at altitudes of 2,000—10,000 ft. Height 80—100 ft.; diam. 4—5 or 7 ft. Nearly white, very light, soft, close- and straight-grained, but inferior to *P. Stróbus*, which it much resembles.

Pine, White, of New Zealand (*Podocárpus dacydioïdes* A. Rich. = *Dacrydium excélsum* D. Dox and *D. ferrugineum* Van Houtte: Order *Taxinesae*). Maori “Kahikatea.” Height 80—150 or 180 ft.; diam. 4—5 ft., sometimes 60 ft. to the lowest branch. S.G. 488—428. W 26:75—35. p 106. Yielding timber 20—60 ft. long, squaring 1—2½ ft., white, light, soft, straight and even in grain, tough, easily worked, not durable when exposed or in contact with soil. Used in house-building and occasionally for canoes, but better adapted for indoor use, cheap furniture, packing-cases, or paper-pulp. This valuable timber, comparable in many respects to Yellow Pine (*Pinus Stróbus*), is likely to have a great future on the European market. It has only come into notice with the great Australasian demand for butter-boxes; but it can be imported at a cheap rate in baulks of great lengths and widths, and is likely, therefore, to compete with the better qualities of Canary Whitewood. *P. latijólia* Wall. of Burma is finer in grain and darker in colour, and *P. Milanjíana* Rendle, of British East Africa, is very similar to this last.

Pine, Yellow. See Pine, White, Bull, Grey, and Short-leaf. The Yellow Pine of the English trade is the American White Pine (*Pinus Stróbus*).

Piney-tree. See Poon.

Piney Varnish (*Vatéría indica* L.: Order *Dipterocarpáceae*). Southern India and Ceylon. Known also as “Indian Copal” or “White Dammar.” *Canarese* “Dupa maram.” *Tamil* “Pineymaram.” *Sinh.* “Hal.” Height 30—60 ft.; diam. 2—5 ft. W 26. Sapwood reddish-white; heart grey, tough, moderately hard, porous, said to be termite-proof. Used on the West Coast of India for boat- and house-building and masts, and in Ceylon for coffins, packing-cases, etc. It yields a fine copal or gum anime, used in Ceylon as incense, the finest specimens being sold as amber. Of allied species *V. acumináta* Hayne, of Ceylon, is used for tea-chests.
Pink Ivory, Zulu "Muni" (Order Leguminósa). A beautiful, but as yet undetermined, wood, of an Acacia-like tree of moderate dimensions, growing in kloofs in South-Western Natal, with yellowish broad sapwood and rose-pink heart, compact, fine-grained, moderately heavy and hard, and with indistinct rings.

Plane, Eastern, or Oriental (Plátan us orientális L.: Order Plataníceae). Kashmir to Greece. French "Platane de l'Orient." Germ. "Morgenlandischer Platanus." Arab. "Doolb." Pers. "Chimar." Probably the Hebrew "Armón" in Gen. xxx. 37, correctly rendered πλάτανος in the Septuagint and Platanus in the Vulgate; but "Chestnut" in the Authorized Version. Height 70 ft.; diam. 3—5 ft. W 30-5—42. Pale yellow or slightly reddish, resembling Beech, but softer, in very old trees becoming brown with black lines so as to resemble Walnut, fine, close, and smooth-grained, capable of a high polish, but very apt to warp and split, frequently worm-eaten and not durable, but improved by soaking for several years; annual rings finely but distinctly marked, bending outward at the pith-rays; pith-rays numerous and broad, occupying nearly half the surface, and producing a pretty figure; vessels scarcely recognizable. Formerly used for "dug-out" boats at Mount Athos, and by the Turks for ship-building; in Persia and the Levant employed for cabinet-work, turnery, and carpentry, and in France as a substitute for Beech or Hornbeam.

Plane, Western or Occidental (Plátan us occidentális L.) Eastern North America. Known also as "Sycamore, Button-wood, Water-Beech, Button-ball Tree," or when cut radially as "Lace-wood" or "Honeysuckle Wood." French "Platane Americain, Platane de Virginie." Height 120 ft.; diam. 10—14 ft. or more. S.G. 568. W 51-5—28. R 635 kilos. Sapwood wider than in the Beech, yellowish; heart reddish-white, resembling Beech, except that the broad pith-rays are far more prominent; rather heavy, rather hard, compact, stiff, tough, not very strong, usually cross-grained, difficult to split, but, when dry, easy to cut in every direction, liable to warp, not durable if exposed; rings marked by a fine line bending slightly outward at the pith-rays; vessels evenly distributed. Used considerably for cigar- and tobacco-boxes, wooden bowls, butchers' blocks, cooperage and blind-wood in cabinet-work. The cabinet-makers of Philadelphia object to the wood when in plank from its tendency to warp; but when well seasoned it stands well, and is imported into England for furniture. It is also cut radially as veneers, the "felt" or "silver grain" produced by the pith-rays being darker than the ground colour, which is just the converse of the arrangement of tint in Oak. Plane makes good fuel when dry, but the difficulty of splitting it hinders its use. The Californian species (P. racemósa Nutt.) has very similar wood.
By a tiresome confusion the name "Plane" is given in Southern Scotland to the wood of the Sycamore or Great Maple (Acer Pseudoplatanus L.). See Sycamore.

Plum, in Australia. See Acacia.

Plum, Black (Cárgiliá austrális R. Br.: Order Ebenáceae). North-East Australia. Height 60—80 ft.; diam. 1½—2 ft. W 52. Close, very tough, firm, apt to split and discoulour in seasoning and very liable to insect attacks. Used for whip-handles.

Plum, Burdekin (Spondiá pleiógyá F. v. M.: Order Anacardiáceae). Queensland. Known also as "Sweet Plum." Dark brown with red markings, resembling Walnut, hard, close and straight in grain. Suitable for turnery or cabinet-work.

Plum, Grey (Cáppariá nóbílis F. v. M.: Order Capparidáceae). North-East Australia. Known also as "Caper-tree" and "Native Pomegranate." Height 20—25 ft.; diam. 6—14 in. Light coloured, hard, close-grained. Used for whip-handles, and suitable for carving. [See also Myrtle, Black.]

Plum, Kafir. See Date, Kafir.

Plum, Native or Wild. See Apple, Black or Brush.

Plum, Sour (Owénia venósá F. v. M.; Order Meliáceae). Queensland. Known also as “Tulip-wood.” Height 30—40 ft.; diam. 1—3 ft. W 62. Highly coloured, with handsome figure and different shades from yellow to black, very heavy, very hard, very strong, easily worked, taking a good polish, and durable. A valuable wood for cabinet-work. The allied O. ácidula F. v. M., known by the same name, and also as “Native Peach” and “Emu” or “Mooley Apple,” which grows to about the same size, and occurs also farther to the south and west, is reddish, but similar in texture, and would be suitable for furniture.

Plum, Sweet. See Plum, Burdekin.

Plum, White. See Ironwood (vi).

Pohutukawa. See Ironwood (xxviii).

Pomegranate, Native. See Orange, Native and Plum, Grey.

Poon, an Indian commercial name, seemingly applied to the timber of several species used for masts and spars, especially species of Calóphyllum (Order Guttiféreae). Of these the more important would seem to be (i) C. inóphyllum, (ii) C. tomentósum, and (iii) C. angústiólíum, C. inóphyllum L. native to Madagascar, Mauritius, Ceylon, Southern India, Burma, Queensland, and the Fiji Islands. Known also as “Alexandrian Laurel,” “Tatamaka,” “Dilo.” Hind. “Undi.” Telug. “Punagá” or “Penaga.” Apparently also the “Palo Maria” of the Philippines. The name “Bintangor” applies equally to twenty species of Calóphyllum in the Malay area. Height 20—80 ft. or more; diam. 1½—5 ft. S.G. 579—647. W 63—35. E 755 tons. c 10,000—14,700. c’ 1·3—1·9. Red-brown, with a pretty wavy figure, fairly hard, close- but coarse-grained, very strong, durable. Used in India for sleepers, and suited for joinery and cabinet-work. C. tomentósum Wight, a native of Ceylon and of Queensland, is similar, and is used in the former country for tea-chests. C. angústiólíum Roxb., the “Pine-tree” of Penang, which also attains large dimensions in the southern Ghats, and is apparently partly the source of “Poon-spars.” (iv) Dillénia pentágína Roxb. (Order Dilleniáceae), a native of India and Burma, in no way related to the species just mentioned, Telugú “Ravudána,” seems also to be a source of these spars. It is a large tree, sometimes 20 ft. to its lowest branch, and 2 ft. in diam. W 69. Reddish-grey, heavy, very hard, strong, and durable in contact with the soil. Used for rice-mills, canoes, deck-planks, and house-building, and yielding a good charcoal.

Poplar, a name applied, with few exceptions, to the woods of species of Pópulus (Order Salícíneae), which are known in the United States, from their hairy seeds, as “Cottonwoods.” French “Peuplier.” Germ. “Pappel.” Span. “Alamo.” Like those of
their allies the Willows, these woods are white or pale grey, yellowish, or brown, very soft, and light, with neither pith-rays nor vessels distinctly visible. They are used mainly for paper-pulp and cellulose; but to some extent for packing-cases, blind-wood, sabots, and other purposes, especially in France, at Ivry and elsewhere.

Poplar, Aspen. See Aspen.

Poplar, Balm of Gilead or Balsam (Populus balsamifera L.). North America. Known also as "Tacamahac." Height 70—80 ft.; diam. 5—7 ft. S.G. 363. W 22-6. R 550 kilos. Sapwood wide, nearly white; heart light reddish-brown, not strong or durable. Used only for paper-pulp, for which it is excellent; but as suitable for wooden-ware, etc., as other species.

Poplar, Black (P. nigra L.). Europe and Northern Asia. Height 50—60 ft.; diam. 1—2 ft. W 60-5 when green, 36—25 when dry. Sapwood wide, nearly white; heart light reddish-brown, shrinking more than one-sixth of its bulk in drying, not strong or durable. From its non-liability to splinter useful for the bottoms of waggons, sabots, elogs, and turnery, and used also for carving and for charcoal.

Poplar, Black Italian (P. monilifera Ait. = P. deltoidea Marsh). Eastern United States, but now common in Italy, Switzerland, and other parts of Europe. Known also as "Carolina" or "Necklace Poplar," "Big Cottonwood" or "Whitewood," or, in Europe, as "Swiss Poplar." Germ. "Wollpappel, Rosenkranz-Pappel." The timber is imported into Liverpool from the United States under its American name "Cottonwood." Height 150—200 ft.; diam. 6—7 ft. S.G. 389. W 24-25. R 770 kilos. The quickest growing of Poplars. Sapwood very wide, nearly white, heart brownish, tough, not durable if exposed to moisture, but of larger dimensions than, and equal in quality to, any other Poplar. It does not splinter, holds nails well, and does not readily ignite. Used for flooring, clapboards, the sides and bottoms of brick-carts and waggons, carcase-work, sabots, packing-cases, inferior fuel, and extensively for paper-pulp, for which purpose it is now largely and remuneratively planted in Britain. "Were every cottage to grow his own fuel... perhaps no tree would succeed so well" (Loudon). The polishing-wheels used by glass-grinders are made of horizontal sections across the entire tree of this species, or preferably of Willow.

Poplar, Carolina. See Poplar, Black Italian.

Poplar, Grey (P. canescens Sm.). Kashmir, Persia, Northern Africa, and Europe. Height 60—100 ft.; diam. 2—4 ft. W 58 when green, 38-5 when dry. White, shrinking a quarter of its bulk in drying, and cracking; but not splitting when nailed. Said to be superior to White Poplar, and used on the Continent for packing-cases, rollers and boards for winding ribbon, silk, cloth, etc.

Poplar, Necklace. See Poplar, Black Italian.

Poplar, Swiss. See Poplar, Black Italian.

Poplar, White (*P. alba* L.). Central Europe, Northern Africa, Northern and Western Asia. Known also as “Abele.” Height 60—100 ft.; diam. 2—4 ft. Sapwood white; heart at first yellowish, becoming browner, and sometimes with reddish discolorations. Light, soft, and of little value. The Hebrew “Libneh” of Gen. xxx. 37, the λευκη of the Septuagint, is probably *P. euphrática*.

Poplar, Yellow. See Tulip-tree.

Porcupine-wood (*Cocos nucifera* L.: Order *Palmáceae*). Shores of India and throughout the tropics. Height 60—100 ft.; diam. 2 ft. W 70. The wood near the outside of this monocotyledonous stem, being crowded with dense, dark-coloured fibro-vascular bundles resembling the quills of the porcupine, is very hard, strong, and durable. It is used in India for rafters, beams, spear-handles, and other purposes; but in England for walking-sticks, or as a veneer for work-boxes and other fancy articles.

Portia-tree. See Umbrella-tree.

Prince-wood. See Cypre, Bois de.

Puriri (*Vitex littorális* A. Cunn.: Order *Verbenáceae*). New Zealand. “New Zealand Teak.” Height 60 ft.; diam. 3—5 ft. S.G. 1,100 when green, 1,000—959 when dry. W 76—59. p 223. Yielding timber 9—18 ft. long, squaring 10—18 in.; sapwood 2—3 in. wide, yellowish; heart dark-brown, very heavy, very hard, close-grained, very strong and durable. Much used for posts, piles, sleepers, etc., being the strongest and most durable of New Zealand timbers.

Purple-heart of Guiana (*Copaífera pubiflóra* Benth., *C. bracteáta* Benth., and *Peltógyne venósá* Benth.: Order *Leguminósa*). French 17—2
“Kooroobovilli.” Germ. “Amaranthholz.” Large trees yielding
timber 20—120 ft. long, squaring \(1\frac{1}{2}-2\frac{1}{2}\) ft., brownish to blackish
purple, especially when freshly cut, or when heated, close-grained,
very heavy, hard, strong, elastic, working easily, taking a fine
for furniture, gun-carriages, house-frames, and works of con-
struction. Though several species are confused commercially,
those derived from Brazil, the Guianas, and Trinidad appear closely
related, and of nearly equal value.

Purple-heart of Trinidad (**Peltógyné paniculátá** Benth.: Order
Leguminóseæ). Known also as “Zapateri.” Yielding timber
20—25 ft. long and 12—15 in. wide, of a beautiful purple when
freshly cut, but blackening with age, very durable. Sometimes
used for furniture. The allied species *P. confertíflóra* Benth., the
“Pao roxo” or “Guarabu” of Brazil, is similar.

Pyingadu and **Pynkado.** See **Acle.**

Quar (**Eúclea undulátá** Thunbg.: Order Ebenáceæ). Cape
Colony. Height 20—30 ft.; diam. 12—15 in. Sapwood light-
brown; heart dark-brown, heavy, very hard, close-grained, with
beautiful transverse wavy figure. Suitable for furniture.

Quassia (**Pírcéna excélsa** Lindl.: Order Simárúceæ). Tropical
long, 6—10 in. diam., yellowish, soft, fine-grained, intensely bitter.
Used medicinally as a tonic, often by being turned into cups, which
impair their taste to water.

Quebracho, meaning “axe-breaker,” is mainly applied in Argent-
tina and Bolivia to *Aspidóspérmá Quebráchó-blanco* Schleich.
(Order Apocynáceæ), “Quebrachó-blanco,” and to *Quebrachíu Lorántztii* Griseb. (=*Loxópterígium Lorántztii* Griseb. =*Schinópsis
Lorántztii* Engler: Order Anacardiáceæ), “Quebracho colorado.”
The former yields timber 20 ft. long and 1\(\frac{1}{2}\) ft. in diam., whitish-
yellow, liable to warp and twist, not durable if exposed to moisture
or insects; but largely used for wheel-hubs, fence-droppers, bottoms
of railway-trucks, etc. The latter, a much more valuable wood,
reaching 60 ft. in height and over 1 ft. in diam., yielding logs for
sleepers 9 ft. long and 10 in. by 5 in. W 65—70. S.G. 1,250.
Dark red, turning almost black with age, probably the hardest
wood, in Argentina, equalling Ebony in this respect, and appar-
ettly imperishable, containing, as it does, up to 26 per cent. of
tannin. It is largely employed for sleepers, fence-posts, beams,
piles, and telegraph arms, over 250,000 tons being exported in
1906, in addition to 55,000 tons of the tannin extract.

Quina-quina (**Myroxylon** sp.? : Order Leguminóseæ). Northern
Argentina. Yielding timber 18 ft. long and 1 ft. square. Light
Mahogany-colour, smooth, and close-grained. Used for furniture.

Queen-wood (*Daviesia arborea* W. Hill.: Order Leguminosae). North-Eastern Australia. Height 15—30 ft.; diam. 6—12 in. Streaked with pink, hard, close-grained, susceptible of a fine polish. An excellent cabinet-wood. The name is also applied to *Piptadenia rigida*. See *Angico*.

Raspberry Jam. See *Myall* (iii).

Rassak or Russock (*Vatica Rassak* Blume: Order Dipterocarpaceæ). Borneo. W 54. Light yellowish, becoming dark-red on exposure, heavy, coarse-grained, durable. Used for piles, house-building, etc.

Rata (*Metrosideros robusta*, A. Cunn: Order Myrtaceæ). New Zealand. "Northern Rata." Height 60—100 ft.; diam. 3—4 ft. S.G. 1.228 when fresh, 786 when seasoned. Often 30—40 ft. to lowest branch, and yielding timber 20—50 ft. long, squaring 1—2 1/2 ft. Red, very heavy, hard, close-grained, strong, easy to work, durable. Used in ship-building and for railway-waggons.

Redwood, a name variously applied: (i) in the English timber trade to Dantzig Fir (*Pinus sylvestris*) [See *Northern Pine*]; (ii) in Australia to *Eucalyptus piperita* [See *Peppermint* (vi)]; (iii) in Cape Colony to *Ochna arborea* Burch. (Order Ochnaceæ). Known also as "Cape Plane." Boer "Roodhout." Zulu "Umtensema." Height 20—30 ft.; diam. 1 1/2—2 ft. Red, hard, strong, durable. Used for waggon-building and furniture, and suitable for engraving.

Redwood, Andaman. See *Padouk*.

Redwood, Californian (*Sequoia sempervirens* Endl.: Order Taxodiaceæ). Californian coast. Germ. "Immergrün Sequoie." "Eiben Cypressse." Ital. "Il Legno rosso di California." Height 180—250 or 300 ft.; often 75—100 ft. to lowest branch; diam. 12—20 ft. S.G. 421. W 24:25—29. Sapwood light orange to dark amber, very soft and light, scentless; heart maroon to terra-cotta or deep brownish-red, darkening on exposure, light, soft, brittle, close-but short-grained, not strong, without resin-duets, very easily split, so that planks can be made from it without the use of the
saw, in structure resembling Bald Cypress, very durable in contact with the soil; pith-rays very distinct. The most valuable of Californian timber-trees, and the most used material for building and carpentry in the State; used also for sleepers, fencing, telegraphpoles, shingles, and furniture, corresponding in quality and uses to White Cedar. The wood is so soft and porous that it dries quickly, losing its vitality entirely. Being thus absolutely dead wood, it keeps its shape in spite of all exposure, and is probably the most reliable known wood for such a purpose as a jointed signboard exposed to the elements. The joints of such a board, if made of Redwood once dry, will never open. Though suited for drawers or lining, it is somewhat too monotonous for ornamental furniture. In the London cabinet trade it is now known as "Sequoia." Though sending up vigorous coppice-shoots when felled, "at the present rate of destruction not an unprotected Sequoia of timber-producing size will be left standing twenty years hence" (J. G. Lemmon in 1895).

Redwood, Coromandel or Indian. See Mahogany, East Indian.

Redwood, in Jamaica. See Ironwood (xxiii).

Rimu (*Dacrydium cupressinum* Soland.: Order *Taxiaceae*). New Zealand. Known also as "New Zealand Red Pine." Height 40—80 or 100 ft.; diam. 2—5 ft.; sometimes 40—50 ft. to the lowest branch. S.G. 678—563 when seasoned. W 33—45. p 140-2. Yielding timber 20—80 ft. long, squaring 10—30 in. Chestnut-brown near centre, lighter outwards, figured with light-red or yellow streaks, moderately heavy and hard, very strong, fine, uniform and straight in grain, working well and taking a good polish, but not durable in contact with soil. Extensively used in building for beams, girders, etc., for panelling, fencing, railway-ties, paving, native canoes and furniture. This species, the most widely distributed timber-tree in the Dominion, and the most extensively used in local carpentry, has a certain future before it in the English market. Working as readily as Birch, and comparable in strength with Oak, it is likely to replace Satin Walnut, which it somewhat resembles, as a cabinet wood, being far more reliable than that timber.

Roble, the Spanish for Oak, used in Trinidad for *Platymiscium platystachyum* Benth. (Order *Leguminosae*), a hard, tough wood
with an ornamental silvery transparent grain, used locally in ship-building; in Chile for Fagus obliqua. Height 100 ft. Sound in contact with water. Largely used for sleepers in Argentina. In Argentina the name is used for F. betuloides Mirb., an evergreen Beech growing from Tierra del Fuego northwards, reaching 26 ft. in height and 3—4 ft. in diam., and yielding a straight, very fine-grained, handsome wood, resembling American Oak, and very easy to work, which is extensively used for panelling in railway-carriages.

Rose-chestnut, Indian. See Ironwood xviii.

Rosewood. French "Bois du rose." Germ. "Rozenholz." Ital. "Legno rodie." Span. "Leno de rosa." Port. "Pao de rosada." The name of a number of different species in various parts of the world, mostly heavy, dense, dark-coloured woods, many of which belong to the Order Leguminosae, such as the genera Dalbergia, Machærium, and Pterocárpus, and one or two of which contain a fragrant resin or oil, from which the name has originated. They have nothing more to do with the Rose.

Rosewood, Australian (i) Acácia glaucescens [See Myall (v)]; (ii) Dysóxylon Fraseriánnum [See Cedar, Pencil]; (iii) Ereëmophila Mitchelli [See Sandalwood, Bastard]; and (iv) Synónyn glandulósun A. Juss. (Order Meliáceæ). North-Eastern Australia. Known also as "Dogwood," "Bastard Rosewood," and "Brush Bloodwood." Height 40—60 ft.; diam. 1½—2 ft. W 41—45. Deep red and rose-scented when fresh, resembling Cedar, but heavier and heavier in colour, taking a fine polish, firm, and easily worked. Used for ship-building, the inside of houses and cabinet-work, for which it has long been valued. An allied form, S. Lárdneri, without scent, and with more open grain, is known as "Pencil Cedar," or, from the smell of its bark, as "Turnipwood."

Rosewood, Bombay. See Blackwood, Indian.

Rosewood, Brazilian, including that of Bahia, the best, Rio, the second best, and San Francisco, is probably Dalbergia nigra Allem. (Order Leguminosae), Brazil. "Jacaranda cabiuna," or in part also species of the allied genus Machærium, such as M. scleróxylon Tul., known as "Pao Ferro," M. firmum Benth., "Jacaranda
roxa,” and *M. legálé* Benth., “Jacarandó preto.” S.G. 768—841. W 53—65. In half-round logs 10—20 ft. long, seldom over 14 in. in diam. Dark chestnut or ruddy brown, richly streaked and grained with black, resinous layers, with the perfume of rose-water, porous, open-grained, heavy, taking a fine polish, liable to heart-shake, fading with age, and frequently hollow, and sold, therefore, by weight. Valuable, both solid and in veneers, for furniture and ornamental cabinet-work, especially pianoforte-cases, and for turnery, realizing £10—£12 per ton for inferior, £20—£30 for good, and even up to £90 for the best qualities.

Rosewood, Bastard. See Rosewood, Australian.

Rosewood, Burmese. See Padouk.

Rosewood, Dominica. See Cypre, Bois de.

Rosewood, Honduras (*Dalbérgia* sp.?). W 68—77. Nut-brown, streaked with narrow black lines, very hard, even-grained. Valuable for furniture, turnery, and inlaying.

Rosewood, Indian. See Blackwood, Indian.

Rosewood, Jamaica (*Linocíera ligustrína* Swartz. : Order *Oleácæae*). See also Granadillo.

Rosewood, Moulmein, probably a species of *Millettíia* (Order *Leguminósæae*), possibly *M. pédúlita* Benth., a dense, hard, dark-coloured wood.

Rosewood, Nicaragua (*Dalbérgia* sp.?). Central America. W 70. Reddish-orange, slightly streaked with black, very heavy and hard, coarse-grained, slightly fragrant.

Rosewood, Rosetta. See Blackwood, Indian.

Rosewood, Seychelles. See Umbrella-tree.

Rosewood, West Indian. See Granadillo.

Rowan (*Pyrus Aucupáriá* Gaertn. : Order *Rosácæae*). Europe, Northern and Western Asia. Known also as “Mountain Ash.” Germ. “Eberesche.” Height 10—40 ft.; diam. 6—10 in. W 35—48. Sapwood reddish-white; heart reddish-brown, hard, tough, difficult to split, fine-grained, readily worked or polished;
pith-flecks frequent; vessels and pith-rays indistinct; autumn-wood slightly darker. Used to a small extent on the Continent in cabinet-work, carving, and turnery.

Sabicu (*Lysiloma Sábiou* Benth.; Order *Leguminosae*). West Indies, especially Cuba. Somewhat crooked in growth, but yielding timber 20—35 ft. long, squaring 11—24 in. S.G. 890—957. W 62—43. e' 2.21. p' 1.6. c 5,558. e' 0.734. v' 1.161. R 435 lbs. Dark chestnut-brown, heavy, hard, strong, elastic, close-grained, free from shakes, though sometimes exhibiting on conversion a cross fracture of part of the inner wood, snapped, perhaps, by West Indian hurricanes, seasoning slowly, but shrinking but little, and not splitting in the process. working up well, susceptible of a high polish, durable when exposed, and sometimes with such a curled figure as to be mistaken for Rosewood. Used in ship-building, especially for beams, keelsons, engine-bearers, etc., and for furniture. The staircases of the Exhibition of 1851 were of this wood, and wore well. The allied species, *L. latistíliqua* Benth., native to the Bahamas and Florida, is similar.

Saffron-wood (*Elaeodendron croceum* DC.; Order *Celastráceae*). South Africa. Known also as "Safforan-wood," "Crocus-tree." Boer "Saffranhout," Zulu "Umbomoana." French "Olivetier jaune, Bois d'or du Cap." Height 20—40 or 60 ft.; diam. 2—4 ft. W 47.5—55.74. E 510 tons. / 4.4. fc 3.18. Reddish-brown, heavy, hard, close, fine-grained, tough, handsome. Used for beams, planks, waggon-building, furniture, etc.

Saj (*Terminalia tomentósa* W. and A.; Order *Combretáceae*). India and Burma. Hind. "Asan," Tamil "Maradu." Maharat. "Eyn." A large tree yielding timber 18—28 ft. long and 1—2 ft. in diam. S.G. 892. R 462—602 lbs. Sapwood white, narrow; heart dark brown, finely variegated, with darker streaks producing a wavy figure, heavy, hard, elastic, strong, difficult to work, but seasoning well, and taking a high polish, liable to split on exposure and to dry-rot if not steeped. Its power of resisting termite-attack is doubtful. Largely used for joists and rafters, and in waggon- and boat-building, and recommended for paving. Resembling the next.

long and 1—2 ft. in diam. S.G. 458—842. W 28·6—52·6. R 1,043 lbs. Sapwood whitish, narrow; heart light to deep brown, finely streaked with dark lines, very heavy, hard, coarse and cross-grained, elastic, tough, comparing favourably as to strength with Teak, warping and splitting considerably in seasoning, but almost unrivalled for durability, its abundant whitish aromatic resin protecting it from termites. The most extensively used timber of Northern India for sleepers, piles, beams, bridges, planks, gun-carriages, wedges, tool-handles, blocks, cogs, etc., but too heavy to float, and, therefore, expensive.

Sallow, in England, chiefly Sálíx Capréa L. (Order Salícíceae). Europe, Northern and Western Asia. Known also as "Goat Willow." Germ. "Sahlweide." A small tree. W 27—39. Sapwood reddish-white; heartwood a beautiful light red, light, very soft, easily split, lustrous, with wide annual rings, pith-rays indistinguishable, vessels minute and equally distributed, pith-flecks often present. Used chiefly for crate- and hoop-making; but in France one of the most useful Willows. [See Willow.]

Sallow, in Australia, or Sally, or White Sally, names applied to some species of Acácia, especially A. longifólia Willd., var. flori-búnda, a brown, black-streaked, light, tough, and hard wood, used for tool-handles; and to Eucryphiá Moóréi. [See Acacia.]

Sandalwood, a name applied to the generally fragrant woods of Sántalum álbum and other species of the genus, to those of the other genera of the Order Santaliáceae—viz., Fusánus, Exocárpus, and Osýris, to some members of the Order Myoporíneae, and a few other unrelated trees. True Sandalwood is Sántalum álbum L. (Order Santaliáceae). India, chiefly in the south, and perhaps also in the Malay Archipelago. Known also as "White" or "Yellow Sandalwood." Sanskr. "Chandana." Hind. "Chandana, Sandal." Telugu "Chandanam." Burma "Sanda-ku." Chinese "Tan-mu." Height 30 ft., 8 ft. to lowest branch; diam. up to 2 ft. W 56—71. Sold in crooked billets weighing 50—90 lbs. each. Yellowish-brown, very hard, heavy, close-grained and fragrant, the heartwood yielding on distillation about 2 drams of oil per pound, and increasing in fragrance with age, very liable to heart-shake. Used for carving, ornamental boxes, Chinese coffins, walking-sticks, fans, burnt as a perfume, ground into powder as a cosmetic, and
distilled for its fragrant oil. Realizing from 600—850 rupees per ton, the chips fetching 300.

Sandalwood, Bastard, of the Sandwich Islands (*Myopórum tenui-fóliúm*).

Sandalwood, Fiji (*Sántalum Yási* Seem.).

Sandalwood, Fragrant. See Sandalwood, Australian.

Sandalwood, Indian. See Mangosteen, False.

Sandalwood, New Caledonia (*Sántalum austro-caledónicum* Vieill.).

Sandalwood, Red. See Sanderswood, Red.

Sandalwood, Sandwich Islands(*Sántalum freycinetiánum* Gaud. and *S. paniculátum* Hook. and Arn.).

Sandalwood, Scrub (*Exocárpúus latifóliúm* R. Br. : Order Santalácceæ). North-East Australia. Known also as "Broad-leaved Cherry."
Height 10—16 ft.; diam. 6—9 in. Dark-coloured, fragrant, very hard, coarse-grained, taking an excellent polish. Used in cabinet-work.

Sandalwood, White. See Sandalwood.

Sandalwood, Yellow. See Sandalwood.

Sandan (Ougénia dalbergioides Benth. : Order Leguminósæ). Northern India. Mottled brown and red, hard, tough, close-grained, taking a good polish, durable. Used for furniture, carriage-poles, wheels, agricultural implements, etc.

Santa Maria (Calóphýllum Calába Jacq. : Order Guttiféreæ). Tropical America. Known also as "Galba," "Galaba," "Accite de Maria," and in Cuba as "Ocuje." Height 60—90 ft.; diam.
2—3 ft.; yielding logs 25—50 ft. long, squaring 12—22 in. S.G. 842. W 53. E 790 tons. f 5·14. fc 2·6. fs 215. R 35½ lbs. Pale-red to orange-yellow, moderately heavy and hard, clean, fine and straight in grain, flexible, with few knots, shrinking and splitting very little in seasoning, easily worked, durable. Has been used in our dockyards for beams and planks, and is equal to plain Mahogany for interior finish.

Saquisaqui (Bólax mompoxénsé H. B.: Order Bombácæae). Venezuela. Known also as “Cedro dulce.” S.G. 529. Rose-red, of better quality than other species of the genus, similar to the wood of the Cedar (Cedréla odoráta).

Sassafras in North America (Sássafraz officinále Nees: Order Lauráceae). Known as “Sassafras” in Latin, Arabic, French, German, and Spanish, in German also as “Fenchelholz,” and by the French in America as “Laurier des Iroquois.” Canada to Florida and Texas. Height 50—90 ft.; diam. 3—7½ ft. S.G. 504. W 31·4. R 602 kilos. Sapwood yellow, narrow; heart orange-brown, with a slight characteristic aroma, light, soft, rather brittle, coarse-grained, very durable when exposed, and partially insect-proof; with broad distinct annual rings, a marked pore-zone of spring-wood with 4—5 rows of vessels arranged radially in pairs, and very fine pith-rays, distinguished from the Red Mulberry (Mórus rúbra) by its lightness. Used for fencing, buckets, etc. The essential oil which brought the tree into notice in the sixteenth century is distilled from the bark of the roots. The name is applied in various parts of the world to other species of the Order Lauráceae and the closely allied Monimiáceae exhibiting the same characteristic smell.

Sassafras, Assam (Cinnamómum glandulíferum Meissn.). See Camphor, Nepal.

Sassafras, Australian (i) Atherspérama moscháta Labill.: Order Monimiáceae). South-East Australasia. Height 100—150 ft.
Dark-coloured, often well figured, close-grained, very tough, easily worked, taking a fine polish. Used for lasts, bench-screws, and cabinet-work, and suggested for sounding-boards and doors. (ii) (Daphnandra micrắndhth Benth.: Order Monimiáceae). North-east Australia. Known also as "Satinwood" and "Light-yellow Wood." Height 50—80 ft.; diam. 1½—2 ft. W 43·5. Yellow when fresh, fragrant, soft, weak. Used for packing-cases and perhaps fit for cabinet-drawers. (iii) (Dorýphora sá́ssafras Endl.: Order Monimiáceae). North-East Australia. Height 50—100 ft.; diam. 2—3 ft. Light-coloured, sometimes neatly figured, light, fragrant, soft, weak, insect-proof, but probably not durable. Used like the last-mentioned. (iv) (Nesodaphne obtusifólia Benth.: Order Lauráceae). North-East Australia. A large tree, yielding light-coloured, close-grained wood, easy to work, and suitable for joinery.

Sassafras, Black. See Beech, She.

Sassafras, Brazil (Mespilódaphnè Sá́ssafras C.: Order Lauráceae).

Sassafras, Burmese. See Camphor, Nepal.

Sassafras, Grey. See Laurel.

Sassafras, Indian. See Camphor, Nepal.

Sassafras, Nepal. See Camphor, Nepal.

Sassafras, Tasmanian. See Sassafras, Australian (i).

Satiné or Bois de féroles, of which there are two varieties—"Satiné rouge," a beautiful red-brown, and "Satiné rubanné," lighter-coloured, veined and lustrous—is apparently Ferólia guianénisis Aubl. and, perhaps, F. variegáta Lam., and probably species of Parinárium (Order Rosáceae). Guiana and Guadeloupe. Known also as "Bois marbré," and, in Demerara, as "Washiba." German "Feroliaholz." S.G. 877—825. W 55. Exported in logs 14—28 ft., or more, long, squaring 13—15 in., red, splashed with yellow, hard, solid, and of good quality, tough, elastic, working well, and susceptible of a beautiful polish. Used for furniture and cabinet-work, bows, and fishing-rods.
Satin Walnut. See Gum, Sweet.

Satinwood, in Australia (Zanthoxylum brachyacánthum F. v. M.: Order Rutáceæ). North-East Australia. Known also as “Thorny Yellow-wood.” Height 40—50 ft.; diam. 12—15 in. Bright yellow, silky, soft, close-grained, easily worked. Used in cabinet-work, and said to be superior to some Satinwood in the English market. See also Sassafras, Australian (ii).

Satinwood, North American (Zanthoxylum flóridum Nutt.). Florida. Yields only small wood.

Satinwood, West Indian (Fágara (Zanthoxylum) fívaa Krug. and Urb.; Order Rutáceae). Spm. “Aceitillo.” This appears to be the species imported in considerable quantities into England in logs 10 ft. long and 8 in. in width and thickness for ornamental purposes from the Bahamas and Porto-Rico, fetching from £3 to £10 per ton; but the name seems to be applied in Dominica also to Búcida capsítita Dow. (Order Combretáceæ), which is also known as “Yellow Sanders,” and in Brazil and the Guianas may be applied to other unascertained species. The Zanthoxylum is known as “Yellow-wood” in the Bahamas. It is imported from Nassau and New Providence, Bermuda, Jamaica, and St. Domingo, the last-named being the best, ranging in value from Is. per superficial foot up to almost any price, according to the beauty of its figure. It occurs in logs up to 12 in. in diam., is hard, close and even in grain like Box, and has a smell like that of Coco-nut oil. It is very largely used for panels in ships’ cabins, for the highest class of bedroom furniture, brush-backs, etc.

Savicu. See Sabieu.

Schaapdrolletje (Plectrónia ventósa L.: Order Rubiáceæ). Cape Colony. Height 15—20 ft.; diam. 6—10 in. Heavy, hard, close-grained, tough, susceptible of a good polish, and then handsome. Suitable for fancy work.

Sequoia. See Redwood, Californian.
Securipa, an undetermined Brazilian wood, of considerable dimensions, straight growth, moderate weight and fair quality, brown in colour. Used for beams and planks in ship-building.

Serayah, probably a species of Hópea (Order Dipterocarpáceae). Malay Peninsula and Borneo. Known also as "White Cedar," "Borneo Cedar," "Majow," "Selangan." W 43. Reddish, resembling soft Mahogany, easily worked. Used for house-building, and recommended for the inside linings of furniture, but incapable of taking a finish, the grain turning up woolly and ragged from the tools.

Service (Pýrus torminílis Ehrh.: Order Rosáceae). Europe, West Asia, and North Africa. Germ. "Elsbeerbaum." A small tree, sometimes 30 ft. in height, with wood practically identical in character and uses with that of the Rowan. The Service-tree of the Continent, the French "Cornier," or "Sorbiér," is a distinct but allied species (Sórbus doméstica L.), yielding a fawn-coloured, very hard, fine-grained wood, susceptible of a fine polish, and often beautifully figured, which is in request for cabinet-work, turnery, coqs, planes, screws, and engraving.

She Oak. See Oak, She.

Shiragashi. See Akagashi.

Shittim-wood of Exodus xxvi. 15, the γάλαν (σαμησιον) of the Septuagint, may have been Sissoo (Dalbergia Sissoo) or Acacia seyal.

Silkbark (*Celástrus acuminátus* L.; Order *Celastráceae*). Cape Colony. “Zybast.” Height 20 ft.; diam. 1 ft. W 63. Prettily shaded, heavy, hard, even- and close-grained, taking a good polish. Used in turnery and furniture, and recommended for umbrella-handles.

Silverballi, Brown, Siruaballi, or Cirouaballi. See Cedar, Black.

Silver-top. See Gum, Cabbage.

Silver-tree (*Tarriótiá argyrodéndron* Benth.: Order *Sterculiáceae*). North-East Australia. Known also as “Ironwood, Stonewood, Black Stavewood, Crow’s-foot Elm.” *Aborig.* “Boyung.” Height 70—90 ft.; diam. 2—3 ft. White, hard, close-grained, tough, firm, a substitute for Beech. Extensively used for staves, and suitable for piles.

Simarouba (*Simarúba amára* Aubl. = *S. officinális* DC.; Order *Simarubáceae*). Northern Brazil, Guiana, and the West Indies. “Maruba.” “Acajou blanc” of Guadeloupe. A lofty tree, yielding logs 13 or 14 ft. long, squaring 14 to 16 in. W 23—30. E 473 tons. f 3·36. fc 1·78. fs 6·224. Closely similar to Quassia, white, bitter, resembling Pine in quality, moderately hard, splitting in seasoning, easily worked, insect-proof. Used for constructive work in Brazil.

Siris, Pink (*Albízzia Julibríssin* Durazz.: Order *Leguminóseae*). Tropical and sub-tropical Africa and Asia from Afghanistan to China and Japan. Known also as “Sirsa” or “Sirissa.” “Cotton-varay” of Coromandel. Moderate-sized tree. Dark-brown to almost black, mottled, very heavy and hard, capable of a good polish. Valued for furniture, and for house- and boat-building.

Sissoo (*Dalbéróia Sissóo* Roxb.; Order *Leguminóseae*). Northern India. A large tree, 15 ft. to its lowest branch, 1½ ft. in diam., yielding logs 10—15 ft. long. Dark red-brown to light-brown, being at least as variable in colour as Mahogany, with dark longitudinal veins, very heavy, hard, close and even in grain, strong, elastic, seasoning well without warping or splitting, durable. One of the most valuable of Indian timbers, rapid in growth, sometimes almost as beautiful as Rosewood. Unrivalled for the naves and felloes of wheels, frames of carriages, boat-building, agricultural implements, and furniture. Once extensively used for the wheels of gun-carriages; but not now plentiful. The sapwood rots so quickly that it invariably powders away from the log before it
arrives in this country. The heartwood is, however, sound, and darkens in colour and hardens with age. Wheels of gun-carriages made of this wood went through the last Afghan war when the best which Woolwich could build of other materials very soon went to pieces, and it proved perfectly satisfactory for the spokes of heavy motor-waggons and artillery-carts during the South African War. Some Indian artillery wheels are now made with naves and felloes of Sissoo and spokes of Sundri.

Snakewood in English commerce is Brósimum Aublétii of Guiana [See Leopard or Letter-wood]; but in India the wood of *Strýchnos colubrina* L. and *S. nux-vomica* L. (Order Loganiáceae), the former of which is a climbing-plant 8—12 in. in diam.; light grey, hard, and intensely bitter; the latter a tree reaching 15 ft. or 20 ft. to its lowest branch, and 3 ft. in diam. S.G. 706. W 52. White, or ash-colour, hard, close-grained, strong, very bitter. Used for ploughshares and cart-wheels in Travancore. Hind. “Kuchila.” Telugu “Nagamusada.” Portuguese “Pao-de-cobra.” French “Bois de couleuvre.” The crooked and intensely bitter roots of *Ophiórrhiza Múngos* L. (Order Cinchonáceae), a native of the Sunda Islands, and the twisted climbing stems of *Rauwólfa serpentína* Benth. = *Ophióxylon serpentínum* L.: Order Apocynáceae), a native of the Malay archipelago, have also the same name. In the West Indies *Colubrina reclináta* Brongn. and *C. ferruginósa* Brongn. (Order Rhamnáceae), from their twisted roots bear also the same English and French names, though known also as “West Indian Greenheart” or “Ironwood.” Whilst all these woods get their names from their form or taste suggesting their use as remedies for snake-bite, the beautifully mottled Snakewood of British Guiana is Brósimum Aublétii. See Leopard or Letter-wood.

Snéenue-wood (Pteróxylon útilé Eck. and Z.: Order Sapindáceae). South Africa. Boer “Neishout.” Zulu “Umtpati.” Height 20—30 ft.; diam. 2—4 ft. W 65—67.5. E 782 tons. 1/8 62. 1c 5.96. Handsome, heavy, very hard, irregular in growth, difficult to convert, its dust producing violent sneezing, taking a fine polish, with a beautiful grain resembling Satinwood, and containing a gum-resin which renders it very inflammable, and one of the most durable woods in the world, ranking with Jarrah and Greenheart, termite- and teredo-proof, very slightly affected by water, and for bearings superior to brass, iron, or Lignum-vite. Perhaps the most valuable of South African timbers. Used for engineering work, bridges, furniture, agricultural implements, and carpentry.

Excellent for carriage-building, but used chiefly in ship-building and cabinet-work.

Spearwood in Australia (i) *Acacia homalophylla* [See Myall (ii)], (ii) *A. doratóxylon* and (iii) *Eucályptus doratóxylon*. *Acacia doratóxylon* A. Cunn. (Order Leguminóse) is known also as "Hickory, Brigalow," or "Carriwan." Height 20—35 ft.; diam. 6—12 in. S.G. 1,215. Sapwood narrow, yellow; heart dark-brown, very heavy, hard, tough, close-grained, durable. Used for furniture, carriage-poles, gates, etc., and, by the natives, for spears and boomerangs. *Eucályptus doratóxylon* F. v. M. (Order Myrtáceæ). South-West Australia. Height 60—80 ft.; diam. 2—3 ft. Straight-growing, hard, and elastic, for which qualities its saplings are much valued by the aborigines for spears.

Spindle-tree (*Euónymus europæus* L.: Order Céstráceæ). Europe North Africa, and Western Siberia. Height 5—20 ft.; diam. small. Clear yellowish-white, with distinct annual rings, but indistinguishable vessels or pith-rays, light, hard, tough, fine-grained, difficult to split, but easily cut. Used in turnery for spindles, shoe-pegs, etc., and yielding a fine crayon or gunpowder charcoal.

Spruce, a name applied originally to the Common or Norway Spruce (*Picea excélsa* Link. = *Pinus Abies* L. = *P. Picéa* Duroi = *Abies excélsa* DC.: Order Coniféreæ) from Pruce or Prussia, whence it was obtained, and then extended to all the species of the genus *Picea* and to a few other trees. Besides the fact of their cones falling off whole, and other botanical characters, by which the Spruces are distinguished as a genus from the Firs (*Abies*), their wood, though varying in durability according to the soil on which it is grown, has most of its characters common to all the species. There is no distinctive heartwood, the whole being of a whitish colour; the resin-ducts are few and small; and the pith-rays have tracheids with bordered pits for their upper and lower rows of cells, with four bordered of parenchyma having simple pits in the middle. The wood is less resinous than Pine, though equal to some soft Pines, and superior to Silver Fir as timber, superior to Pine for paper-pulp, and much valued as a "resonance wood" for violins and sounding-boards. So similar are the Baltic and Canadian Spruce that in England each is used on that side of the country nearest to its origin, and the price of one affects that of the other.

The principal Spruces are as follows:

European—

<table>
<thead>
<tr>
<th>Variety</th>
<th>Common</th>
<th>Northern or Baltic var.</th>
<th>Polar var.</th>
<th>Servian or Omorikan</th>
<th>Oriental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picéa excélsa Link.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>septentriónális</td>
<td></td>
<td></td>
<td>boreális</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Omórica Pancie.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. orientális Carrières.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18—2</td>
</tr>
</tbody>
</table>
WOODS OF COMMERCE

Asiatic—
Siberian - - - - P. obovata Ledebour.
Himalayan - - - - P. Morinda Link.
Yezo - - - - P. ajanensis Fischer.
 P. Alcockiana Carrière.
 P. Gléhnii Fr. Schmidt.
Japanese - - - - P. Hondoensis Mayr.
Tiger’s-tail - - - - P. polita Carrière.

North American—
White or Canadian - - - - P. alba Link.
Black ("American") - - - - P. nigra Link.
Red - - - - P. rúbra Link.
Blue or Colorado - - - - P. púngens Engelmann.
Engelmann’s - - - - P. Engelmannii Engelmann.
Sitka or Menzies’s - - - - P. sitchensis Trautw.

Spruce, American. See Spruce, Black.
Spruce, Bastard. See Pine, Oregon.
Spruce, Baltic. See Spruce, Common.

Spruce, Black (Picea nigra Link). Alaska, Canada, Newfoundland and North-Eastern United States. Known also as “American, Canadian, New Brunswick, St. John’s, Double,” or “Muskeag Spruce.” French “Sapinette noir, Epinette noir, Epinette à la bière.” German “Schwarzfichte.” Height 25—80 ft.; diam. 1—3 ft. S.G. 451—510. W 28·5. e’ 1·74. p’ 83. R 747 kilos. Sapwood nearly white; heart slightly reddish, light, soft, elastic, strong, compact, with satiny lustre, being tougher, stronger, more elastic, and more durable than Yellow Pine, only slightly resinous, and, therefore, not good as fuel. Trees with wide rings are known to lumbermen as “White Spruce.” Canadian Spruce is inferior in strength and durability to the Baltic White. The best shipments are those from Quebec and St. John’s, the Lower Ports Deals being of less value. Canadian Spruce is used as “lumber,” especially for flooring; for spars and other purposes in ship-building; for piles, paddles, and oars; when “quarter-sawn”—i.e., cut radially—in the manufacture of sounding-boards for pianos, violins, etc.; and very largely for paper-pulp. The “Canadian deals” largely imported to the West Indies and England are used, among other purposes, in Manchester and Birmingham for packing-cases. The tree yields a chewing-gum, and its shoots are brewed into Spruce beer.

Spruce, Blue (P. púngens Engelm.). Rocky Mountains at altitudes of 6,000—9,000 ft. Known also as "Colorado" or "Rocky Mountain Spruce." Height 80—100 ft.; diam. 1—3 ft. Coarse, strong, useful lumber.
Spruce, Californian Coast. See Spruce, Sitka.

Spruce, Canadian. See Spruce, Black.

Spruce, Colorado. See Spruce, Blue.

Spruce, Common (P. excelsa Link). From the Urals and Lapland to the Pyrenees and Alps. Known also as “Spruce Fir, Norway Spruce,” or “White Fir,” and its wood as “White Deal.” “Swiss Pine, Violin-wood.” French “Faux sapin, sapin-pesse, sapin gentil, serente, pinesse, bois de resonnance.” Germ. “Fichte Rothanne, Pechanne.” Height 125—150 ft.; diam. 3—5 ft. W 64.7 when green, 28—32 when dry. E 715 tons. ft 3.77. ft 5.5. fc 2—2.86. fs .27. Stress requisite to indent it \(\frac{1}{2} \) in. transversely to the fibres, 500 lbs. per sq. in. Straight-growing, white, reddish or yellowish, light, straight and even in grain, tough, elastic, easy to work except for the small hard knots, warping and shrinking slightly in seasoning, durable. Mostly imported from Norway with the bark on, in logs 30—60 ft. long, and 6—8 in. in diam., that from St. Petersburg being the best, that from the White Sea excellent, and that from Riga, Memel, and Dantzig large, but coarser. Very great quantities of White Deals are now arriving from Galatz, of greater average length and coarser grain than Baltic timber, probably the product of the form Picea montana Schur. of Transylvania and Moldavia. This timber is competing with Canadian Spruce. Spruce poles are used for scaffolding, telegraph-posts, ladders, roofs, fences, spars, and oars. The largest wood is converted into deals and planking, chiefly for Central and Southern Europe, for flooring, for toys, for which wide-ringed wood is preferred, for packing-cases, for sounding-boards, dressers, and kitchen-tables, on account of its whiteness, and to a very large extent for paper-pulp. Spruce is also largely used for charcoal and for fuel, while its resin is used in the preparation of Burgundy pitch.

Spruce, Double. See Spruce, Black.

Spruce, Douglas. See Pine, Oregon.

Spruce, Engelmann’s. See Spruce, White.

Spruce, Hemlock. See Hemlock Spruce.

Spruce, Himalayan (P. Morinda Link = Pinus Smithiana Wall. = Abies Smithiana Forbes = A. Khutrow Loud. = Picea Smithiana Boiss.). Bhotan to Afghanistan at 6,000—11,000 ft. Known also as “Indian Spruce,” “Morinda,” or “Khutrow.” Height 120—150 ft.; diam. 5—7 ft. White or nearly so, non-resinous, soft, straight-grained, easily worked, not durable, turning red and decaying rapidly on exposure. Used largely in Simla and its district of growth for packing-cases, rough and indoor carpentry, planking, and fuel.

Spruce, Indian. See Spruce, Himalayan.

Spruce, Menzies'. See Spruce, Sitka.

Spruce, New Brunswick. See Spruce, Black.

Spruce, Norway. See Spruce, Common.

Spruce, Red \((P. \text{rubra} \text{ Link})\). South-Eastern Canada and Eastern United States. French "Sapinette rouge." German "Rochfichte." Height 70—80 or 100 ft.; diam. 2—3 ft., being larger than the Black Spruce, with which it was confused. The most valuable timber of the district. Used for carpentry and paper-pulp.

Spruce, Rocky Mountain. See Spruce, Blue, and Spruce, White (ii).

Spruce, St. John's. See Spruce, Black.

Spruce, Servian \((P. \text{Omórica Pancic})\). Mountains of Servia, Bosnia, and Montenegro, at 2,000—4,000 ft. Servian "Omorica, Morica." Said to have been largely exterminated for the sake of its timber, which resembles that of \textit{Pinus Pinus}ter.

Spruce, Single. See Spruce, White,

Spruce, Sitka \((P. \text{sitcheënsis} \text{ Carr.}= \textit{Abies} \text{Menziesii})\). Western North America from Alaska to California. Known also as "Menzies', Tideland," or "Californian Coast Spruce." Height 100—250 ft.; diam. 6—12 or 15 ft. \(W 2^{1/2} 5.\) Light yellowish-brown, tinged with red, light, soft, straight-grained, compact, not strong, resembling the Western Hemlock. Said to be the best of American Spruces. Used for house- and boat-building, carpentry, cooperage, wooden-ware, fencing, etc.

Spruce, Tideland. See Spruce, Sitka.

Spruce, White (i) \((P. \text{alba} \text{ Link})\). Alaska to Newfoundland and the Northern United States. Known also as "Single Spruce." \(W 25^{1/2}-32^{1/2}.\) Light, soft, straight- and even-grained, with a satiny lustre, compact, but not strong. Confused with wide-ringed examples of the Black Spruce. (ii) \((P. \text{Engelmannii} \text{Engelm.})\). Rocky Mountains from Alberta to Arizona and New Mexico at 3,000—11,500 ft. Known also as "Rocky Mountain Spruce." Height 100—150 ft.; diam. 3—5 ft. Very light, soft, straight, and close-grained, not strong. Used locally for lumber, and, being free from knots, is suitable for masts.

Spruce, Yesso \((P. \text{ajanënsis} \text{Fischer}=P. \text{Jezoënsis} \text{S. & Z.})\). Northern Japan, Yessë, Saghalien, the Kurile Islands, and Amur-

Stavewood (*Sterculia foetida* L.; Order *Sterculiaceae*). Deccan, Ceylon, Burma, East Tropical Africa, Moluccas, and, though doubtfully native, North Australia, and cultivated in Tropical America. Known also as "Horse Almond, Bastard Poon," or "Fetid Sterculia." Beng. "Jangli badam." *Tamil* "Pinnari." Exported from Cayenne as "Bois puant." Height to first branch 50 ft.; diam. 3—4 ft. W 26—33. Whitish, grey, or reddish-brown, generally soft, open-grained, and of little use; but said to be used for spars for small vessels. The name is also applied in Australia to other little-used woods.

Stinkwood (*Ocotea bullata* Benth. = *Laurus bullata* Burch = *Oreodaphne bullata* Nees; Order *Lauraceae*). South Africa. Known also as "Hard-black Stinkwood, Cape Walnut," or "Laurelwood." Height 50—70 ft.; diam. 3—4 ft. W 50·8—51·75. Golden-brown, often mottled and resembling Walnut, sometimes iridescent, giving off a strong peculiar odour when worked, very tough, and considered little inferior to Teak in strength and durability. Used in house- and waggon-building, for gun-stocks, and furniture; but now very scarce.

Stinkwood, Red. See Almond, Wild.

Stringybark, a name, obviously descriptive, applied in various districts of Australia to a good many different species of *Eucalyptus* (Order *Myrtaceae*), especially (i) *E. robus*ta [See Mahogany, Swamp], (ii) *E. Sieberiana* [See Gum, Cabbage], (iii) *E. Stuariiana* [See Gum, Apple-scented], (iv) *E. macrorrhyncha*, (v) *E. obliqua*, and (vi) *E. acmenioides*.

(iv) *E. macrorrhyncha* F. v. M. South-East Australia. Known also as Ironbark. *Aborig.* "Yangoora." Height 50—100 ft.; diam. 2—4½ ft. S.G. 1,000—809. W 63·5. Tensile strength 11,700—23,400 lbs. per sq. in. Light-brown, generally tinged with deeper red-brown, sometimes figured with yellow and brown stripes, hard, strong, close-grained, tough, easily split, tearing under the plane, capable of a good polish, durable, furnishing a fair fuel. Used for fencing, flooring, wheelwright's work, and house-carpentry, but suitable for furniture.

(v) *E. obliqua* L'Her. Tasmania and South-East Australia. Known also as "Black" or "Ironbark Box," and in Victoria, from its resemblance to, and association with, *E. macrorrhyncha*, as
"Messmate." Height 100—150, or even 250—300 ft.; diam. 3—4, or even 15 ft. S.G. 1.045—783. W 50—64. E 1,202 tons. f 4.72. fc 2.9. fs 4.76. Tensile strength 8,200—8,500 lbs. per inch. Straight-growing, light to dark-brown, with a wavy figure near the base, heavy, hard, straight, close, and even, but rather coarse in grain, strong, tough; splitting very freely, somewhat liable to shakes and gum-veins, durable; but, from its tendency to warp, requires seasoning. Probably the most generally used of all Eucalypts, being employed for fencing, agricultural implements, joists, flooring, shingles, for ships’ beams and keels, mine-timbers, paving, and piles. It has been successfully introduced into India, especially in the Nilgiri hills.

(vi) E. acmenioides Schauer. South-East Australia. Known also as "White Mahogany" and "Broad-leaved Box." Height 40—60 ft.; diam. 1 ½—2 ½ ft. S.G. 1.066. W 67.25. Pale-coloured, heavier, and more durable than the preceding, sometimes pretty figured, strong, tough, easily split, with a satiny lustre when planed. Used like the last-mentioned.

Stringybark, Red. See Mahogany, Forest.

Stringybark, Yellow (E. Muelleri J. B. Moore). Strong, tough, and suitable for harbour-works.

Stringybark, White (i) Eucalyptus piperita [see Peppermint], (ii) E. capitellata, and (iii) E. eugenioides.

E. eugenioides Sieb. South-East Australia. Known also as "Broad-leaved Stringybark." Height said to reach 200 ft. Light-coloured, said to be less easily split, but more durable than the other Stringybarks, but inferior as fuel. Used for fencing, shingles, and flooring.

Sugar-berry. See Hackberry.

Sugi (Cryptomeria japonica Don: Order Taxodineae). China and Japan; introduced into England in 1843. Growing at altitudes of 500—1,200 or 3,000 ft. Known also as "Japanese Cedar." Height 60—125 ft.; diam. 4—5 ft., tapering. Brownish-red, resembling Sequoia in texture. Used for common lacquer-ware. One of the most abundant and useful of Japanese forest-trees.

narrow, dingy yellowish-white; heart golden-orange to greenish, the autumn zones much darker, handsome, somewhat aromatic, light, soft, brittle, rather close-grained, difficult to split, lustrous, vessels larger and much more numerous in the spring-wood, slightly dendritic, 1—7 together, pith-rays not visible. Used in dyeing, and occasionally in small pieces for inlaying in cabinet-work.

Sumach, Venetian (Rhúis Cótinus L.). Southern Europe. Known also as "Wig-tree," "Wild Olive," "Young," or "Zante Fustic." A shrub, yielding crooked sticks 4—5 ft. long and 2—3 in. in diam. Sapwood narrow, white; heart golden-yellow or greenish, hard, easily split, lustrous; rings not distinct; vessels and pith-rays as in the preceding. Imported from Greece as a yellow dye for wool and leather.

Sycamore, a name that has been singularly and variously mis-applied. Belonging originally to the Fig-mulberry of the Levant (Ficus Sykomórus L.; Order Moráceae), a shade-tree, yielding a very strong wood, used for Egyptian mummy-cases; it is applied in England to the Great Maple (Acer Pseúdo-plátanus L.; Order Aceríneae). Central Europe and Western Asia, almost naturalized in Britain. Known in the South of Scotland as "Plane." French "Grand Erable, Erable blanc de montagne, Fausse platane." Germ. "Bergahorn." Height 40—60 ft.; diam. 1—3 ft. W 64 when newly cut, 48—29 when dry. Without distinct heartwood, white, when young, becoming yellowish with age, or slightly brown in the centre, often beautifully figured, the fine but distinct pith-
rays having a satiny lustre, which distinguishes it from Lindenwood, compact, firm, neither very heavy nor hard, fine-grained, tough, splitting evenly, but with difficulty, easily worked, susceptible of a high polish, cracking and warping somewhat in seasoning, and shrinking one-twelfth of its bulk, very durable if kept dry, and generally free from insect-attack; rings marked by fine, evenly circular lines; vessels indistinct, evenly distributed. Highly esteemed on the Continent by turners, cabinet-makers, carvers, and toymakers, the figured wood being used for violins. Formerly much used for platters and spoons, it is still largely manufactured at Glasgow and elsewhere into bread-platters, butter-dishes, and moulds, and is also in demand for bobbins, reels, coach-panels, cutting-boards for shoemakers, shop-boards for butchers, and wooden type. Large wood is sought after for calico-printing rollers, and, when quartered, for those of washing-machines. It is superior to Beech both as fuel and for charcoal; but is by no means plentiful or cheap.

In America the name is applied to Platanus occidentalis [See Plane]: in Australia to Pinax elegans [See Laurel], and to Sterculia lúrida F. v. M. (Order Sterculiaceae), in the north-east, also known as "Hat-tree," a white wood occasionally used for shingles.

Taaibosch (Rhus lúcida L.: Order Anacardiaceae). Natal. W 38·75. Brown with dark bands, fine-grained, easily worked. Used in turnery. The name is also applied in Cape Colony to R. laevigata L.

Tacamahac. See Poplar, Balm of Gilead.

Tallow-wood (Eucalyptus microcorys F. v. M.: Order Myrtaceae). Eastern Australia. Known also as "Tee, Peppermint, Turpentine-tree," and "Forest Mahogany." Height 100—120 ft.; diam. 6—8 ft. S.G. 952. W 74—59-43. E 896 tons. f 5·48. f c 4. f s 618. Light or dark yellow, or yellowish-brown, close, straight, or wavy in grain, strong, durable under or above ground, very greasy when freshly cut, liable to shakes, and generally hollow when large. Used by wheelwrights for nave, felloes, and spokes, and for piles, girders, and ballroom floors. One of the best woods for paving, and much used in Sydney. In Tasmania the name is sometimes applied to Pittosporum bicolor. [See Cheesewood.]

Tamarack *(Lärix píndula Salisb. = L. americána Michx.: Order Coniferae).* Canada and North-East United States. Known also as “Hackmatack, American,” or “Black Larch.” French Canadian “Épinette rouge.” Height 80, or rarely 100 ft.; diam. 2—3 ft. S.G. 263. W 35—42-5. R 901 kilos. Sapwood light; heart light-brown or reddish-grey, moderately heavy, hard, rather coarse-grained, compact, very strong and durable in contact with soil, in microscopic structure resembling European Larch. One of the best American timbers for sleepers, valuable from its straight growth for telegraph-poles and fence-posts, while naturally crooked pieces are used for knees in ship-building. Resembling Hard Pine in appearance, quality, and uses, equal in durability to Oak and in strength to European Larch.

Tamarack, Western *(L. occidentális Nutt).* North-Western United States. Known also as “Western Larch.” Height 100—250 ft.; diam. 2—3 or 4—8 ft. Beautifully coloured, heavy, very hard, free from knots, strong and durable. The largest of Larches, harder and stronger than all other American conifers. Suitable for furniture or lumber; but used chiefly for sleepers, posts, and fuel.

Tamarind Plum. See Kranji.

Tamboiti. See Ironwood (xi-xv).

Tampinnis or Tampenis *(Sloétia Sideróxylon Teijsm. and Binn.: Order Moríceaee).* Straits Settlements and Sundra Islands. Known also as “Ironwood.” A large tree, 60—80 ft. high. Sapwood yellowish, heart dark red-brown, hard, durable timber, resinous, termite- and teredo-proof. W 67. Used in making the large implements employed in stirring gambir, and for engineering purposes.

Tanekaha *(Phyllocldus trichománoides Don.: Order Taxineae).* New Zealand. Known also as “Celery-topped Pine.” Height 50—80 ft.; diam. 2—3 ft., 30—40 ft. to lowest branch, yielding timber 18—70 ft. long, squaring 10—16 in. S.G. 1,000—600.
Yellowish-white, heavy, close- and straight-grained, tough, very strong, working up well, very durable, especially in moist situations. Used for sleepers, piles, bridges, mine-props, masts, decks, and building.

Tapang *(Koompássia excélsa Taub. : Order Leguminósae)*. Borneo. A dense dark-red wood, reaching very large dimensions, a section, from Sarawak, in the Timber Museum at Kew, representing only part of the diameter, being fully 10 ft. square.

Tatamaka. See Poon.

Tawhai rauriki. See Birch, Black or White.

Tea, a name transferred in Australia, from the varieties of *Théa assiámicá* (Order Caméliáceae) cultivated in China and now in India, to various species of *Mélaleúca* and the allied genera *Kúnzea* and *Leptospérmum* (Order Myrtáceae) the leaves having been used as a substitute for tea by Captain Cook’s sailors. The name is applied unqualified (i) to *Leptospérmum lanígerum* Sm., seldom larger than a tall shrub, with light-coloured, heavy, hard, tough, even-grained, and durable wood, used for tool-handles and fishing-rods, and by the aborigines for spears; (ii) to *L. flavésceus* Sm. similar, but reaching a height of 15—20 ft., and a diameter of 5—8 in.; and (iii) to *Mélaleúca uncinátá* R. Br., which reaches 70—90 ft. in height and 2—3 ft. in diameter.
Tea-tree, Black (Melaleuca styphelioides Sm.). Eastern Australia. Known also as "Prickly-leaved Tea-tree." Height 20—30 or 80 ft.; diam. 1—3 ft. W 66.75—73.35 when seasoned. Heavy, hard, close-grained, difficult to work, splitting in seasoning, very durable even in damp situations. Used for posts.

Tea-tree, Broad-leaved (Melaleuca leucadendron L.). Australia. Known also as "White" or "Swamp Tea-tree, Paper-bark Tree," or "Milkwood." Height 40—50 ft.; diam. 1—2 ft. W 47—54. Beautifully figured with ripple-like darker markings, heavy, hard, close-grained, termite-proof, very durable underground. Excellent for posts or boat-building.

Tea-tree, Prickly-leaved (Melaleuca armilláris Sm.). Eastern Australia. Height 20—30 ft. Hard and durable under ground or water, but decaying on exposure. [See also Tea-tree, Black.]

Tea-tree, Soft-leaved (M. linariifólia Sm.). North-East Australia. Height 40—50 or 80 ft.; diam. 1—3 ft. Very heavy, hard, close-grained and imperishable under water, but splitting in seasoning. Used for piles, turnery, and fuel.

Tea-tree, Swamp (i) (M. ericiáfora Sm.). Eastern Australia and Tasmania. Small, very hard and durable. Used for hurdles or rafters, and, in Tasmania, for turnery. (ii) (M. squarrósa Sm.). South-Eastern Australia and Tasmania. Height 6—10 ft. S.G. 713. Heavy, very hard, difficult to work, durable under water or when exposed. [See also Tea-tree, Broad-leaved.]

Tea-tree, White, in New Zealand, apparently (Leptospérmum ericoides A. Rich.). Height 40—50 ft.; diam. 1—2 ft. Heavy and hard. Much valued for piles, and used also in fencing and house-building. [See also Tea-tree, Broad-leaved.]

Teak (Tectóna grándis L.; Order Verbenáceae). Central and Southern India, Burma, the Shan States, Malay Peninsula, Sumatra, Java, and Celebes, extensively planted by the Dutch in Ceylon. Hind. "Ságun." Burm. "Kuyon." Malay "Jati" or "Djati." Tamil "Teak." Height 80—100 ft. or more; diam. 2—8 ft., yielding logs 23—50 ft. long, squaring 10—30 in. S.G. over 1,000 when green; but, being generally "girdled" three years before felling, 910—635 when seasoned. W 57 when green—37. E 1,071—950 tons. e' 1.19. p' 1.08. f 6.92. ft 4—9, averaging 6.7. e 3,301. e' 436 or more. f 4—5'. v' 832 or more. R 322—406 lbs. Straight-growing, light straw-colour to a brownish red, when fresh, but darkening on exposure. Some of the Teak of the Deccan is beautifully veined, streaked and mottled, whilst some
old trees have burrs the wood of which resembles Amboyna-wood. It is very fragrant when fresh, so as to resemble Rosewood, owing to an oleo-resin which also renders the wood probably the most durable of known timbers, making it obnoxious to termites and keeping off rust from iron in contact with it. Seasoned Teak has, however, a very unpleasant smell, which has been compared to that of old shoe-leather. It is the general practice to “girdle” the trees—i.e., to cut a complete ring through both bark and sapwood, so killing the tree and rendering it light enough to float to the port of shipment; and, as usually a year elapses between the felling and its delivery in England, it arrives sufficiently seasoned, heavy, moderately hard, clean, even, and straight in grain, but little shrunken, split or warped in the process. The rapid drying, however, induced by girdling is said to render the wood inelastic, brittle, and less durable, so that it splits too readily for use in gun-carriages. Teak varies very much according to locality and soil, that of Malabar being darker, heavier, and rather stronger than, though not so large as, that of Burma. Though without shakes on its outer surface, Teak nearly always has a heart-shake, which, owing to a twist in the growth, may often at the top be at right angles to what it is at the butt, thus seriously interfering with conversion, though often little affecting the use of the timber in bulk. In the large Rangoon or Irrawaddy Teak there is also sometimes a close, fine star-shake. In these shakes an excretion of apatite or phosphate of lime consolidates in white masses, which will turn the edge of most tools. After girdling, the dead trees are often attacked by burrowing insects, which may penetrate beyond the sapwood and so render the timber unfit for reduction to plank. Being a deciduous tree, Teak has distinct annual rings, with large and distinct vessels which are rather larger and more numerous in the spring-wood and are sometimes filled with the apatite. The pith-rays are distinct and light-coloured, as in Oak, but fine, the vessels in the spring-wood being 2—3 together between every two rays. Teak splits readily and is easily worked, somewhat like Oak, but it owes its superiority for ship-building over both Pine and Oak in part to its freedom from any change of form or warping, when once seasoned, even under the extreme climatic variations of the monsoons. In India, Teak is used for railway sleepers, bridge-building, and furniture. As the Indian Forest Department plant several thousand acres annually, there is little fear of the exhaustion of the supply, whilst the timber from cultivated trees is said to be better than that grown in the natural forests. Teak is very largely exported, especially from Moulmein and Rangoon, that from the former port, drawn from the valleys of the Salwên and Thungyén Rivers being rather shorter but less shaky than that shipped at Rangoon from the Irrawaddy valley. Teak from Java is gritty and too hard. Whilst it is the best timber
known to us for shipbuilding, especially for the backing of armour-plates, deck-planks, etc., Teak is also considerably used in England in the building of railway-waggons, greenhouses, etc., but is comparatively little used in foreign dockyards. In the London market it is sorted into A, B, and C classes, according to size, and has varied in price from £10 per load of 50 cubic feet, in 1859, to £14—£20 at the present time. Whilst prime Moulmein Teak planks now fetch £20 a load, Java Teak, which is shorter in length and inferior in quality, ranges in value from £14 to £15 per load.

Teak, African (Oldfieldia africana, Benth. and Hook. : Order Euphorbiaceae). Western Tropical Africa; but only found recently in Sherbro', Sierra Leone. In no way related to the true Teak. Height upwards of 30 or 40 ft.; girth 7—8 ft. S.G. 934—1,086. W 58—68. c 7,052. fe 4.9. c' 931. v' 1.341. p 15,000. R 855 lbs. Dark red, very hard, strong, rigid, fine, close, and straight in grain, free from shakes, shrinking and warping little, very durable; but difficult to work. It was shipped from Sierra Leone in logs so badly hewn as to yield little more than 50 per cent. of well-squared timber. It was used in ship-building for keelsons, beams, etc., and classed in the second line in Lloyd's Register; but has ceased to be imported since the general use of iron in ship-building. Beams that have been fifty years in old warships have been satisfactorily used up in artillery waggons and the spokes of motor-car wheels. The Forestry Department of South Nigeria reports that the wood cannot now be obtained, which, considering its valuable characteristics, is much to be regretted.

Teak, Bastard (Pterocarpus Marsupium Roxb.: Order Leguminosae). Central and Southern India. Hind. "Bibla." Beng. "Bija," "Bija Sāl." A large tree, yielding timber 18—30 ft. long, and 1—2 ft. in diam. S.G. 820. R 518—378 lbs. Sapwood narrow, white, soft, heart reddish-brown, handsomely streaked with a darker shade, very hard, requiring thorough seasoning, susceptible of a fine polish, and very durable. Darker-coloured and harder than the allied Padouk, it is heavier than most Teak, equally strong, and less liable to split, but more expensive to work, and not durable if exposed to wet. It is largely used for door- and window-frames, posts, beams, agricultural implements, cart- and boat-building, and furniture.

Teak, Johore (Parinárium oblongifólium Hook. fil.: Order Rosáceae). Malay "Balau." Height 60—100 ft. W 65. Yellow, becoming orange and dark-brown with age, very heavy, close-grained, termite-proof. Formerly largely exported, used for beams, and employed for the Colombo breakwater; but now rare.

Teak, New Zealand. See Puriri.
Teazle, the name in the walking-stick trade for *Viburnum Opulus* L. (Order *Caprifoliaceae*). A native of Europe, Northern and Western Asia, and North America, known also as "Guelder Rose" or "Balkan Rose," reaching a height of 6—12 ft., and imported as walking-sticks from the Balkans.

Tendu. See Ebony, Bombay.

T'eng-li-mu (*Pyrus betulæfólia* Bunge: Order *Rosáceae*). China. The best wood in Wuchang for engraving purposes, being a tolerable substitute for Box, occurring in the market in planks 6 in. wide and 1½ in. thick, costing 150 cash, or 5½d.

Terebinth (*Pistacia Terebinthus* L.: Order *Terebinthaceae*). Mediterranean. This is probably the Hebrew "Elah," the τερέβινθος of the Septuagint, variously mistranslated Oak and Elm in the Authorized Version. A tree of 20—40 ft. high, yielding the medicinal Chian turpentine and galls used in tanning; but of no importance as a wood.

Tewart or Touart (*Eucalyptus gomphocéphala* DC.: Order *Myrtáceae*). Western Australia, where it is stated it covers 500 square miles. Known sometimes as "White Gum." Height 100—150 ft., yielding timber 20—45 ft. long, squaring 11—28 in. S.G. 1.194—1.000. W 60—78. \(\Pi \) 4.1. \(p \) 2.552. \(c \) 10,284. \(c' \) 1.398. \(v' \) 1.229. R 257-25 lbs. Straight-growing, pale yellow, or light brown, very heavy, hard, tough, strong and rigid, close, twisted, or even curled in grain, so as to be difficult to cleave or work, and with no liability to split, with a slight heart- and star-shake militating against its reduction into planks, shrinking very little in seasoning, and apparently imperishable under any climatic changes. Used in ship-building for beams, keelsons, capstans, and windlasses, strongly recommended for the woodwork in engine-rooms, where it is exposed to great heat, and for piles and dock-gates, and well suited also for naves and spokes of wheels, but, though one of the strongest and toughest of known woods, too heavy for general use, and not plentiful.

Thingan (*Hópea odorátá* Roxb.: Order *Dipterocarpáceae*). Further India. Burm. "Thingan." Anam "Sao." Height up to 250 ft., 80 ft. to lowest branch; diam. 3—4 ft. S.G. 652—608. W 64—38. R 800 lbs. Yellowish-brown, heavy, hard, close- and even-grained, not liable to insect-attack, and very durable under water, but liable to split in the sun. Used for house-building, canoes, and cart-wheels, being one of the most valuable woods of its district.

Thitka (*Pentácé burmánica* Kurz.: Order *Tiliáceae*). Burma, Pegu, Malacca, and Java. Known also as "Kathitka." Very large. W 42. White or yellowish-red, light, soft, even-grained, taking a good polish, and having sometimes a lustre resembling
Satinwood; pith-rays moderately broad, wavy, red, equidistant; rings visible. Used in Burma for boat-building and tea-chests, and exported in considerable quantities to Europe for furniture, resembling inferior Mahogany.

Thitkado. See Cedar, Moulmein.

Thorn. See Blackthorn and Hawthorn.

Thorn, in Cape Colony (*Acacia hórrida* Willd.: Order *Leguminosceae*). Known also as “Mimosa.” Boer “Doorn-boom, Kamulboom.” Height 20—25 ft.; diam. 1—1 ½ ft. Hard, tough. Used for building, agricultural implements, wheels, etc.

Thumbagum (*Shorea Tumbuggáía* Roxb.: Order *Dipterocarpaceae*). Madras, Burma, etc. Dark-red, harder even than Sal. Used for gun-carriages.

Thuya (*Tetraclinis articulátata* Masters: Order *Cupressineae*). Morocco and Algeria. “’Arar.” The “Lignum-vitae” of the French, the “alerce” of the roof of Cordova Cathedral, and probably the “Citron-wood” of the Romans, for tables made of which wood thousands of pounds were paid, and the “Thyine-wood” of the Apocalypse (xviii. 12). Also named *Thúya articulátata* Vahl, and *Cálilítris quadríválvis* Vent. Height 30 ft. Only the burrs come into the English market, in which the name is pronounced “Tho’ee.” They are reddish-brown, and fragrant; and, having a figure very similar to the more valuable Amboyna-wood, are frequently substituted for it; but can be distinguished by their distinctively coniferous structure. The root of *Juniperus phoe-nicea* L., the “Génévrier” of Algeria, is similar.

Tipa, Colorado or Palo Mortero (*Machéríum Pseudótípí* Griseb.: Order *Leguminosceae*). Northern Argentina. Yielding timber 10 ft. long and 1 ft. square, light red-brown, fine and even in grain, and easy to work. Used for beams, scantlings, spokes, etc. A better wood than **Tipa blanco** or White Tipa (*Tipuána specíósa* Benth.= *Machéríum Tipu*), which is used as a tanning material.

Titoki. See Oak, White.

Tochi (*Escluús turbinátata* Bl.: Order *Sapindáceae*). Japan. Height 20 ft.; diam. 2 ft. Used in house-building, box-making, and lacquer-work.

Tonka-bean (*Coumaróúna odoráta* Aubl. = *Dipteryx odoráta* Willd.: Order *Leguminosceae*). Brazil and Guiana. Known sometimes as
“Tonquin-bean,” “Gaiae,” “Cuamara.” Height 60—70 or 90 ft.; diam. 1—2½ ft. S.G. 1,213—1,032. R 385 kilos. Dark yellow or reddish-brown, very heavy, hard, tough, cross-grained, difficult to work, taking a fine polish, very durable, and said to bear a greater strain than any wood in the Colony. Used for cogs, shafts, mill-wheels, and to a small extent for turnery and furniture, and medicinally as a substitute for Guaiacum.

Toon. See Cedar, Moulmein.

Torreya, Japanese. See Kaya.

Totara (Podocarpus Totara A. Cunn.: Order Taxinæ). New Zealand. “New Zealand Yew.” Height 40—70 or 120 ft., 35—40 ft. to the lowest branch; diam. 2—6 or 10—12 ft., yielding timber 20—45 ft. or more long, squaring 10—22 in. S.G. 1,230 when fresh cut, 559 when seasoned. W 28—37. p 133-6. Sapwood 2—3 in. wide, light-reddish; heart deep red, heavy, moderately hard, close, straight, very fine and even in grain, strong, very easily worked, not warping or twisting, very durable, teredo-proof. With the exception of Kauri, the most valuable timber in New Zealand, and far more abundant than Kauri. Used for piles in the sea, sleepers, wood-paving, telegraph-poles, fencing, shingles, bridges, canoes, and general building purposes, but is suitable for interior fittings and furniture, and has a future in the English market; sometimes presenting Amboyna-like burrs.

Trumpet-tree (Cecropia pelátia L. and C. palmática Willd.: Order Moráceæ). The former in Jamaica, the latter in Brazil and Guiana. Height 50 ft.; diam. 1 ft. Very light and resonant. Used for floats for fishing-nets, razor-strops, for producing fire by friction, for trumpets and drums made from the hollow branches or stems.

Tulip-tree (Liriodendron tulipífera L.: Order Magnoliáceæ). Eastern North America. Known also as “Saddle-tree, Poplar, Yellow, White,” or “Virginian Poplar, Whitewood, Canary White-
wood, Canary-wood,” or “Canoe-wood.” French “Tulipier.”
S.G. 423. W 26-36. R 657 kilos. Sapwood of moderate width,
nearly white; heart light lemon-yellow or brownish, light, soft,
close and straight in grain, tougher than many woods equally soft,
compact, not very strong or durable, easily worked, shrinking and
warping somewhat in seasoning, taking a satiny polish. Vessels
minute, evenly distributed; pith-rays fine, but distinct. Usually
heavier, and more valuable as timber, than the true Poplars.
Excellent for shingles and clapboards, as it does not split under
heat or frost; used for rafters and joists, and generally as a substitu-
tute for Yellow Pine (Pinus Strobus) or Cedar in building, especially
for doors, panels, and wainscots, the seats of American Windsor
chairs, box-making, turnery, and boat-building; and formerly for
Indian “dug-out” canoes. Imported from New York to Liverpool
as “American” or “Canary Whitewood” in large planks, boards,
and waney logs at a price equal to that of the best Quebec Yellow
Pine, this wood is valued, as easily worked, firm when fully dried,
and taking polish, stain, or paint very well, by carriage-builders,
shop-fitters, cabinet-makers, etc. The planks and boards, which
are in 16 ft. lengths, are often the wood of the allied Cucumber-
tree (Magnúolia acuminátá), which has a wider white sapwood, and
is somewhat harder and coarser. The boards are often planed
on both sides, the saving in freight being greater than the cost of
planing.

Tulip-tree, in Australia (i) (Lagunária Paterzóni Don: Order
Malvácée). Known also as “White Oak” or “Whitewood.”
Height 40—60 ft.; diam. 1½—2½ ft. White, close-grained, easily
worked. Used for building. (ii) (Stenocárpus sinuátus). See
Fire-tree.

Tulip-tree, in India. See Umbrella-tree.

Tulip-wood (Physocalýmmma scabérrimum Pohl.: Order Lythrác-
Germ. “Rosenholz.” A rose-coloured, beautifully striped wood.
Considerably used for inlaying and small turned ware.

Tulip-wood, in Australia (i) (Harpuúlia péndula Planch.: Order
Height 50—60 ft.; diam. 1—2 ft. The outer wood light-coloured,
very tough, easily worked, the best wood in Australia for litho-
graphers’ scrapers, and suggested for engraving. The innerwood
beautifully marked with black and yellow, close-grained, strong,
and much valued for cabinet-work; (ii) the similar wood of Owénía
venósa [See Plum, Sour]; (iii) the very different light-coloured wood
of Aphanánthe philiippíníncísis. [See Elm.]
Tupelo (*Nyssa biflora* Wangen., = *N. tomentosa* Michx. ; Order *Cornúaceae*). Southern United States. Known also in America as "Black," "Cotton," "Sour," "Yellow," or "Tupelo Gum," or "Pepperidge." *Span.* "Tupelo." Height up to 120 ft.; diam. 4 ft. S.G. 63.5. W 39·6. R 830 kilos. Sapwood light yellow; heart light-brown, free from knots, moderately heavy, strong, and tough, cross-grained, hard to split, planing well, but warping, not durable or constant in character. Used in America for waggon-hubs, rollers, handles, sabots, and turnery. Imported in sawn boards, and used for inside linings in cheap cabinet-work.

Turnip-wood (*Synónum glandulósum* A. Juss.; Order *Melióaceae*). New South Wales and Queensland. Known also as "Dogwood, Brush Bloodwood," and "Bastard Rosewood." Height 40—60 ft. diam. 1½—2 ft. W 41—45. Deep red when fresh, with a scent like that of roses, afterwards resembling Cedar, firm, easily worked, but apt to tear under the plane, taking a good polish. Used for cabinet-work, interior finish, etc. The bark has a turnip-like smell. [See also *Cedar, Pencil.*]

Turpentine-tree, American. See *Pine, Long-leaf.*

Turpentine-tree, in Australia (i) *Eucalúptus microcoróys* [See *Tallow-wood*]; (ii) *E. Stuartiana*. [See *Gum, Apple-scented*]; (iii) *Syncárpia laurifólia* Ten. (Order *Myrtáceae*). North-East Australia. Height 100—150 ft.; diam. 4—5 ft. W 57—69. Sapwood light-coloured; heart dark-brown, hard, apt to shrink and warp unless well seasoned, very durable underground in damp, or in sea-water, termite- and teredo-proof, owing to the resin it contains, taking a high polish, very unflammable. Much used in Sydney for piles, excellent for sleepers, fence-posts, and uprights in buildings. (iv) *S. Hillii* Bailey, of North Queensland, a dark pink, close-grained, tough wood, appears to be also useful.

Turpentine, Brush (i) (*Syncárpia leptopectála*) [See *Myrtle*]; (ii) (*Rhodámmnia trínérvia* Blume: Order *Myrtáceae*) New South Wales and Queensland. Sometimes known as "Black-eye." Height 70—80 ft.; diam. 2—3 ft. W 50—52·6. Reddish-brown, moderately hard, close-grained, firm, not easy to seascn, and almost always hollow when large. Not much used.

heart small, dark-red, a deep claret colour when hollow, resembling Mahogany, hard, very strong, said to be durable in Cochin-China, but apparently variable in this respect. Used in India for furniture, spokes, and carriage-building, in Ceylon for gunstocks, and also in boat-building, and in the Pacific Islands for carving.

Umzimbit (*Toddalia lanceolata* Lam.: Order *Xanthoxyldceae*). South Africa. Known also as “White Ironwood.” Height 20 ft.; diam. 2 ft. W 60-37. E 772 tons. / 8-56. /c 4-33. White, hard, tough, elastic, resembling Ash or Hickory. Used chiefly for ploughs, axles, and waggon-building. The name is also applied to *Millettia cajfas* Meissn. (Order *Leguminosceae*), which has a white sapwood, and the heart purplish-pink, greasy, intensely hard, and seven times as durable as Lignum-vitae. Used for walking-sticks, and excellent for machine-bearing.

Venatico. See Mahogany, Madeira.

Vau, in Fiji. See Corkwood-tree.

Varnish, Black or Burmese (*Melanorrhoea usitata* Wall.: Order *Anacardiaceae*). Further India. Known also as “Lignum-vitae of Pegu.” *Burm. “Thit-si.” Manipuri “Kheu.” Height 30—40 ft. to lowest branch; diam. 2—4 ft. W 54. Dark-red or brown, with yellowish streaks, heavy, very hard, fine- and close-grained, tough, durable, the black gum which exudes from it repelling termites. Used for anchors and tool-handles, and recommended for blocks, gun-stocks, or sleepers. The varnish is largely used in lacquering and gilding.

Vesi. See Shoondul.

Vesi-vesi. See Beech, Indian.

Violet-wood. See Purple-heart. In England the name is applied, on account of perfume, to *Acacia pendula*. See Myall.

Wa. See Beati.

Waibaima (Nectandra sp.?; Order Lauraceae). British Guiana. Apparently also known as "Cirouaballi." W 57. Abundant, green, shading to brown, close, but coarse in grain, heavy, working well. Superior in most respects to Greenheart, and suitable for the same purposes.

Wallaba (Epiprea falcata Aubl.; Order Leguminosae). Guiana, Brazil, etc. French "Wapa gras." Height 40—80 ft.; diam. 1—2 ft. S.G. 945—930. W 52—65 ft. E 1,171 tons. f$ 8-1. jf 4-28. js '424. R 224 kilos. Deep red, with whitish streaks, heavy, hard, and, owing to a resinous oil, very durable, but rather coarse-grained. Used for vat-staves, shingles, palings, and, to a small extent, for furniture. The Ituri Wallaba (E. Jenmani Oliver) is finer in grain.

Wallangunda (Monotoca elliptica R. Br.; Order Euphorbiaceae). Eastern Australia. Known also as "Beech." Height 20—30 ft.; diam. small. W 37—44 ft. Resembling Beech, sometimes with a beautiful silvery grain, working well across the grain, and taking a polish. Excellent for planes, etc., but not answering for engraving.

Walnut (Juglans regia L.; Order Juglandaceae). A native of Northern China and Persia, introduced into Greece and Italy in early times from Persia, and thence into the rest of Europe. Known also as "European," "English," "Italian," "Ancona," "Auvergne," or "Circassian Walnut." Pers. "Jaoz, Charmagz, Akrot." Greek "Carna, Persicon, Basilikon." Latin "Juglans." French "Noyer." Germ. "Walnuss." Height 30—50 ft.; diam. 2—3 ft. W 58 ft. when green, 47—28 when dry. Sapwood broad, greyish-white, very liable to become worm-eaten; heart brown to black-brown, often "watered"—i.e., showing dark, wavy lines and zones—moderately heavy, hard, fine and close in grain, splitting very little in seasoning, but readily split artificially, taking a beautiful polish, and durable, if kept dry, especially when dark in colour and figured; pith large, chambered; pith-rays fine, indistinct; rings distinct; vessels uniformly distributed, few, very large and open, single or in pairs. Burrs, often 2—3 ft. across, and a foot or more in thickness, weighing 5—6 cwt., occur, and, being generally beautifully mottled, are highly valued for veneers. The sapwood
may be rendered more durable by smoking over a fire of Beech, or by boiling in the juice of the green fruit; but the liability to worm-attack prevents Walnut being used in building. English-grown Walnut, coming mostly from rich plains, is pale, coarse, little figured, and perishable; French is better; that from the Black Sea, sometimes known as Austrian and Turkish, but grown partly in Servia, which is imported in waney logs 6—9 ft. long, squaring 10—18 in., is still more valuable; whilst that from Italy, which comes in planks 4—9 in. thick, 10—16 in. wide, and 5—12 ft. long, is the best. At the beginning of the eighteenth century Walnut became very fashionable as a furniture wood, marking the first departure from the previous universal use of Oak. The severe winter of 1709 killed most of the Walnut-trees in Central Europe, the dead trees being bought up by the Dutch, who thus secured a "corner" in this wood. So scarce was it in France that its exportation was prohibited in 1720, and Mahogany, imported by the Dutch and Spaniards, largely replaced it for furniture. No wood, however, equals it for the manufacture of gunstocks, so that the wars of the eighteenth century created a great dearth of this timber, and we read of France consuming 12,000 trees a year in 1806, and of as much as £600 being paid for a single tree. European Walnut is still in use for the best gunstocks. The burrs have realized £50—£60 per ton, and veneers, some of which are of a beauty unsurpassed by any other wood, as much as two or three shillings per square foot. These are used in the pianoforte and furniture trades. Swiss carvings are mostly in Walnut, and the wood is also used in turnery, for screws for presses, musical instruments, sabots, etc. European Walnut is now, however, so scarce that it is being largely replaced in all its uses by the American.

Walnut, American or Black (Juglans nigra L.). Eastern North America. Height 60—150 ft.; diam. 3—8 ft. S.G. 611. W 30—55. R 856 kilos. Sapwood narrow; heart violet-brown or chocolate-brown, blackening with age, heavy, hard, tough, strong, rather coarse in grain, checking if not carefully seasoned, easily worked, susceptible of a high polish, very durable in contact with the soil. More uniform in colour, darker, duller, less liable to insect-attack, and thus more durable than European Walnut. Formerly used on the Wabash for "dug-outs," 40 ft. long and about 27 in. wide, and also largely for fence-posts, shingles, building, naves of wheels, etc., this wood has now become too valuable as a cabinet and veneer wood to be used for these purposes. Before the middle of the nineteenth century it was only used in England for carcase ends, frames for veneering, and other inferior purposes; it has now increased four-fold in price, and is more used than European wood, its uniform colour recommending it to shop-fitters and as a basis for painted or other ornamentation in the cabinet-trade. It is
imported in logs 10—21 ft. long, squaring 15—30 in., in planks, and in boards; and, besides its use in cabinet-making, is employed for the stocks of our army rifles. It fetches from 3s. to 8s. per cubic foot in the Liverpool market, and can be profitably grown in good soil in the South of England.

Walnut, Belgaum (*Aleurites triloba* Forst.: *Order Euphorbiaceae*). Moluccas, New Caledonia, etc. Height 60 ft.; diam. 1—2 ft. Used for packing-cases and joinery; and, when seasoned, for building.

Walnut, East Indian (*Albizia Lébbek* Benth.: *Order Leguminosae*). India and Tropical Africa. W 41—56. Dark brown, heavy, hard, coarse-grained, working and polishing well, durable. Used for house- and boat-building, furniture, mill-rollers, and wheels. See also *Lasrin*.

Walnut, Grey (*Júglans cinérea* L.).

Walnut, Japanese (*Júglans Sieboldiana* Maxim.).

Walnut, Manchurian (*J. manschurica* Maxim.).

Walnut, Queensland (*Cryptocárya Palmerstóni* F. M. Bailey: *Order Lauriéeae*). Resembling American Walnut.

Walnut, Satin. See *Gum, Sweet*.

Walnut, White. See *Butternut*.

Wandoo (*Eucalypíus redária* Schau.: *Order Myrtáéeae*). West Australia. Known also as "White Gum." Height up to 120 ft.; diam. up to 17 ft. W 63—79. Light-coloured, brownish-red, heavy, very hard, tough, and durable. Valued for building, and especially for wheelwrights’ work, being superior to Tewart for spokes and felloses, and supplying the best naves and cogs; used also for furniture, and recommended for sleepers.

Water-tree. See *Pin-bush*.

Waterwood (*Chimárrhis cympós* Jacq.: *Order Rubiáéeae*). West Indies. Known also as "Bois Rivière." Height 50—60 ft. Valued for furniture and joinery.

Wattle, the general name in Australia for species of *Acácia* (*Order Leguminósa*), from their use by the early colonists in "wattling" their huts. French "Bois tresse."

tough, strong, liable to insect attack. Formerly used for boomerangs, mulgas and spears, and nowadays in Tasmania for cask-staves, tree-nails, etc.

Wattle, Golden (i) (*A. pycnantha* Benth.). South-East Australia. Known also as “Green” or “Broad-leaved Wattle.” S.G. 830. W 51·5. Tough, close-grained. (ii) (*A. longifolia*) [See Sallow].

Wattle, Silver (i) (*A. dealbata* Link.). Eastern Australia and Tasmania; established in India since 1840. Height 60—120 ft.; diam. 1—2 ft. Light-brown, moderately hard, warping considerably. Used for cask-staves, tree-nails, turnery, and fuel. (ii) [See Wattle, Black (iii)]. (iii) [See Blackwood].

Wellingtonia. See Big Tree.

Whitethorn. See Hawthorn.

Whitewood, a name sometimes applied in the English timber-trade to the Norway Spruce. [See Spruce.] In the United States it refers mainly to *Liriodendron* [See Tulip-tree]. In Australia it is either (i) *Lagunaria* [See Tulip-tree (i)], or *Pittosporum bicolor* [See Cheesewood].

Whitewood, American or Canary (*Liriodendron*). See Tulip-tree.

Whitewood, Mowbulan. See Laurel (i).

**Willow, a name restricted in Europe and North America to the numerous and variable species of the genus *Sálíx*; but extended in Australia to several trees in no way related to the true Willows or to one another. These will be dealt with after the true Willows. Some species of *Sálíx* are herbaceous and others mere prostrate undershrubs of no value. Several other species and their numerous hybrids are cultivated as coppice, in river eyots or wet ground, under the name of “Osiers,” for the manufacture of wicker-work. Until about a hundred years ago all our osiers were imported from Holland. Of these the chief are *S. viminalis* L., the Common Osier (Germ. “Korbweide”), with silky hairs on its young branches;
S. purpúrea L., the Purple Osier, with red or purple bark; and S. vitellína L., the Golden Osier, with yellow bark. Other species are treated as pollards, the top being valuable for hurdles, clothes-props, hoops, handles for hay-rakes, etc. Those most important as timber-trees are the White Willow (S. álba) and the Redwood Willow (S. frágílis). S. Capréa has been already described. [See Sallow.]

Willow, Crack (S. frágílis L.). Europe, Northern and Western Asia; introduced in America. Known also as "Withy," "Bedford," or "Redwood Willow," or "Stag's-head Osier." Germ. "Bruchweide." Height sometimes 50—90 ft.; diam. 4—7 ft Branches green, yellow-brown, orange or crimson, smooth, polished, brittle at the base; wood, when dry, salmon-coloured, light, pliable, tough, and elastic. Said to be used in Scotland for boat-building; used also in cabinet-work, and for sabots and toys. Said to be superior to other Willow.

Willow, White (S. álba L.). Europe, North Africa, North and West Asia to the North-West of India. Height up to 80 ft.; diam. 7 ft. S.G. 785 when fresh, 461 when dry. W 35—24. Branches olive, silky, not easily detached; sapwood white; heart brownish, light, soft, smooth in grain, not splintering, shrinking more than one-sixth of its bulk in drying, very durable in water; vessels uniformly distributed, indistinguishable; pith-rays indistinct. Used in Pliny's time, on account of its lightness, for shields, and formerly for flooring; nowadays for break-blocks on railway-waggons, since, owing to the absence of oil or resin, it will not take fire on friction; for wheelbarrows, especially at iron-furnaces, as it will not split or warp when heated; for the paddles of steam-boats and strouds of water-wheels; for shoemakers' lasts and cutting-boards; for whetting fine cutlery, and for toys; but especially for cricket-bats, for which purpose large sound trees fetch exceptional prices. Cricket-bats sold at five shillings or any higher price are all made of White Willow. The polishing-wheels used by glass-grinders are made of horizontal sections across the entire tree. The smaller wood is used for clothes-props, the handles of hay-rakes, hurdles, fencing, and hoops, for druggists' boxes, for paper-pulp, and for fuel.

Willow, Yellow (S. vitellína L.). Europe; introduced into North America. Height up to 60 ft.; diam. 3—4 ft. Sapwood
wide, nearly white; heart irregular, reddish-brown, light, soft, not strong, easily worked, and taking a beautiful polish. Its yellow twigs, known as "Golden Osiers," are used for basket-work, and larger wood for fencing, fuel, and charcoal.

In Australia the name "Willow" is applied (i) to *Eucalyptus pilulāris* [See Blackbutt]; (ii) to *Geijera parvisflora*; and (iii) to *Pittosporum phillyrceoides*, which is sometimes termed "Native Willow," a name also given to (iv) *Acacia salicina*. (ii) *Geijera* *parvisflora* Lindl. (Order Rutaceous). Known also as "Dogwood." "Aborig. "Wilga." Height 20—30 ft.; diam. 6—12 in. Light-coloured, fragrant, hard, close-grained, apt to split in seasoning, and liable to gum-veins. Used for naves of wheels. (iii) *Pittosporum phillyrceoides* DC. (Order Pittosporaceae). Known also as "Butter-bush" and "Poison-berry." Height 20—25 ft.; diam. 4—6 in. S.G. 767. Light-coloured, very hard, close-grained. Useful for turnery. (iv) *Acacia salicina* Lindl. (Order Leguminosae). Height 30—50 ft.; diam. 1—1½ ft. S.G. 763. W 47·5. Dark-brown, prettily figured, heavy, close-grained, tough, taking a high polish. Used for boomerangs and furniture.

Wood-oil tree. See Gurjun.

Woolly-butt (i) *Eucalyptus longifolia* Link.: Order Myrtaceae. South-East Australia. Sometimes known as "Bastard Box." Height 100—150 ft.; diam. 3—6 ft. S.G. 1,187. W 68·5. Dark-red, heavy, hard, straight and close in grain, strong and tough, liable to gum-veins and shakes, durable, especially underground. When sound, much prized for the felloes and spokes of wheels, and suitable for paving; but on account of its gum-veins more used as fuel. [See also (ii) Gum, Apple-scented, (iii) Mahogany, Bastard, and (iv) Gum, Manna.]

Yarrah (*Eucalyptus rostrata*). See Gum, Red.

Yellow-wood, a name applied in South Africa to various species of Podocarpus (Order Coniferae), and in Australia to four or five woods in no way related to these or to one another. [See also Fustic.]

Yellow-wood; Bastard (*Podocarpus pruinósus* E.M., or perhaps also *P. elongáta* L'Hérít. and *P. Thunbérgi Hook.*). *P. pruinósus,*
a native of Natal, is a tree of considerable size, yielding a pale-yellow, tough, and durable wood, much used for building. [See Yellow-wood, Natal, and Yellow-wood, Real.]

Yellow-wood, Dark or Deep (Rhús rhodanthéma F. v. M.: Order Anacardiáceae). North-East Australia. Known also as “Yellow Cedar,” or inappropriately as “Light Yellow-wood.” Aborig. “Jango-jango.” Height 60—80 ft.; diam. 1½—2 ft. W 47. Rich brownish or yellowish-bronze colour, darkening with age, often beautifully marked, soft, fine and close in grain, taking a fine polish, with a silky lustre, durable. A handsome and valued cabinet-wood, but not plentiful.

Yellow-wood, Light (i) inappropriately (Rhús rhodanthéma) [See Yellow-wood, Dark]: (ii) (Daphnándra micrántha) [See Sassafras, Australian (ii)]; and (iii) and most appropriately (Flindérsia Oxleyána) [See Jack, Long].

Yellow-wood, Natal or Outeniqua (Podócárpus elongátà L’Hérít.). South and Tropical Africa. Known also as “White” or “Bastard Yellow-wood.” Boer “Geel Hout.” Zulu “Umkoba.” Height 30—120 ft.; diam. 3—5 ft. W 30—45. Pale yellow, soft, light, close-grained, easily split and worked. Neither so common nor so hard as the Real Yellow-wood (P. Thunbérqii); but used indiscriminately with it for roofs, beams, planks, flooring, and furniture, and, when creosoted, for sleepers.

Yellow-wood, Real or Upright (Podócárpus Thunbérqii Hook.= P. latifólia R. Br.). South Africa. Boer “Geel Hout.” Zulu “Umceya.” Height 75—120 ft.; diam. 2—8 ft. W 33—38. Light yellow, straight-growing, light, soft, even-grained, fairly elastic and strong, easily worked, but somewhat liable to split or warp. Excellent for shingles, and used also for furniture, and, like the last mentioned, in building, and, when creosoted, for sleepers.

Yen-dike (Dalbérgia cultrátà Grah.: Order Leguminósæ). Burma. Apparently sometimes known as “Blackwood” and confused with some species of Ebony. Height 35 ft. to the lowest branch; diam. 1—3 ft. W 64. Black, sometimes with white and red streaks, straight-grown, very heavy and hard, tough, not brittle, elastic, but full of shakes, very durable, not cracking any more after conversion, and resisting sun or rain. Excellent for spokes, bows, handles of ploughs, tools, planes, and spears, and largely used for carving.
Yen-ju (Sóphora japónica L. : Order Leguminósae). China and Japan. Height 40 ft. or more; diam. 2—4 ft. Hard, fine-grained, ornamental. Used for turnery, furniture, and interior finish; but valued as a shade tree and for its buds, the Chinese "Wai-hwa," which are used as a yellow or green dye.

Yew (Táxus baccáta L. : Order Taxínea). Europe, up to altitudes of 6,000 ft. in Southern Spain; Northern and Western Asia, up to 11,000 ft. in the Himalayas; and Northern Africa. French "If." Germ. "Eibe," "Eibenbaum." Welsh "Yw." Ancient Greek "Taxos, Melos." Modern Greek "Maurelatos." Latin "Taxus." Ital. "Tasso." Span. "Texto, Tejo." Height 15—20 or even 50 ft., and in the Himalayas 100 ft.; diam. 1—5 ft. or more, up to 19 ft. W 40—57. Reddish-brown, resembling Mahogany, irregular in its growth, heavy, very hard, close-grained, tough, very elastic and flexible, susceptible of a high polish, insect-proof, and more durable than any other European wood, especially in contact with soil, it being an old saying that "a post of yew will outlast a post of iron." On old trees burrs occur, figured and mottled like Ambonya-wood. Sapwood very narrow, yellowish-white; annual rings very narrow, wavy, well-marked by the broad dark zone of autumn-wood; pith-rays indistinguishable and without tracheids; wood without resin-duets, entirely composed of spirally thickened tracheids. "The eugh obedient to the bender's will," as Spenser calls it, seems to have been used, owing to its combined toughness and elasticity, for bows from very early times. In England, though home-grown wood was used, that imported by Venetian traders from Italy, Turkey, and Spain, was of better quality. At the close of the sixteenth century the practice of "backing" bows with some other kind of wood was introduced, and at the present day they are largely made of Lacewood and Hickory. At the present day Yew is employed to some extent at High Wycombe and Workhop in chair-making, and on the Continent in turnery. When stained black it is one of the woods known as German Ebony. Small branches are valued for walking-sticks and whip-handles. In the latter part of the eighteenth century veneers of Yew burrs were largely used for tea-caddies and other small articles. There is in the library of the India Office a Persian illuminated manuscript on thin sheets of Yew.

Yew, Californian, Pacific, or Western (Táxus brevífolia Nutt.). Pacific slope from British Columbia to South California, up to altitudes of 8,000 ft. Height 40—50 or 80 ft.; diam. 1—2 ft. W 40. Sapwood pale yellow; heart orange-red, heavy, hard, fine-grained, extremely stiff and strong, seasoning well, and durable.

Height 40—50 ft.; diam. 2 ft. Dark reddish, handsome, close-grained, tough. Used by the aboriginal Ainu for bows, and by wealthy Japanese for cabinet-work and interior finish. Used also for pencils.

In Trinidad the name is also applied to *Catalpa longissima* Sims (Order **Bignoniaceae**). Height 80 ft.; diam. 3 ft. W 70. Light reddish-brown, heavy, very durable.

Zebra-wood, a beautifully marked furniture-wood, chiefly obtained from *Connarus guianensis* Lam. (= *Omphalobium Lamértii* DC.: Order **Connaraceae**). British Guiana. “Hyawaballi.” Height 90 ft., squaring 10—12 in. S.G. 1,032. Reddish-brown, beautifully marked, working well, and taking a good polish; but very rare. The name is also applied to the woods of *Eugénia frágrans* Willd., var. *cuneáta* (Order **Myrtaceae**), *Guettárdia specíosa* L. (Order **Rubiaceae**), the “Ron-ron” of Honduras, and *Centrolobium robústum* Mart. (Order **Leguminosae**), the “Arariba” or “Araroba” of Brazil, exported from Rio, in lengths of 30—40 ft.; and to *Diospyros Kúrzii* (Order **Ebenaceae**) from the Andaman Islands.

Zelkova (*Zelkova crenáta* Spach. = *Plánera Richárdi* Michx.: Order **Ulmaceae**). Caucasus. Height 70—80 ft. Sapwood broad, light-coloured, very elastic, used for the same purposes as Ash or Elm; heart reddish, heavy, very hard, taking a good polish. Used for furniture.

Zwartbast. See Blackwood, in Cape Colony.
APPENDIX I

EXPLANATION OF SOME TERMS USED WITH REFERENCE TO CONVERTED TIMBER, ETC.

It may be useful to give here the following definitions of terms used in the English timber trades. (See also p. 76 supra.)

A balk is a log roughly squared.

A plank is 11 in. broad, from 2 to 6 in. thick, and generally from 8 to 21 ft. in length.

A deal is 9 in. broad and not more than 4 in. thick.

A batten is not more than 7 in. broad.

A square is 100 ft. superficial.

A hundred of deals is 120.

A load is 50 cubic feet of squared timber, or 40 cubic feet of unhewn, or 600 superficial feet of inch planking.

The simplest formula for measuring timber is:

\[C = L \left(\frac{G + g + g'}{3} \right)^2 \]

where \(C \) = the cubic contents in cubic feet; \(L \) = the length of the log in feet; \(G \) = one-fourth of the girth of the tree midway in its length, in feet; \(g \) = one-fourth of the girth at one end, in feet; \(g' \) = one-fourth of the girth at the other end, in feet; a deduction for bark being made from each quarter-girth.

The ratio of calliper measurement of the diameter of a tree to "siding" is as 99 : 70, or, roughly, as 10 : 7—e.g., 10 in. diam. gives 7 in. in the side; 15 in. gives 10 1/2; 20 gives 14; etc.

Water weighs 62.321 lbs. per cubic foot; therefore wood, of which \(W \)—i.e., the weight per cubic foot—is 62, has the specific gravity which is stated as 1, or sometimes (dropping decimal points) as 1,000. As we use \(W \) to express the weight in lbs. per cubic foot, and S.G. to represent the density or specific gravity—i.e., the weight as compared with water—we find the S.G. by dividing 62.32 into \(W \). Woods have specific gravities between 26 and 1.3, or 260 and 1,300—i.e., \(W \) ranges from 13 to 85 (see p. 35).

In comparison with the Metric system it is convenient to reckon a decimetre as = 4 in., a metre as = 3 1/2 ft., a kilogram as = 2 1/2 lbs., and a ton as = 1,016 kilos.

A cubic centimetre of water, at the standard temperature and pressure,
being the unit of weight or gram, a cubic decimetre (1,000 cubic centimetres) or litre, weighs a kilogram; and a cubic metre (35\(\frac{1}{3}\) cubic feet) of water weighs 1,000 kilos.

Several kinds of wood are sold by special measures. Teak is sold by the load of 50 cubic feet. Wainscot Oak logs, although they have three square sides and one round, are sold by calliper measure, which entails a loss to the buyer on conversion. Hewn Oak logs from Odessa and Libau, although eight-sided, are also invariably sold by calliper measure. Birch logs, on the other hand, are sold by string measure—i.e., actual girth—although the price is based on their calliper depth.

Sawn Pitch-Pine logs are sold in some ports by string measure, and in others by calliper—the former giving an advantage of 5 per cent. to the buyer. Pine and Spruce deals are sold by the St. Petersburg standard, which contains 165 cubic feet.

Mahogany, and Mahogany alone, is sold by what is called Brokers' measure, a custom dating from the time when it was usual to allow a hand's-breadth in every yard to the buyer to compensate him for loss in conversion. A "broker's rule" is 13\(\frac{1}{2}\) inches to the foot, and this broker's measure gives the buyer an advantage of from 25 to 40 per cent. over the calliper measure, or extreme contents of a log.

In France wood, especially firewood, is measured by the stère, or cubic metre, =35.32 cubic feet, or 1.31 cubic yards.

Deal considered by builders dry enough for use weighs 34 lbs. per cubic foot—i.e., 66 cubic feet or 792 superficial feet to the ton. When wood weighs 30 lbs. per cubic foot, 72 cubic feet or 864 superficial feet go to the ton; when 45 lbs. per cubic foot, 50 cubic feet or 600 superficial feet make the ton.
APPENDIX II

THE MICROSCOPIC EXAMINATION OF WOODS

It is generally recognized that much more trustworthy evidence as to the identity of out-of-the-way woods can be obtained by a microscopic examination than from reports of native opinion or rule-of-thumb tests applied by lumbermen or unscientific traders. Such microscopic examination, it is true, will not always enable us to refer an undetermined wood even to its Natural Order, and will in many cases fail to discriminate between the species of one genus; but, on the other hand, it will often afford, in addition to the evidence of identity, much valuable information as to strength, durability, or other reasons for suitability or unsuitability.

No one need be deterred from having recourse to this method of examination by any alarm as to its technical difficulties or expense. Though even an examination of a planed surface of wood with a pocket lens may give useful suggestions, a thin transverse section examined under the slightly higher powers of a compound microscope will afford vastly greater information. Any ordinary microscope will suffice, Leitz's dissecting instrument, costing £2 10s., answering admirably; but it is desirable to have a wide, simple stage and a triple or double nose-piece carrying, preferably, objectives of 1½ in., ½ in., and ¼ in. focus, though it is seldom that any objective higher than 1 in. is required.

The preparation of the sections is not difficult. It is quite unnecessary for the ordinary purposes of study to make them of anything like the superficial dimensions of the beautiful preparations of Herr Burkaart or Mr. Hough. All that is requisite is to get a transparent section, across the grain, embracing a few annual rings, though it is well to have, either in one or in more than one section, the pith or structural centre and some of the sapwood as well as the heartwood. Good results can be obtained with well-seasoned wood; but it is easier to work with green wood, full of sap. It should be borne in mind that if a transverse section is not cut precisely at right angles to the vertical axis of the tree the round sections of the vessels will become oval. The end of the specimen having been roughly smoothed with a plane or chisel, a shaving can be easily cut with a well-sharpened plane which, though not equally thin all over, will serve all the purposes of study. The iron of the plane should cut in a radial direction. The wood should, before being cut,
be well moistened with glycerine if it is to be mounted in glycerine-jelly; but, if not, it must, directly after being cut, be dehydrated by being soaked in methylated spirit and dried between blotting-paper. It is best to drop the curling shaving at once into some liquid dye, as this renders the structure far more readily visible under the microscope. An alcoholic solution of methyl violet does very well; but, perhaps, erythrosin, which can be obtained in tabloids, is the best all-round stain for microscopic work. For micro-photography fuchsin gives sharper contrasts. After dyeing, the thinner part of the shaving can be cut square with scissors and mounted, for which purpose we personally prefer an extra wide glass slip and a square cover-glass. If carefully dried with blotting-paper under moderate pressure the sections can be preserved unmounted, or mounted, as permanent microscopic objects in Canada balsam or in glycerine-jelly under thin glass cover-slips, or on paper, like the series prepared by Herr Nördlinger.

Another method we have found efficacious is to immerse a small squared specimen in a basin of water—such as a deep photographic basin—by means of metal weights, and then to slice off thin shavings with a broad chisel. The sections floating to the surface may then be dyed, or may be simply floated on to slips of glass, lightly covered with thin cover-slips and then dried slowly and cemented down. Though most students of minute structure use thin cover-slips, excellent results are attainable with thick ones, such as the glass ordinarily used for photographic negatives.

Though the transverse section is most important, longitudinal ones, either radial or tangential, are often also of use—the latter, for instance, affording the readiest means of distinguishing Alder from Birch.

Such microscopic sections can be most readily studied by being used with a lantern; but when so used they should always be protected from the heat of the burner by an alum bath.

Nothing is more likely to impress the facts of structure upon the student’s mind than the fixing of the image of that structure as projected by the lens of a lantern by means of photography. This can be carried out without costly apparatus—that used by Mr. Weale in the preparation of the photographs for Appendix IV. not costing five shillings, in addition to the price of the lens.
APPENDIX III

SELECT BIBLIOGRAPHY

[The works of other authors to which I am most indebted are marked with an asterisk.]

Bailey, F. M.—Queensland Woods. 1899.
Balfour, Edward.—The Timber Trees of India. 1862.
Boulger, G. S.—The Uses of Plants. 1889.
Brandis, Sir Districh.—Indian Trees. 1906.
Charpentier, Paul.—Timber. Translated by Joseph Kennell. 1902.
Darwin, Francis.—The Elements of Botany. 1895.
Fletcher, Banister F. and H. P.—Carpentry and Joinery. 1898.
*Hartig, Robert.—Timbers and how to know them. Translated, from the 3rd German edition, by Dr. William Somerville. 1890.
Holtzapffel, Charles and John Jacob.—Turnery and Mechanical Manipulation. 1843-1844.
Julius, G. A.—Notes re Timbers of Western Australia, and The Physical Characteristics of the Hardwoods of Western Australia. 1906.
*KEVER, ROYAL GARDENS.—Official Guide to the Museums of Economic
Botany. No. 3.—Timbers. 2nd edition. 1893.
KIRK, T.—The Forest Flora of New Zealand. 1889.
*LASLETT, THOMAS.—Timber and Timber Trees, Native and Foreign. 2nd
*MAIDEN, J. H.—Useful Native Plants of Australia. 1889.
Masters, Dr. MAXWELL T.—List of Conifers ... in Cultivation. Journ.
Royal Hort. Soc. xiv.
NÖRDLINGER, H.—Les bois employés dans l'industrie. 1872.
NÖRDLINGER, H.—Holzquerschnitte. 1862-1882.
ROGERS, JULIAN.—Analysis of Returns ... relating to Colonial Timber,
presented to Parliament. 1878.
*Roth, FILIBERT.—Timber. U.S. Department of Agriculture, Division of
SARGENT, Prof. C. S.—Sylva of North America. 1891-1898.
SCAMMELL, E. T. The Timber Resources of the Australian Commonwealth.
Jour. Soc. of Arts. 1902.
Schlich, Dr. W.—Outlook of the World's Timber Supply. Journ. Soc. of
Schlich, Dr. W.—The Forestry Problem in the United Kingdom. 1904.
Schlich, Dr. W.—A Manual of Forestry.
Schrenk, Dr. H. von.—Seasoning of Timber. U.S. Bureau of Forestry. 1903.
Sharples, Stephen P.—In Prof. Sargent's Ninth Census Report.
Stevenson, W.—The Trees of Commerce. 1888.
Soc. of Arts. 1901.
*Stone, Herbert.—The Timbers of Commerce. 1904.
Timber Trades Journal.—1876-1901 (in progress).
Tredgold, Thomas.—Elementary Principles of Carpentry. 7th edition,
edited by E. W. Tarn. 1886.
*UNWIN, Prof. W. C.—The Testing of Materials of Construction. 2nd
edition. 1899.
*Ward, Prof. H. Marshall.—Timber and some of its Diseases. 1889.
*Ward, Prof. H. Marshall.—The Oak. 1892.
*Wood, Prof. H. Marshall.—Disease in Plants. 1901.
WIESNER, JULIUS.—Die Rohstoffe des Pflanzenreiches. 1902.
Wood, H. T.—Colonial and Indian Exhibition Reports. 1887.
APPENDIX IV

THE DISTINCTIVE MICROSCOPIC STRUCTURES OF WOODS

A general description of the microscopic structure of wood has been given in Chapter I., and an outline classification of woods based upon this microscopic structure has been attempted in Chapter II. The object of the present appendix is to give further details of the distinctive microscopic characters of a series of typical woods, arranged in accordance with that classification and illustrated by plates taken from Mr. J. A. Weale's admirable series of photo-micrographs. These last are uniformly magnified 30 diameters.

As was explained in Chapter I., the wood of broad-leaved trees ("hard-woods," "porous woods," or "leaf-woods," as they are variously termed, see p. 44) is far more complex in structure than that of Conifers ("soft-woods," "non-porous woods," or "needle-leaved woods"). For convenience, however, the more complex hard-woods will here be dealt with first (Plates I to XL).

To realize fully the structure of wood, it is necessary to examine it not only in transverse section—cut, that is, "across the grain," or at right angles to the axis of the stem—but also in longitudinal sections—cut, that is, "with the grain," either tangentially, not passing through the centre, or radially—i.e., "quartered," or cut through the centre. At the same time the distinctive characters of woods are seen better in transverse than in longitudinal sections.

For the purposes of the practical examination of transverse microscopic sections of hard-woods, we use for convenience the terms "large pores" and "small pores," signifying mainly tracheae (p. 16) and tracheids respectively, the "ground-tissue" of the xylem—generally its hardest portion—being mostly wood-fibres, and the "soft-tissue"—often only relatively soft—being the "wood-parenchyma" (p. 28). This last term we have borrowed from Mr. Gamble. When this soft tissue forms a patch round a large pore we term it an "areola."

As the structure of Oak—a fairly typical example of complex hard-wood—has been already fully illustrated by magnified views of sections in all three directions (Figs. 18 to 24 and 27), we have here taken another hard-wood, a typical Australian representative of the Order Proteaceae, cut in all three directions (Plates I. to III.), as our starting-point.
The Proteaceae have mostly moderately hard, reddish woods, distinctly "ring-porous," having the "pores," or transverse sections of their tracheal tissue, confined to the earlier-formed wood of each ring. Like the Oaks, they are remarkable for their conspicuous broad pith-rays. In a transverse section of the wood (Plate I.) these appear as broad lines of parallel cells, occasionally widening out, as seen near the bottom of the plate. In a tangential section (Plate III.) they appear as prominent spindle-shaped masses of cells in the irregular mesh-work of the wood, suggesting, as Mr. Stone says, when speaking of one species, "the fibres of a Loofah." In a radial section (Plate II.) they form a "silver grain" of broad dark plates. Unlike the Oaks, the Proteaceae generally have the pores of nearly uniform size, and they are seldom large. They vary considerably in their arrangement, forming, for example, regular rings in Hākea, the "Pin-bush" of Eastern Australia, but a series of curves between the rays in Bānksia (Plate I.). These curves are convex in their outer margins, or, as they have been termed, "dentate."

Bānksia serrāta, from which species our photo-micrographs are taken, is one of the "Honeysuckles" of Eastern Australia, trees of moderate size, yielding a handsome Mahogany-coloured wood, coarse and open in grain, and rendered ornamental by its silver grain. The curves or "loops" of pores are from two to five pores wide, and the pores are somewhat crowded together, whilst the width of the porous and that of the non-porous part of each "ring" are about equal. The rays are not generally more than twelve cells in width; but the tangential section (Plate III.) shows them to be more than four times as deep as their width. In the radial section (Plate II.) the rings are clearly indicated by the lines of pores, and the "mirrors" of the silver grain are lustrous.

Hard-woods may well be divided into two groups, according to whether annual rings are distinctly discernible, as in Bānksia and in Plates XIII. to XL., or not, as in Plates IV. to XII. Most of this latter group are tropical woods, and in many of them (Plates IV. to VII.) annual rings are more or less distinctly simulated by wavy concentric or excentric partial or complete zones of soft tissue, chiefly wood-parenchyma, known as "false rings." These often run into one another, which true annual rings never do. No European woods belong to the group characterized by the presence of these "false rings," unless, perhaps, the Olive may be so described. Among the woods of this group are some having both broad and narrow pith-rays, such as the Indian Oaks Quercus lamellōsa and Q. incāna;¹ but usually all the rays are narrow.

Plate IV. represents the wood of the Moreton Bay, or Large-leaved, Fig of North-East Australia (Ficus macrophīlla). The alternating bands of hard and soft tissue—thick-walled and thin-walled parenchyma—of which the latter is generally slightly the wider, closely simulate annual rings. The pith-rays are of two thicknesses, but none of them broad, and they have a wavy course, being displaced by the large pores. The pores are not numerous, are irregularly scattered in both hard and soft wood, and are often divided into two or

¹ Gamble, Manual of Indian Timbers, Plate XIV., Figs. 3 and 4.
APPENDIX IV

three by tangential walls. This type of wood, of a grey or light-brown colour, is characteristic of the genus *Ficus*; and the pith-rays, neither very numerous nor very broad, though distinctly visible under a lens, are characteristic of the whole Order *Urticaceae*, considered in a wide sense—i.e., including the Bread-fruits (*Artocarpus*), Mulberries (*Morus*), and Elms (*Ulmus*). (See Plate XVI). To this so-called “Fig type” belong many tropical *Leguminosae*, such as the Ponga (*Pongamia glabra*), figured by the late Professor Marshall Ward\(^1\) and the Jhand (*Prosopis spicigera*), figured by Mr. Gamble.\(^2\)

Very similar is that of the Bastard Bullet-wood (*Humiria floribunda*), figured on p. 46. This wood, which belongs to a distinct Order, the *Humiriacae*, is characterized—in addition to its distinct false rings of darker wood, which sometimes run into one another, and sometimes die out laterally—by fine, concentric, “dentate” rings of soft tissue; by numerous, equidistant and uniformly fine pith-rays, with an undulating course bending round the pores, and forming a regular rectangular mesh-work, with the rings of soft tissue; and by its comparatively few, uniformly distributed, medium-sized, white pores, which are sometimes in radial groups of two to five, and are filled with thyloses.

Passing to those timbers in which the false rings are more obscure or less regular, a group of dense, heavy, dark-coloured woods from India and other tropical countries, including the Ebonies (*Diospyros*), in the Order *Ebenaceae*, many *Leguminosae*, and other series, we have selected three types (Plates V. to VII). Padouk (*Pterocarpus marsupium* (Plate V.) is a yellowish-brown, leguminous wood from Southern India, *P. indicus* and *P. macrocarpus*, from Burma, and *P. dalbergioides*, from the Andamans, being a rich Mahogany-like red. Our plate shows irregular zones of darker wood, with more or less concentric bands of soft tissue, varying very much in width, but completed by fine wavy lines, and made up of elements of rather larger transverse diameter than those in the rest of the wood. The pith-rays are very fine, numerous, uniform, and equidistant; and the large pores are not numerous, but are uniformly scattered, varying somewhat in size, though mostly considerably wider than the space between two pith-rays, often subdivided radially into groups of two or three, or even as many as eight, and without thyloses.

Plate VI.—*Cassia Fistula*, the Indian Laburnum, is in many respects a similar wood. It is very hard, heavy, and dark-coloured, with numerous very fine, uniform, slightly bent pith-rays, appearing light against the dark hard tissue; and white, irregularly concentric, but anastomosing, bands of soft tissue surrounding the pores. These pores are not numerous, are uniformly distributed, varying somewhat in size, but never very large, often radially subdivided, and often filled with resin.

Plate VII.—*Gudiaum officinale*, the Lignum-vitae of Tropical America, represents another Natural Order, the *Zygophyllaceae*. It appears to have

\(^1\) *Timber and some of its Diseases*, Fig. 7.

\(^2\) *Op. cit.*, Plate VI., Fig. 6.
true concentric rings of lighter and darker wood, the pores in the former being more numerous and larger; but it is not likely that these rings constitute the spring- and summer-wood of a year's growth. The pith-rays are very numerous, very fine, uniform, equidistant, and wavy, about the width of a pore apart; and the pores are small, but variable in size, sometimes in groups of two or three, and appearing green from the resin which they exude. The narrow yellow sapwood is sharply contrasted with the dark-brown heart.

Plates VIII. to XII. represent types of tropical timbers in which there are neither true annual rings nor false rings. Albizzia prócea (Plate VIII.), the White Siris of India, belonging to the same genus as the so-called East Indian Walnuts (A. Lébbek, etc.), is a leguminous wood, closely allied to *Mimosa*, hard, though quick-grown. The sapwood is wide and yellowish-white, the heart brown, with ill-defined alternating lighter and darker bands. The pith-rays are few, fine, and, except where diverging round the pores, straight. The pores are large, uniformly distributed, sometimes divided radially into two, and always surrounded by an "areola," or round patch, of soft tissue.

Plate IX.—*Nectandra Roodéi,* the Greenheart of Demerara—is a representative of the *Lauráceae.* It is a very heavy, very hard, dark greenish-brown wood, almost black, with few, fine, uniform, gently undulating, equidistant pith-rays, and a moderate number of large, uniformly distributed, yellowish-green pores. These pores are mostly subdivided or grouped together in threes or fours, filled with yellowish-green resin, and surrounded by small patches of soft tissue, so that—but for the pith-rays—the transverse section has, as Laslett says, "the appearance of cane."

Hópea odoráta, the Thingan of India (Plate X.), is a member of the Order *Diptércarpaceae,* which comprises several of the largest and finest of Indian forest-trees. They are generally hard, brown, and resinous, with fine or moderately broad pith-rays, producing a good silver grain, and large resin-filled pores, each surrounded or "ringed" by a narrow band of loose tissue made up of large wood-cells. In the genus Hópea the wood is yellowish-brown and even-grained, and there is some slight variety in the size of the pores. In our plate it will be noticed that the pith-rays vary in width, though none of them are wide, and that there are delicate little transverse lines or bars of small elements joining them at right angles. In one place these transverse bars are represented by a decided band.

The wood of Lóphira aláta, the African Oak (Fig. 33, p. 47), is another representative of this Order. Here the soft tissue forms fine, undulating, concentric lines, and there are very numerous, excessively fine, wavy pith-rays. The pores are not numerous, but mostly large, in groups from two to five together, many filled with a whitish chalky substance, conspicuous against the blood-red colour of the wood.

The Order *Sapotáceae,* of which *Sideróxyton orbónicum* (Plate XI.) is an example, is one of considerable importance not only as containing timber-trees, but also as that to which the Guttaperechas belong. The woods in this Order resemble those of the *Ebenáceae* in structure, but differ in being usually
red or yellow, whilst the *Ebénaceae* are black or grey. The pith-rays are numerous, fine, and equidistant; but the characteristic features are the somewhat irregularly concentric and wavy, narrow bands of soft tissue, with crowded small pores, and—still more so—the radial rows of moderately large pores arranged in echelon between the pith-rays.

The *Guttiferae* are another large Order of tropical trees, including that yielding Gamboge, and having wood with that absence of rings so characteristic of the tropics. Their timbers are usually reddish, with fine, but clearly defined, pith-rays; large pores irregularly distributed, singly or in more or less radial groups; and fine broken transverse lines of darker cells. The genus *Calophyllum*, a species of which is represented in Plate XII., includes most kinds of Poon.

Passing on to woods having distinct annual rings (Plates XIII. to XL.), in which category are most of the broad-leaved trees of Temperate latitudes, we find that they fall readily into the two groups known as "ring-porous" and "diffuse-porous." The former (Plates XIII. to XXV.) have large or numerous pores in the spring-wood, with smaller, fewer, or more scattered ones in the summer-wood. They may be again subdivided (see pp. 45-49) into those having the pores in the spring-wood larger than those in the summer-wood, and those in which they are only more numerous and crowded. The former sub-group includes Ashes, Locusts, Elms, Oaks, Hickories, Teak, and Mahogany, etc. In the Ashes, one of which—*Fraxinus americana*—is represented in Plate XIII., the annual rings are defined by a very narrow line of dense autumn-wood in contact with the conspicuous ring of large pores in that formed in the succeeding spring. These large spring-pores are oval, and form a loose ring of three to five rows, the pores diminishing radially. The pores in the summer-wood are small, often two or three together, and often connected by soft tissue, forming short peripheral lines, as seen in the upper half of the plate. The pith-rays are not distinct to the naked eye, or even to a low-power lens; they are straight, except where they bend round the large spring pores.

Robinia Pseudacacia, commonly known as "Acacia" in England, and as "Locust" in America (Plate XIV.), is a hard and heavy leguminous wood. Its annual rings—in correlation, probably, with its deciduous character—are well defined by a line of dense autumn-wood, followed by an irregular "pore-ring" of small, followed by larger, pores; these latter being followed by others gradually diminishing in size and number into the autumn-wood. The pores are oval, solitary, or in radial groups of two to ten together, and filled with thyloses, so that they appear as yellow-brown dots. The numerous light-coloured pith-rays vary a good deal in width, and are very undulating, bending to avoid the pores.

The Laburnum, *Cytisus Laburnum* (Plate XV.), is another representative of the deciduous *Leguminosae* of Temperate regions. Its wood is dense, often very regularly concentric, the yellow sapwood contrasting markedly with the dark-brown heart. The large irregularly formed pores in the spring-wood are crowded together in crescentic groups of six to eight between the pith-
rays, as are also the smaller vessels of the autumn-wood. The pith-rays are rather broad and, under the microscope, distinct. The pale patches of large wood-cells (wood-parenchyma) surrounding the pores and, with them, constituting these crescent-shaped areas, are very characteristic of the Sub-Order Papilionáceae, to which nearly all European Leguminosae belong.

Considering that they belong to a very distantly related Order, the Elms have woods which in much of their microscopic appearance, especially in the autumn-wood, much resemble the Laburnum. The rings are well defined by the zone of large pores, which consists of several rows in our English Elms, but of little more than a single row in Ulmus americana (Plate XVI.). The pores are oval, but irregular, in form. The small pores of the autumn-wood are grouped three to fifteen together, surrounded by soft tissue, in festoons, which form almost continuous wavy concentric bands. The numerous pith-rays, which are brown in colour, are not very conspicuous under a low power. They do not avoid the pores in this species.

The wood of the Chestnut, Castánea (Plate XVII.), has its annual rings very sharply defined by the wide ring of large pores; and the wood itself is more spongy in the spring half of the year's growth than in the other. The large pores are oval, are somewhat loosely arranged in the zone, and decrease in size outwards. They are followed in the autumn-wood by very characteristic, oblique, branching, or "dendritic" groups of small vessels surrounded by soft tissue. The pith-rays are numerous, so fine as to be hardly distinguishable, and bending round the large pores.

The Oaks, of which the American White Oak (Quércus álba) is represented in Plate XVIII., belong, like the Chestnut, to the Order Cupulíferæ; and, though readily distinguished from the latter wood, have many points of structure in common with it. The annual rings are similarly defined by the zone of large spring pores. These pores are somewhat irregular in size and form, and are more crowded than those of Castánea. The small pores of the autumn-wood are grouped in dendritic lines, and surrounded by wood-parenchyma, much as in the other tree, but are often blocked by thyloses. The distinctive character of Oak wood, however, is the presence, in addition to numerous fine pith-rays, of the very broad compound rays which are readily visible to the naked eye. (Compare Figs. 19 and 27, pp. 24-31, and the description there given.)

The Hickories (Hicóría), one of which is figured in Plate XIX., are American trees belonging to the Order Juglandáceae, the Walnut group. Their annual rings are well defined by a single, loose, undulating row of large, round, or slightly oval pores in the spring-wood. The pores are not numerous, and diminish in size in the outer spring-wood, and still more in the autumn-wood. The pith-rays are very numerous and very fine, and avoid the large pores. The autumn-wood is traversed by very fine wavy white lines of soft tissue.

The wood of the Persimmon (Diospýros virginiána), the North American representative of the Ebonies (Plate XX.), though not related to the last-mentioned wood, has many structural points in common with it; but in old trees becomes much darker—nearly black, in fact. The rings are well marked
by the larger pores in the spring zone; but these are not shown in our plate, which only represents part of a ring. The pores are nearly uniformly distributed, are mostly small, and are sometimes grouped radially two to five together. The very numerous fine pith-rays bend to avoid the larger pores, and there is an obscure arrangement of transverse lines of soft tissue.

Teak (*Tectona grandis*), a member of the Order *Verbenácceae*, presents (Plate XXI.) a somewhat similar structure. Its rings are well defined, both by the ring of large pores, forming about two rows, in the spring-wood, and by the greater density of the later-formed part of each year's growth. There are rather fewer pores in the later-formed wood, and they are sometimes grouped three or four together. A white secretion of calcium-phosphate is frequent in them. The numerous, moderately broad, equidistant pith-rays are rather lighter in colour than the ground tissue. They produce a handsome silver-grain of elongated plates on a radial section.

Including as it does the Neem-tree, the Crabwoods, Chittagong-wood, Satinwood, and Toon, as well as the Mahoganies both of the West Indies and of Africa, and the so-called "Cedars" (*Cedrela*) of the New World, the Order *Meliácceae* is among the most important of tropical groups. Though in some cases yellow—*e.g.*, *Chloróxylon*—or even white, their woods are mostly red, and are hard and heavy. The rings are sometimes clearly marked both by a zone of large pores and by alternating lighter and softer spring-wood and darker autumn-wood, as in *Cedrela* (Plate XXIV.) ; but the pores are generally rather scanty, of moderate size, and evenly distributed; and in many cases there is no pore-circle, and the colour-zones may be only "false rings." The pith-rays are not conspicuous. African Mahogany, as now in commerce (Plate XXII.) is, perhaps, *Kháya grandifólia*. It has its rings obscurely marked by dark zones, but not by a pore-ring; its pores evenly distributed, of moderate size, solitary or in small groups, often radially subdivided, and with dark contents, but with no marked areola of soft tissue; and its pith-rays with black contents to some of their cells, which, however, are best seen in a tangential section.

Cuban Mahogany (Plate XXIII.), which may be a *Cedrela*, and resembles the woods from Panama and St. Domingo, has its rings marked by a narrow zone destitute of pores. Its evenly-distributed, moderate-sized pores are often subdivided or radially grouped two to four together, and are rendered more conspicuous by accompanying soft tissue. Soft tissue also occurs in conspicuous, fine, light-coloured, transverse lines. The pith-rays are numerous, very fine, uniform in width, seldom noticeably displaced by the pores, but sinuous in long waves, which Mr. Stone says1 is not the case in Panama Mahogany. Crabwood (*Curapa guianénsis*), which he figures, has numerous short undulations.

The Cigar-box Cedar, *Cedrela odoráta*, of the West Indies (Plate XXIV.), has sharply defined rings, with a pore-zone of two or more interrupted rows of large round pores. These are sometimes partly filled with brown resin.

1 *Timbers of Commerce*, p. 35.
In the autumn-wood there are a few, widely scattered, much smaller pores, with small areolae of soft tissue. The fine, uniform pith-rays are of a brick-red against the cinnamon-brown wood, and are distinctly seen as they bend round the large pores in the spring-wood. The East Indian Cedrela Toôna is a very similar wood.

Passing on to woods in which the vessels or pores, though not equally distributed throughout the rings, are not larger in the spring-wood than in the autumn-wood, we come to those of the genus Príunus (the Plums and Cherries), in which the pith-rays are distinctly visible, and the Buckthorns and Sumachs (Rhámnus and Rhús), in which they are not so. The wood of Rhámnus cathárticu, the Buckthorn (Plate XXV.), presents a striking object under the microscope, on account of the flame-like branching groups of pores, often fifty together, which extend from broad bases on the inner margin of each ring to its outer limit. This structure does not occur in other species of the genus, such as the British R. Fránqula, the so-called "Berry-bearing Alder," or the Canadian R. Parsháuna, which is figured by Mr. Stone. The heartwood is orange and the sapwood yellow.

The Venetian Sumach, or Wig-tree of our gardens (Rhús Cótínus), figured on p. 50 (Fig. 35), has a hard, greenish or golden heart-wood, which is used as a yellow dye. The rings are well marked under a lens, the large pores of the spring-wood gradually diminishing in number and size outward, and being grouped two to seven together.

The "diffuse-porous" woods comprise most of our European broad-leaved trees. Their annual rings are very generally distinct; but they owe this distinctness, not to any predominance in number of size or the pores in the spring-wood, but to the closer texture of the elements of the autumn-wood (Plates XXVI. to XL.).

If we divide this large group into those with large and those with minute vessels, the Walnuts, Sal, and, perhaps, most of the Eucalýpti, constitute the former division, though possibly these last may be better placed with the "false-ring" types.

Júglans nígra, the American Walnut (Plate XXVI.), the species now most in use, has its rings bounded by a fine line just traceable with a lens, but not noticeable in solid specimens of the dark wood. There is an ill-defined pore-ring of an interrupted row of moderately large, open, oval pores; and those scattered, fairly evenly, through the later-formed wood, somewhat in echelon, are smaller. They are often subdivided radially into two to five. The numerous pith-rays are not visible to the naked eye, are slightly undulating, and bent round the larger pores. Fine, short, transverse lines of soft tissue occur, but are very inconspicuous. Júglans cinérea, the Butternut or White Walnut of the United States (Fig. 36, p. 351), is a softer, lighter wood, with practically identical structure.

Karri, Eucalýptus versícólor (Plate XXVII.), is a dark-red, hard, and heavy wood. Its rings are sometimes marked by a dense zone in contact with one having crowded pores. The pith-rays are very numerous, uniform in width, equidistant, waved, and avoiding the pores; but not recognizable by
the naked eye. The pores, though not very numerous, are conspicuous; they are very irregularly distributed, singly for the most part, but also in groups or rows; and often contain resin, and have irregular areolae of soft tissue. On the surface of a solid section they appear pinkish.

Diffuse-porous woods with minute vessels are further subdivided according to the presence or absence of broad pith-rays. Plane, Beech, Hornbeam, Hazel, and Alder exemplifying the former subdivision. The wood of the Plane (Plate XXVIII.) differs from the other four examples in having all its pith-rays broad. It is light-brown, and in the American species here represented (Platanus occidentalis) the rings are seen well defined in the section by a narrow zone of dense autumn-wood. The boundary-line bends slightly outwards at the pith-rays — i.e., forms a series of shallow loops between every two rays, with their concavities towards the circumference of the stem. The pith-rays are numerous, straight, and uniformly broad, except at the boundaries of the rings, where they widen. They are lighter than the ground-tissue, and shine, so as to yield a pretty figure, sometimes known as "Honeysuckle," when quartered. The pores are crowded; but those in the autumn-wood are less so, and are much more minute.

The wood of the Beech (Plate XXIX.) is very similar, but has numerous excessively fine pith-rays between the numerous broad ones. The undulations of the ring-boundaries are generally stated to curve in the reverse direction to those of the Plane — i.e., with their concavities towards the centre of the stem — but this does not appear to be so in our section of Fagus ferruginea. The crowded pores decrease gradually in number and in size towards the narrow autumn zone, the abrupt outer margin of which clearly indicates the ring-boundary.¹

The heavy, hard, and exceptionally tough, yellowish-white wood of the Hornbeam (Carpinus Betulus) is readily recognizable by the naked eye. Its rings are remarkably sinuous, and it has a small number of very broad "false" or compound pith-rays made up by the union of numerous narrow ones, and having ill-defined lateral boundaries. They have not the shining lustre of those of Beech or Plane. The pores are so far massed in the first-formed spring-wood and absent in the latest autumn-wood as to mark the rings. They are largely arranged in short radial lines (Plate XXX.).

The much lighter, soft wood of the Alder (Alnus glutinosa), (Plate XXXI.) which, from white, dries to a light brown, is recognized by the few broad, nearly straight compound pith-rays, with very numerous fine simple ones between them, and the slight undulations of the faint ring-boundaries, which bend inward at the broad rays. The pores are somewhat fewer in the autumn-wood, and show a slightly radial grouping. The general occurrence of brown pith-flecks, which are sometimes concentric, is another discriminating feature.

The diffuse-porous woods with minute pores and with no broad pith-rays may be subdivided into those in which the pith-rays, though narrow, are quite distinct to the naked eye, as in Maples, Hollies, Magnoliaceae, Lindens, etc.,

¹ For further detail see G. S. Boulger, Life-History of the Beech, Quarterly Journal of Forestry, vol. i. (1907), pp. 230-279.
APPENDIX IV

and those in which they are not so distinct, such as Hawthorn, Pyrus. Birch, Box, Willows, Poplars, etc. The Maples are hard woods, varying in colour, in the regularity of their rings, and in the presence or absence of pith-flecks: they seldom have a distinct heart; and their pith-rays have a satin-like lustre which imparts a distinctive shine to the whole surface. The Sycamore (Acer Pseudoplatanus), (Plate XXXII.), has a moderately hard and heavy, white wood, with regularly circular annual rings defined by a narrow line of autumn-wood. Its pith-rays are straight, tapering out at both ends, white and lustrous. Its pores are numerous, but not crowded, and are often grouped two to five together.

The Hollies, represented (Plate XXXIII.) here by Ilex opaca, an American species, have greenish-white, white, or grey wood, generally hard, and fine, and close in grain. The rings, though often indistinct, are mostly regularly circular, and are marked by a slight pore-ring. The pith-rays are straight, sometimes tapering, not markedly satiny, and far more conspicuous in longitudinal sections than in transverse ones. The pores are mostly in long radial rows.

The wood of Liriodendron tulipifera, the Tulip-tree (Plate XXXIV.), and that of the closely allied American Cucumber-tree, Magnolia acuminata, distinguished by broader sapwood, come to market as "Canary Whitewood." It is white, canary-yellow, or grey, and, being a quick-growing species, has often wide rings, so that the confusion of its wood with that of the Poplars was excusable. A slight diminution in the number and size of its pores characterizes the narrow zone of autumn-wood by which the rings are defined. The rings are for the most part evenly circular. The pith-rays are numerous, straight, colourless, and hardly visible to the naked eye; and the pores are numerous, crowding almost all the space between the rays, and varying slightly in size.

Though not in any way systematically related to the Magnoliaceae or the Linden, between which it stands in our classification, the wood of Liquidambar styraciflua, variously known as Bilsted, Sweet Gum, Californian Red Gum, Satin Walnut, and Hazel Pine (Plate XXXV.), has many points of structural resemblance to that of the former. Its wide rings are clearly marked by a fine line of autumn-wood; its numerous pith-rays are fine and straight; and its numerous pores are nearly uniform in size, and crowded throughout the spaces between the rays. Some of these pores contain the hygroscopic gum or balsam, known as "styrax," which produces both warping and twisting of the wood. The soft tissue is represented by small isolated patches. Satin Walnut, when grown on high ground, is marked by dark-brown or smoky false-rings.

Tilia americana, the Basswood (Plate XXXVI.), does not differ much from our European Lindens. Its rings are not very clearly defined, and have a wavy contour. Its pith-rays are numerous, but not equidistant, fine, straight, and less lustrous than those of the Maples; and its pores form a ring of variable width in the spring-wood, and are also uniformly distributed, often three to six together, but not crowded, in the rest of the ring. There are very narrow
APPENDIX IV

arole of soft tissue round the pores. The wood as a whole has not the silky lustre of the Maples.

Diffuse-porous woods in which the pith-rays are not distinguishable by the naked eye, comprise a hard and a soft series, the former including the Hawthorn, Pyrus, Birch, and Box.

Crataegus Oxyacantha, the Hawthorn (Plate XXXVII.), is a very hard and heavy, but lustreless, wood, which has been recommended as a substitute for Box, but seldom comes to market. Its rings are indistinct and wavy; its pith-rays very numerous; and its pores very numerous, minute, and evenly distributed, and sometimes grouped two or three together. Pith-flecks are numerous in this wood.

Whilst the genus Prunus and the rest of the Amygdalce have visible pith-rays and a spring pore-zone, the Pomaceae, another Tribe of the Rosaceae, to which the Hawthorn and the genus Pyrus (Plate XXXVIII.) belong, have invisible rays, and are diffuse-porous. The wood of the Pear (P. communis) and the very similar wood of the Apple (P. Malus) are destitute of pith-flecks, but are liable to warp and crack. Their rings are clearly marked by a greater crowding of the minute pores in the spring-wood and their absence in the fine line of dense autumn-wood. The pith-rays are numerous, not quite equidistant, fine, and undulating; and the pores are often grouped two to five together, or in loose "worm-like" lines. The generally similar wood of the sub-genus Sorbus, including the Rowan, etc., in which pith-flecks do occur, is stated to season better than Apple or Pear wood.

The tough, close-grained and moderately hard woods of the Birches have a fairly uniform type, of which we may take Betula lentia, the Canadian Birch (Plate XXXIX.), as a representative. The rings are tolerably clearly marked by a fine line of autumn-wood: the pith-rays are numerous, not equidistant, undulating, fine, and uniform in thickness; and the pores are of medium size, so as to be visible "like fine white flour sprinkled over the surface of a solid section," evenly distributed, but not very numerous, and mostly subdivided into groups of two to five or more together. Pith-flecks occur mostly near the centre—i.e., in the older wood.

Among the soft-wooded broad-leaved trees few are of much importance as timber; but Salix alba, the White Willow (Plate XL.), or, perhaps, rather S. frigida, the Crack Willow, is exceptionally valuable for cricket-bats. Apart from colour and physical tests, there is nothing in the microscopic structure of Willow-wood that will suffice to enable us to discriminate species or qualities.1 The wide rings are clearly defined, with a somewhat undulating contour, where the fewer and smaller pores of the denser autumn-wood contrast with the numerous larger ones of the spongy spring-wood. The pith-rays are very numerous, very fine, and nearly equidistant, being rather more than the width of one large pore apart and undulating slightly to avoid these pores. The pores are very numerous, small, oval, occasionally subdivided,

and sometimes form a pattern of oblique lines. Pith-flecks, usually abundant in the Sallow or Goat-willow (Salix Cáprea), are present in S. álba, but apparently absent in S. frágilis.

The wood of the Coniferae, the Needle-leaved trees, known commercially as "soft wood," is far simpler in structure than that of the trees of which we have been speaking, as may be seen by a glance at Plates XLI. to XLVIII. Its annual rings are generally well defined by the contrast of harder, heavier, and darker autumn-wood against the softer and lighter spring-wood. The pith-rays are so fine as to be hardly noticeable even in our highly magnified plates; and there are no trachee or pores, the wood—with the exception of the pith-rays and sometimes of resin-ducts—being entirely made up of tracheids. The very general presence of bordered pits on the side-walls of these tracheids (see Fig. 15) renders longitudinal sections of value in the discrimination of this group. The presence or absence of resin-ducts (Figs. 13 and 14) forms a useful character by which to subdivide these woods. They are absent, or nearly so, in the Silver Firs (Abies), Hemlock Spruces (Tsúga), Yews (Táxus), Junipers (Juniperus), Redwoods (Sequóia), Cedars (Cédrus), and Cypressess (Cupressus); while they are present in the Spruces (Pícéa), Larches (Lárix), and Pines (Pinus).

The Yew (Táxus baccátá), (Plate XLI.), has a narrow, yellowish sapwood, contrasting with its brownish-red, Mahogany-like heart. The narrow annual rings are sharply defined by a dark zone of autumn-wood. The pith-rays, which are only one row of cells in width, contain some resin. In longitudinal section this wood is readily recognized by the presence of spiral thickening bands in the tracheids, as well as pits.

Sequóia sempervirens, the Californian Redwood, (Plate XLII.) has a narrow light amber-coloured sapwood and a uniform light red, very soft and very light heart. It is usually slowly grown, the annual rings, though varying considerably, being narrow. They are clearly defined by a line of thick-walled autumn tracheids. The pith-rays are very distinct with a lens, not equidistant, fine, uniform, and fairly straight. Resin occurs in isolated cells, resembling ruby beads. The tracheids, forming the bulk of the wood, are jarge and thin-walled. The wood has no fragrance.

Cédrus Libani, the Cedar of Lebanon (Plate XLIII.), is light, soft, or moderately hard, yellowish or reddish-brown, and fragrant. The rings are well marked by a dense autumn zone. Pith-rays are fine, not equidistant, uniform, and fairly straight. True resin-ducts do not occur; but occasionally rows of large resin-cells appear.

In structure Pícéa álba, the White Spruce of North America (Plate XLIV.), resembles the Common or Norwegian Spruce (P. excélsa), represented in Figs. 12 and 13. The heartwood and sapwood are alike of a yellowish white, and hardly distinguishable. The broad rings, however, are very clearly defined by the darker and harder zone of autumn-wood made up of radially compressed tracheids (Fig. 13), and they are slightly undulating in contour; whilst in the European species this contrast of colour and hardness is not so marked. The pith-rays are numerous, straight, and one cell broad. The
1. *Banksia serrata.*

Transverse section.
II. *BANKSIA SERRATA*.

Radial section.
III.—*BANKSIA SERRATA*.

Tangential section.
IV.—MORETON BAY FIG (FICUS MACROPHYLLA).
V.—Padouk (Pterocarpus Marsupium).
VII.-LIGNUM-VITE (GUAIACUM OFFICINALE).
VIII. ALBIZZIA PROCERA.
IX.—GREENHEART (NESTANTRA KODEI).
X.—THINGAN (Hopea odorata).
XI.—SIDEROXYLON BORBOVICUM.
XIII.—AMERICAN ASH (FRAXINUS AMERICANA).
IV.—LOCUST (ROBINIA PSEUDACACIA).
XV.—LABURNUM (CYTISUS LABURNUM).
XVI.—AMERICAN ELM (ULMUS AMERICANA).
XVII.—CHESTNUT (CASTANEA SATIVA).
XVIII. AMERICAN WHITE OAK (QUERCUS ALBA).
XIX.—HICKORY (CICORIA OVATA).
XX.—PERSIMMON (Diospyros Virginiana).
XXI. TEAK (TECTOYA GRANDIS).
XXII. AFRICAN MAHOGANY.
XXIII. CUBAN MAHOGANY
XXIV. CIGAR BOX CEDAR (CEDREL A ODORAT A).
XXV.—BUCKTHORN (RHAMNUS CATHARTICUS).
XXVI.—AMERICAN WALNUT (JUGLANS NIGRA).
XXVII.—KARRI (EUCALYPTUS VERNICOLOR).
XXVIII.—WESTERN OR AMERICAN PLANE (PLATANUS OCCIDENTALIS).
XXIX.—AMERICAN BEECH (FAGUS PERRUGINEA).
XXX.—HORNBEAM (CARPINUS BETULUS).
XXXI.—ALDER (*ALNUS GLUTINOSA*).
XXXII.—SYCAMORE (ACER PSEUDOPLATANUS).
XXXIII.-AMERICAN HOLLY (Ilex opaca).
XXXIV.—CANARY WHITewood (LIrioDENDROX TULIPIFERa).
XXXV.—SATIN WALNUT (LIQUIDAMBAR STYRACIFLUA).
XXXVI. - BASSWOOD (Tilia Americana).
XXXVII HAWTHORN (CRATEEGUS OXYACANTHA).
XXXVIII.—PEAR (PYRUS COMMUNIS).
XXXIX.—CANADIAN BIRCH (BETULA LEXTA).
XL.—WILLOW (SALIX ALBA).
XLI.—YEW (TAXUS BACCATA).
XLII.-CALIFORNIAN REDWOOD (SEQUOIA SEMPERVIRENS).
XLIII.—CEDAR OF LEBANON (CEDRUS LIBANI).
XLIV.-WHITE SPRUCE (PICEA ALBA).
XLV. — LARCH (LARIX EUROPEA).
XLVI.—OREGON OR DOUGLAS PINE (PSEUDOTSUGA DOUGLASII).
XLVII.—*PINUS PALUSTRIS*

The Pitch Pine of English commerce.
XLVIII.—*PINUS STROBUS."

vertical resin-ducks are few, but distinctly visible (Fig. 13), whilst the horizontal ones are less easily seen. Two are probably visible on the right-hand side of our plate.

The Larch (*Lárix europae*), (Plate XLV.), has a reddish-brown heart-wood, well defined from the yellowish sapwood which may extend through from six to twenty years' growth. The rings are fairly broad, slightly undulating in contour, and very sharply defined by the broad dark autumn zone. The pith-rays resemble those of the Spruces. The resin-ducks are few in number, and are often grouped in twos and threes.

Pseudotsuga Douglasi., variously, but not quite accurately, known as Oregon Pine, Douglas Spruce, or Douglas Fir (Plate XLVI.), in many characters, such as colour, definition of rings, and resin-ducks, much resembles Larch. It is, however, usually of a rather more rosy red; its vertical resin-ducks are sometimes more clustered together, sometimes in lines of from eight to thirty; and horizontal ones are frequent. In a longitudinal section it can be seen that the tracheids of the spring-wood are spirally thickened, whilst those of the Larch are not.

Whilst the highly resinous woods of the true Pines (*Pinus*) resemble those of the Larch and Douglas in their well-defined heart and spring and autumn zones, they are distinguished by the greater number and size of their resin-ducks, which are distributed with considerable uniformity throughout the rings. The knots in Pine wood, moreover, are generally approximately in whorls, whilst those of Larch are irregularly distributed. As already stated (p. 241), the Pines fall into two series, known as "hard" and "soft." The former includes the Scots Fir, or Northern Pine (*Pinus sylvestris*), Corsican (*P. Laricio*), and Cluster (*P. Pinaster*) Pines of Europe, and most of the North American species, of which *Pinus palustris*, the Pitch Pine of English commerce (Plate XLVII.), may be taken as a type. Their greater hardness and weight is generally indicated by a darker colour, ranging from yellow to deep orange or brown, while their autumn-wood generally forms a considerable proportion of the width of each ring, and is somewhat sharply marked off from the spring-wood. Their resin-canals are chiefly in the autumn-wood. When seen in radial section (Fig. 30), the tracheids of their pith-rays are seen to have irregular tooth-like ("dentate") projections. In the Pitch Pine—the Long-leaved Pine, or Pensaecola Pitch Pine of the United States—the resin-ducks are comparatively few, and with such delicate or imperfect epithelium that they are commonly torn in section-cutting. Its rings are narrower than those of most European Pines.

The Soft Pines, on the other hand, of which *Pinus Stróbus*, the Yellow Pine of English commerce, the White Pine of its native North America, and the Weymouth Pine of gardens (Plate XLVIII.), may be taken as a type, have their greater softness indicated by their lighter colours, which range from light-red to white. The zone of autumn-wood is narrow, and merges gradually into the spring-wood on its inner margin. The resin-ducks occur alike in spring- and autumn-wood; and in the radial section no dentate projections occur on the sides of the tracheids.
NOTE A.

CELLULOSE (p. 5).

Though in the text cellulose is treated as a single substance, it is there suggested that the term belongs rather to a group of allied substances. These differ, perhaps, rather in chemical constitution or structure than in percentage composition. Among them have been distinguished “pectocelluloses” in fleshy roots, fruits, etc., “muco-celluloses” in certain seeds and fruits, “adipocelluloses” in cork, “cutocelluloses” in epidermis, and “lignocelluloses” in the cell-walls of woody tissues. These last are original constituents of these cell-walls, and not the result of chemical changes during the process of thickening the walls. They apparently contain rather more oxygen than pure cellulose, being compounded with certain other substances which modify their chemical reactions. For example, while the purer cellulose of cotton-wool turns blue when treated with chlor-zinc-iodine, the lignocelluloses become yellow.

NOTE B.

THE RECENT APPRECIATION OF TIMBER (p. 111).

At the Conference on Afforestation held in a committee-room of the House of Lords on June 25, 1907, Dr. Schlich brought forward statistics showing that from 1890 to 1906 the average price of all imported timber had risen 17 per cent., while that of coniferous timber had risen 30 per cent.

NOTE C.

NEW AFRICAN TIMBERS (p. 101).

A variety of new tropical hardwoods have recently reached the Liverpool market from Southern Nigeria, and specimens of them were exhibited in the Tropical Products Exhibition of September, 1907, in that city. As full mention has been made in the text of the African Mahoganies and of Iroko, it is mainly necessary to refer here to several Walnut-substitutes. Of these the wood of which the Benin name is “Apopo Enwiwa,” a species of Trichilia (Natural Order Meliáceae), and, therefore, in reality a Mahogany, but sold in Liverpool as “African Walnut,” is one of the best. It is brown to dark-brown, having numerous dark veins, but no figure, works easily, and is altogether a very good furniture wood. “Owowe” (Albizia sp.; Natural Order Leguminóseae), very similar to the allied “East Indian Walnut,” or “Koko” of the Andaman Islands (A. Lübbeck), is dark-brown, lustrous, rather coarse-grained, moderately strong, and obtainable in large dimensions. It should prove valuable now that true Walnut is becoming scarce. “Odonomokyuku” (Boswellia Klainci; Natural Order Burseráceae), which has also
been sold as "African Walnut," is, however, very inferior, light in weight, coarse-grained, and taking a poor finish.

In addition to these the "African Satinwood," "Ainyassan-gwe," a species of *Cássia* (Natural Order *Leguminóseae*), is a large tree, yielding a bright canary-yellow wood, which is firm and close in texture, and should prove valuable for panelling or cabinet-work.

The so-called "African Greenheart," "Okan" (*Piptadénia* sp.; Natural Order *Leguminóseae*), proved not to be durable, and is, therefore, valueless as a substitute for the Demerara wood.

Among a series of timbers from Uganda recently described by Mr. Stone,¹ the most important is, perhaps, "Muvube" (*Chloróphora rusticá* Benth.; Natural Order *Moráceae*), allied to the Iroko of the West Coast, and a yellowish-brown, extremely hard and durable wood.

¹ *Bulletin of the Imperial Institute*, vol. v. (1907), No. 2.
INDEX

The scientific (Latin) names are in italics.

| Abbreviations employed, | Acacia melanoxylon, 83, 120-1, 144
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abele, 259</td>
<td>Acacia microbrachys, 183</td>
</tr>
<tr>
<td>Abies, 41, 175</td>
<td>Acacia mollissima, 89, 296-7</td>
</tr>
<tr>
<td>— amabilis, 41, 175</td>
<td>Pennula, 219, 293</td>
</tr>
<tr>
<td>— balsamea, 41, 174</td>
<td>Plum, 123</td>
</tr>
<tr>
<td>— concolor, 41, 175</td>
<td>Pycnantha, 297</td>
</tr>
<tr>
<td>— excelsa, 275</td>
<td>Salicaria, 299</td>
</tr>
<tr>
<td>— grandidis, 41, 175</td>
<td>Seycl, 272</td>
</tr>
<tr>
<td>— homolépis, 99</td>
<td>Sudan, 197</td>
</tr>
<tr>
<td>— Khutrov, 277</td>
<td>Stenophylia, 190</td>
</tr>
<tr>
<td>— magnifica, 41, 175</td>
<td>Three-thorned, 205</td>
</tr>
<tr>
<td>— nobilis, 175</td>
<td>Acajou, 123, 154, 206-7</td>
</tr>
<tr>
<td>— pectinata, 20, 41, 82, 89, 98, 174</td>
<td>Acapu, 294</td>
</tr>
<tr>
<td>— racemosa, 201</td>
<td>Acer, 52, 212-215</td>
</tr>
<tr>
<td>— salicina, 299</td>
<td>— barbatum, 52, 63, 78, 83, 85, 88, 109, 214-215</td>
</tr>
<tr>
<td>— sacha linens, 100</td>
<td>— Campbelti, 90, 213</td>
</tr>
<tr>
<td>— Smithidna, 277</td>
<td>— campêstre, 52, 84, 212-3</td>
</tr>
<tr>
<td>— Tsuga, 290</td>
<td>— lophi, 213</td>
</tr>
<tr>
<td>— Webbiana, 41, 175</td>
<td>— Macrophyllum, 213</td>
</tr>
<tr>
<td>Abnoos, 169</td>
<td>— Negundo, 52, 213</td>
</tr>
<tr>
<td>Acacia, 44, 64, 80, 103, 104, 123, 313</td>
<td>— Oblongum, 213</td>
</tr>
<tr>
<td>— acuminata, 219</td>
<td>— Opulifolium, 52</td>
</tr>
<tr>
<td>— angustifolia, 219</td>
<td>— Pennsilvinicum, 52, 215</td>
</tr>
<tr>
<td>— angico, 127</td>
<td>— Piçutum, 39, 90, 213</td>
</tr>
<tr>
<td>— arachis, 44, 87, 135-6</td>
<td>— Platanoides, 52, 97, 213-4</td>
</tr>
<tr>
<td>— auracorei, 297</td>
<td>— Polymorphum, 213</td>
</tr>
<tr>
<td>— binervíta, 296</td>
<td>— Pseudo-platanus, 52, 88, 255, 281-2, 318</td>
</tr>
<tr>
<td>— Catechu, 197</td>
<td>— Rubrum, 52, 214</td>
</tr>
<tr>
<td>— catechroides, 197</td>
<td>— Saccharinum, 52, 215</td>
</tr>
<tr>
<td>— Cedr, 123</td>
<td>Acetic acid, 92</td>
</tr>
<tr>
<td>— Cunninghamiaii, 219</td>
<td>Acha maram, 127</td>
</tr>
<tr>
<td>— dealbata, 79, 297</td>
<td>Acliara Sapóla, 86, 151, 269</td>
</tr>
<tr>
<td>— decurrens, 290-7</td>
<td>Acle, 79, 100, 123-4</td>
</tr>
<tr>
<td>— doratylon, 218, 275</td>
<td>Aerocirrus fraxinifolius, 159</td>
</tr>
<tr>
<td>— excelsa, 191</td>
<td>Agromychia Bruíci, 132</td>
</tr>
<tr>
<td>— falsca, 203, 219</td>
<td>Adenánthera pavonina, 81, 85, 93, 268</td>
</tr>
<tr>
<td>— Falce, 13</td>
<td>African timbers, 103-4, 322-3</td>
</tr>
<tr>
<td>— floribunda, 266</td>
<td>Afzelia bijuga, 78, 81, 100, 272</td>
</tr>
<tr>
<td>— flavescens, 219, 263</td>
<td>African timbers, 103-4, 322-3</td>
</tr>
<tr>
<td>— flavescens, 170</td>
<td>Agallocha, Black, 169</td>
</tr>
<tr>
<td>— harpophylla, 219</td>
<td>Agallochum, 169</td>
</tr>
<tr>
<td>— homoléphlia, 44, 89, 101, 219</td>
<td>Agadricus mollusus, 60-1</td>
</tr>
<tr>
<td>— horrida, 289</td>
<td>Agathis australis, 59, 78, 79, 86, 103, 196</td>
</tr>
<tr>
<td>— juniperina, 297</td>
<td>— Palmerstoni, 101, 245</td>
</tr>
<tr>
<td>— longifolia, 266</td>
<td>— robusta, 101, 245</td>
</tr>
</tbody>
</table>

324
INDEX

Alder, Berry-bearing, 51, 167
— Red, 125
— White, 125
Aléctryon excélsum, 234
Alerce, 84, 126, 280
Alnus triifóla, 296
Alexandrian laurel, 79
Algarrobo, 126, 204
— de mil, 205
Algerian woods, 103
Almec Americano, 184
Almond, Horse, 279
— Indian, 126
— Wild, 126
Almug, 268
Alnus, 52
— glutinósa, 89, 125, 317
— incéná, 125
— maritínum, 184
— rubra, 125
— rhombifólia, 125-6
Aloes-wood, 169
Alphitonia excélsa, 133, 164, 202
Alséadphné semicarpifólia, 261
Alstónia scholáris, 85, 90, 161
Altingia excélsa, 4
Aludel, 167
Alvier, 244
Am, 212
Amanoa guianénis, 202
Amaranthe, 126, 260
Amaranthol, 260
Amarello Pao, 126
Ambalam, 256
Ambara, 256
Ammoyo-wood, 87, 126
Ameixero, 126, 268
Amélanchier canadénis, 272
— Grand, 272
American timbers, 104-110
Améromon Ébenus, 169
Amla ka, 126
Amlika, 283
Amlí ka jíar, 283
Amoreira de espinho, 176
Anra, 256
Anrataca, 256
Amygdáleae, 319
Amyris balsamífera, 176
Anacardium occidentálé, 154
Anan, 79, 80, 126-7
Anconca, 127
Anderson, Sir John, 117
Andréa Aubletti, 238, 294
— fraxínifólia, 79, 127
Andira inermis, 88, 106, 127, 238
Andiroba, 127, 164-5
Angelina vermelho, 79, 127
Angelica, 106, 127
Angelique, 77, 82, 105, 127
Angély, 77, 127
Angico, 127
Angica vermelho, 127
Angiosperms, Wood of, 2, 3
Angúphora intermédia, 128
— lanceolata, 128, 181
— subrelativa, 128
Aniba guianénis, 300
Animals, Injuríous, 63-4
Anisóptera thurífera, 201
Anjan, 35, 44, 87, 100, 127
Annual rings, 2, 3
Anóbium, 64
Anacardia scholáris, 87, 167
Anona, 238
Anonucêa, 39
Ants, White, 63-4
Apá, 173
Anfannáthi phillipi-nénis, 173, 291
Apí-apí, 212
Apolystes dimidiáta, 239
Apopo Enwiwa, 322
Apple, 53, 127-8, 319
— Black (or Brush), 128
— Emm, 128
— Mooley, 257
— Oregon Crab, 128
— tree, 128, 178, 181
— tree, Broad-leaved, 128
— tree, Narrow-leaved, 128
Apricot, St. Domingo, 211
— Wild, 211
Aquidária Agilóchaa, 169
Arang-mill, 145
Aqulín, 169
Arar, 83, 128, 289
Araragi, 301-2
Aratiba, 302
Araroba, 302
Arteácria Biedwilli, 152
— Cunninghamá, 79, 83, 86, 101
— imbrícáta, 244
— Arbor-vitae, 40, 128, 160
— Lobb’s, 156
Arbutus Menziésii, 201
Arostáphlyos pungens, 212
Argan, 128
Argánia Sideróxylon, 103, 128
Aristotélia racemósa, 211
Arjun, 128-9
Armilláaria, 60-1
Arolla, 244
Aroo, 233
Arctócropus Chaplásha, 90, 161
— hirsúsa, 77, 127
— integrífolia, 85, 193
— nóbílis, 167
— pubésçens, 167
Arvex, 244
Asada, 129
Asam, 283
Asan, 265
Asenga Mopani, 103
Ash, 4, 24, 29, 30, 35, 45, 64, 70, 78, 80, 82, 83, 84, 87, 88, 89, 90, 98, 117, 129-130, 242
— American, 79, 87, 130-1, 313
— Arkansas, 134
— Bee-sucké, 87, 129
— Black, 46, 110, 131-2
— Black Mountain, 134
— Blue, 132
— Blueberry, 132
— Brown-barked, 134
— Brush, 132
— Cabinet, 132
— Cape, 86, 104, 132
— Common, 45, 129-130
— Elder-berry, 132
— English, 45-6, 78, 129-130
— European, 79, 129-130
— Green, 45, 132-3
— Grey, 134
— Ground, 130, 131
— Hoop, 131
— Hungarian, 84, 129
— Kayble, 103
— Maiden, 130
— Moreton Bay, 133
— Mountain, 133-4
— Nova Scotia, 131
— Oregon, 134
— percentage, 114
— Prickly, 134
— Pyrenean, 129
— Quebec, 130-1
— Red, 46, 133, 134, 233
— White, 45, 130-1
— Rock, 134
— Swamp, 134
— Water, 134
Asiatic forests, 99-100
Asimina trifóla, 237-8
INDEX

Aspen, 88, 89, 92, 97, 98, 134-5
— American, 135
— Large, 259
— Large-tooth, 135
Aspidosperma, 240, 260
Asp, Quaking, 135
Assegai-wood, 86, 104, 135
Astracaryum seleroarpa, 177
Atechoura, 132
Atherosperma moschatum, 269-70
Athrotaxis cupressoides, 160
— selaginoides, 160
Australian timbers, 101-2
Australian forests, 88-9
Avocado pear, 135
Axe-breaker, 135
Ayodendron camella, 154
Aznadircha indica, 215

Babela, 81, 135, 220
Baba, 155-6
Babul, 44, 87, 100, 135-6
Barkhousia myrtifolia, 220-1
— scandophora, 220
Badjong, 183
Baden forests, 98
Bagassa guianensis, 136
Bagesse, 136
Bahiria, 220
Bakam, 269
Bakula, 136
Balan, 287
Balata, 105, 151
Balkan rose, 88
Ballow, 136
Balm of Gilead fir, 174
Belographia leucoda, 143
Balsam fir, 175
Ban, 231
Banaba, 78, 100, 136
Bandara, 44, 136
Bangalay, 200
Banksia, 136, 140, 187
Banksia littoralis, 136
— marginata, 86, 187
— integrifolia, 188
— serrata, 188, 310
Banyan, 44
Babob, 164
Bæphila nitida, 93, 153
Barberry, 29, 31, 36, 48, 136
Barniz falso de Japam, 124
Barranduna, 136
Barringtonia acutangula, 234
Barwood, 137
Basilikon, 294

Bassia latifolia, 39, 210-1
— longifolia, 81, 210-1
Basswood, 53, 85, 137, 318-9
Bast, 9-10, 13
Bastard faces, 66-7
Bat and ball, 235
Batitinan, 78
Bauhinia Carrionii, 170
— Hoekerii, 170
Bauschinger, 114, 116-17, 18-19
Bavarian forests, 98
Bay, Bull, 206
Bay-wood, 86, 207
Bead-tree, 137
Bean, Red, 158
— tree, 102
Beat, 157
Bearberry, 151
Beeam, 134
Bedfordia salicina, 168
Beech, 4, 24, 30, 31, 35, 39, 52, 57, 59, 60, 62, 78, 80, 82, 84, 87, 89, 92, 97, 98, 99, 101, 117, 136, 137-9, 148, 163, 204, 317
— American, 139
— Australian White, 133
— Black, 140
— Blue, 52, 87
— Cape, 139
— Evergreen, 139, 220
— Indian, 139
— Negro-head, 139
— Red, 139
— She, 140, 282
— Water, 253
— White, 52, 79, 133, 138, 140
Beefwood, 82, 86, 140, 151, 232-3, 240
Beetles, Wood-boring, 64
Bee-tree, 137
Beilschmiedia Tariacuri, 284
— Tawa, 284
Belb, 213
Beleyleh, 220
Bell, Dr. Robert, 110
Bend, 292-3
Benten, 273
Berberis, 29, 36, 48
Bercea, 141
Berosh, 242
Berberis Ammonilla, 290
Betis, 78, 100, 140
Bétula obtata, 89, 141-2
— Bhojpetra, 143
— excelsa, 109
Bétula vénata, 78, 85, 142-3, 210, 319
— latea, 142, 143
— popyrgiferum, 89, 142
— papyrifera, 143
— pubescens, 142
— verrucosa, 142
Beuchenhou, 139
Beuke, Rood, 137-8
Bharjapatri, 143
Bhurjama, 143
Bibiru, 177
Billa, 287
Bibliography, Select, 307-8
Big-tree, 140
Bija, 287
— Sal, 85, 287
Billa, 232
Billian, 77, 100, 141
Bilky Web, 169
Bilsted, 53, 182-3, 318
Bunburra, 138
Bintangor, 257
Birch, 4, 24, 29, 30, 35, 70, 82, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 109, 141-2, 304, 319
— American, 142
— Black, 78, 142, 284
— Canadian, 319
— Canoc, 89, 110, 142
— Cherry, 142
— Common, 141-2
— European, 141-2
— Grey, 143
— Indian paper, 143
— Mahogany, 142
— Old Field, 143
— Paper, 142
— Poplar-leaved, 143
— Red, 212, 284
— River, 143
— Silver, 141-2, 284
— Sweet, 142-3
— Tall, 143
— White, 141-2
— Yellow, 109, 143
Bird-Cherry, 110
Bird’s-eye grain, 32
— Maple, 63
Bitti, 143
Bitterwood, 260
Biwa, 205
Bjork, 141
Blackbutt, 78, 82, 101, 102, 133, 144, 179, 181, 239
Blackeye, 292
Blackhorn, 51, 88, 144
Blackwood, 46, 80, 85, 86, 100, 101, 102, 144-5, 300
INDEX

Blackwood, African, 145
- Australian, 83, 101, 144
- Bombay, 137, 145
- Malabar, 145
Bladderunt, 53
Blauholz, 205
Bleistift-holz, 150
Bloodwood, 82, 101, 145, 190
- Brush, 145, 263, 292
- Mountain, 145-6
- Scrub, 145
- Smooth-barked, 145-6
- Yellow, 145-6
Blueberry, 195
Blue Gum, 196
Blutholz, 205
Bo, 146
Bois brûlé, 146
Bog onion, 158
Bois beni, 147
- canelle, 270
- chaire, 146
- commun, 147
- d'Aigle, 169
- d'arce, 235
- de cotelet, 173
- de couleuvre, 274
- de féroles, 270
- de natte, 146
- d'Orange, 176
- de résonnance, 38, 277
- de Rhodes, 165
- de rose, 263, 291
- de l'Océanie, 292-3
- Faux, 292-3
- de Table, 281
- des Rhônes des Parfumeurs, 264
- d'or du Cap, 265
- dur, 189
- fidèle, 173
- graine bleu, 146
- lezard, 146
- marbre, 270
- mulâtre, 146
- puanit, 279
- Rivière, 106, 296
- rouge, 59
- Shavanon, 134
- tressé, 226
Bolongnita, 100, 146, 169
Bonita, 45
- Céiba, 164
- malabaricum, 4, 36, 90
- mombaxénés, 269
Boniato amarillo, 281
Boona, 145
Boo, 96
Bora, 249
- White, 132
Boro woods, 100
Brazil woods, 93, 105, 150
Break-axe, 192
Breis de St. Marthe, 238
Breton, 281
Briar, 89, 134, 150
- root, 150
Bridge timbers, 107
Brigalow, 219, 275
- Mountain, 219
Brimstone-tree, 154
British Columbia, 109
Broom, 88, 150
Brassimun Annubii, 15
- 88, 202, 274
Bruchweide, 298
Bruinhart, 294
Brush, 136
Bryère, 89
Byga Ethnus, 88, 88, 105, 163, 169, 170, 176
Bucida angustifolia, 177
Buckeye, 89, 90
- Ohio, 150
- Sweet, 150
Buckthorn, 29, 32, 51, 91, 92, 100, 150-1, 167
- Canadian, 151
Bud, structure of, 5, 7
Buddlia salicifolia, 86, 266
Buffelab, 87, 151
Building timbers, 81-2
Bukampadaruka, 256
Bull-bark, 154, 151, 311
Bully, 151, 269
- Naseberry, 151
Bumelia obtusifolia, 188
Bundles, Fibro-vascular, 9, 11-12
Bunya-bunya, 152
Burgan, 285
Burnettizing, 73
Buro-koro, 202
Burrs, 33, 63
Bürsöría spinosa, 150
Büzera gummifera, 142
Buruch, 151
Buruta, 271
Butter-bush, 299
Butterm, 51, 152, 316
Butter-tree, 210-1
Button-ball tree, 255
Buttonwood, 51, 152, 255
Butyrospermum Pârki, 255
Buxus longifólia, 147
- Macowdinii, 88, 88, 148
- sempervirens, 88, 147
Byrsónima spicíta, 217
Caariwan, 276
Cabbage-bark, 152
Cabbage, Jersey, 87
- palm, 238
- tree, 127
INDEX

Casalpina, 210
— liypi, 93, 150
— brasiliensis, 86, 93, 150
— crista, 93, 150
— echinata, 93, 165, 238
— melancarpa, 177-8
— Sypar, 93, 290
— tiviflora, 93, 150
Cagüeyran, 82, 152
Calcedrya, 152, 208-9
Calcut, 152
Calbash, 152
Calamander maram, 152
— wood, 87, 152
Calatiaurholz, 268
Californian Redwood forests, 106
Calliper measurement, 303
Callitremoneuceobtusus, 146
— salignus, 146-7
Caltiris, 42
— arborea, 156
— quadridivulcis, 289
— rhomboides, 79
— robusa, 79, 81, 101, 166
— verrucosa, 102
Calodendron capense, 162
Calophyllum, 82, 257, 313
— angustifolium, 257
— Câla, 86, 105, 106, 268
— Inophyllum, 78-9, 80, 86, 100, 209, 257
— tomentosum, 183, 257
Calshum, 152-3
Calycophyllum candidissimum, 166-7
— multiflorum, 257
Camara, 79, 153
Cambhoji, 268
Cambium, 9, 20
Campbell, F. A., 118
Campeche, 205
Camphor, Borneo, 153
— Nepal, 153
— tree, 37, 153
— wood, 106
— Australian, 153
— Martaban, 153
Camwood, 153
Canadian forests, 110
— Oak, 110
— timber export, 109-110
Canari macaque, 217
Canary Whithwood, 37, 290-1, 318
— wood, 153-4, 291
Canella, 154
— preta, 79, 82
Canellina, 154
Canes, 87
Cannon-ball tree, 154
Canoe-wood, 291
Caoa, 206-7
Cape Colony, Timbers of, 104
Cape Plane, 261
Caper-tree, 256
Caparrus Mitichelli, 235
— nobilis, 256
Caraba, 164-5
Carana, 136
Carapa grandiflora, 165
— guianensis, 165, 166, 315
— guineensis, 165
— guayanensis, 165
— moluccensis, 154
— precera, 165
Carapo, 164-5
Carbeen, 133
Carbonizing, 72
Carduellus sublimus, 176, 293
Carigilla australis, 256
— pentamera, 220
Carob, 88, 154
Carpentury woods, 82
Carpinus, 52
— Betulas, 85, 188, 317
— caroliniana, 87, 192
— lauriflora, 124
Carriage-building woods, 83
Carua, 294
Carya, 185
Curja alba, 186
— amara, 186
— aquatica, 186
— glabra, 186
— porcina, 186
— sulcata, 186
— tomentosa, 186
Curjcaroc butyrospermum, 274-5
— glabrnum, 274-5
— tomentosum, 274-5
Cashew-nut, 154
Cassia, 323
— Fistula, 311
— siderea, 137
Castanea, 48, 50, 314
— pumila, 163
— sativa, 78, 88, 162
— vulgbris, var. americana, 81, 162
Castanopsis chrysophylla, 163
Castanospermum australi, 101, 162
Casuarina, 4, 32, 104, 252-234
Casuarina Cunninghkimii, 232
— distyla, 233
— equisetifolia, 79, 82
— Frascatina, 232
— glauca, 232
— quadrivalvis, 102
— strictis, 86, 232, 233
— suberob, 140, 232
— toborasa, 140, 232
Catapta, 45, 154
— longissima, 302
— speciosa, 154
Cath a edulis, 197
Ceanothus Chloroxylon, 164
Ceeroa palma, 290
— petala, 290
Cedar, 36, 57, 70, 82, 83, 100, 101, 105, 106, 154-5, 247
— Barbadoes, 155
— Bastard, 155, 209
— Pencil, 155-6, 163
— Bermuda, 79, 80, 156
— Black, 156
— Boom, 83
— Borneo, 272
— Canoe, 40, 156
— Cigar-box, 156-315-6
— Clanswilliam, 156
— Deodor, 156-7
— Florida, 159
— Guiana, 157
— Honduras, 50
— Incense, 42, 157
— Indian, 156-7, 209
— Japanese, 250
— Lebanon, 83, 154-5, 320
— Mackay, 123
— Mexican, 160
— Moulmein, 85, 157-9
— Mount Atlas, 83, 103, 155
— New Zealand, 158
— Oregon, 158
— Pencil, 86, 89, 101, 104, 140, 158-9, 217
— Philippine Islands, 78
— Pink, 159
— Port Orford, 158
— Post, 157
— Red, 40, 42, 78, 86, 89, 101, 156, 159
— Rock, 159
— Sitka, 159-160
— Sleepers of, 199
— Tasmanian, 160
INDEX

Cedar, West Indian, 123, 160
 — Western red, 160
 — White, 40, 42, 82, 110, 132, 137, 149, 156, 157, 160, 272
 — Yellow, 156, 159-161, 300
Céléb acajou, 123, 160
 — bagasse, 157
 — de Singapore, 157-8
 — de Virginie, 159
Cedrela, 207, 315-6
 — brasiliensis, 156
 — fissilis, 160
 — guianensis, 123, 156
 — odorata, 50, 105, 123, 155, 156, 269, 315-6
 — Téoma, 4, 78, 85, 90, 100, 101, 157-8, 163, 316
Cedrus, 42
 — atlantica, 83, 103, 155
 — Deodara, 80, 156-7
 — libani, 83, 154-5, 320
Ceiba, 273
Celástroes acuminatus, 87, 273
Cela, 5
Cellulose, 5, 90, 322
Celtis, 47
 — australis, 84, 221
 — Kranussia, 279
 — occidentalis, 183-4
Combrot, 244
Centrolobium robustum, 302
Cerelia Siliqua, 88, 154
Ceratopetalum apetalum, 101, 163, 202
Cercidiphyllum japonicum, 196
Cercis Siliquastrum, 194
Cercocarpus ledifolius, 209
 — parvifolius, 210
Celilo, 164
Ceratocina work, 84
Ceylon oak, 198
Chamaecyparis Lawsoniana, 158
 — nutkensis, 159-160
Champa, 81, 161
Champak, 161
Champaka, 161
Chandana, 266, 268
Chandanam, 266, 268
Chaplase, 90, 161
Chaplasha, 161
Charcoal, 91, 106
Charmagz, 294
Chatwan, 83, 90, 161
Cheesenwood, 161
Chereen, 130
Cherry, 51, 84, 87, 89, 136, 161
 — American, 162
 — Bird, 50
 — Broad-leaved, 267
 — Brush, 161, 220
 — Canadian, 162
 — Mahaleb, 50
 — Native, 162
 — Wild, 151
 — Wild Black, 162
 — White, 163
Chesnut, Moreton-Bay, 101, 162
 — Spanish, 24, 32, 35, 36, 39, 48, 78, 80, 81, 82, 88, 162, 314
Chichapate, 169
Chickrassia tabularis, 85
Chiclet, 163
Chirrassi, 163
Chilami, 80, 163
Chimarrhis cymosa, 106, 296
China, 107
 — berry, 163
Chinar, 255
Chinquinapin, 163
Chippendale, Thomas, 85
Chir, 90, 163, 247
Chittagong-wood, 85, 157-8, 163
Chittum, 84
Chlorophora excelsa, 86, 189
 — rústica, 323
 — tintória, 93, 105, 176
Chloroxylon Swietenia, 87, 271
Chouk, 233
Chow, 79, 80
Chow-way, 140
Christdorn, 187
Chukrasia tabularis, 163
Cibicibí, 236
Cinnamomum Camphora, 153
 — glanduliferum, 153, 269
Cipriani, 83
Cirouaballi, 294
 — Brown, 156
Citoceréxylum, 83
 — melanocárdium, 173
Citrus, 29
 — Aurantianum, 235
 — austnalis, 235
 — médica, 235
Citrus-wood, 83
Cleavability, 112
Clémentis Vitálía, 8
Clusia insignis, 238
Coachwood, 101, 163
Cobra, 64
Coccoloba uvifera, 176
Cockato-bush, 195
Cocoa-nut, 3, 154
Cocobola-wood, 163
Coeus, 163, 169
Cócos nucifera, 3, 259
Coco-wood, 146
Coenwood, 88, 165
Coffee-tree, 47, 163-4
Cogwood, 149, 164
Cola acuminata, 198
Colophospérmum Mopâné, 217
Colubria ferrugíosa, 274
 — reclinata, 274
Compass, 100, 164
Combréum truncatium, 203
Condália férea, 35, 192
Condorholz, 268
Conducting tissue, 12
Congoholz, 145
Coniferous wood, 2, 16-23, 33, 320-321
Cómwarus guianensis, 86, 302
Conversion, 66
Convovulcrs florídus, 264
 — Scopáríus, 264
 — irrigátus, 264
Coobagum, 135
Cooman, 248
Coopa, 238
Cooperage woods, 89
Cooper’s wood, 164
Coorung-coorung, 166
Copaifera bractéata, 87, 259-60
 — hymenálía, 82, 152
 — Mopán, 191, 217
 — pubiflóra, 85, 259
Copal, 182-3
Corang, 133
Córda Geracénthus, 165
 — Mýra, 256
Cord of wood, 96
Cork-tree, 164
Cork-wood, 163, 164, 216
Corkwood-tree, 164
Cornier, 272
Cornel, 164, 167
Cornelian, 168
Córulus, 25
 — florída, 88, 147, 168
INDEX

Córnis Nattálli, 168
— songuinea, 53, 167
Coromandel-wood, 152, 164
Córylus, 52
— Avellána, 184-5
— Colúrna, 184-5
Cósseo lignépédá, 64
Cotton-tree, 36, 164, 272
— White, 272
Cottonwood, 89, 164, 168, 257-8
— Big, 258
Courbaril, 105, 164, 204
Cowardina odoráta, 105, 289-290
Counaie, 177
Conraïvo, 132
Cowassa, 238
Cowdie-pine, 164, 196
Crab-apple, 88
Crab-wood, 105, 164, 315
Cratágoxy gyranéchá, 53, 184, 319
Crates, 90
Cresosoting, 73-4, 92
Crescénícia Cupélfá, 152
Cricket-bats, 298
Croc, 268
Croêns-tree, 265
Crow's-ash, 82
Crushing force, 112
Cryptocárfo australis, 201
— glêncéscens, 138, 140
— Meisnérrí, 292
— obóráta, 282
— Palmerstóní, 296
Cryptomérié japónéicí, 280
Cuanara, 105, 290
Cucumber-tree, 53, 89, 165, 238, 291, 318
Cucígera, 136
Cudlonec, 138
Cumberta, 248
Cunánia capénís, 86, 159
Cupénia semíglaucá, 132
Cupréssus Livesóñána, 40, 42, 82, 158, 160
— noélkáne, 109, 159, 160
— obítasa, 100, 187
— semángÍrícens, 84, 165
— thýpídce, 40, 42, 82, 109, 160
— torábio, 81, 166
Cup-shake, 55-6
Cuplíférre, 39
Curly grain, 32
Currant-tree, 211
Curtng, 296-7
Curtíscs jagínea, 86, 104, 135
Curupay, 165
Custard-apple, 39, 238
Cutch, 197
Cypre, Bois de, 165
Cypress, 70, 84, 88, 165
— Atlas, 103
— Bald, 165-6
— Black, 165-6
— Deciduous, 165-6
— Desert, 166
— Himalayan, 81, 166
— Indian, 166
Cypress-pines, 42, 81, 101, 102, 166
Cypress-pine, Mountain, 166
— Red, 156, 163-6
— Swamp, 165-6
— White, 165-6
— Yellow, 159-160
Cýsíns, 36, 88, 150
— Lobúrnum, 170, 313-4
— scopérins, 150
Dabi, 134
Dacrydium, 42
— cupréssínum, 86, 262
— excélsum, 254
— ferrúgínum, 254
— Franklinii, 78, 79, 86, 102, 189
— Westlándicum, 253
Dagame, 166-7
Délbéría, 44, 170, 264
— cultráta, 145, 300
— lanceolária, 40
— latífília, 40, 80, 85, 145
— latífília, var. sísíodís, 145
— melanóxylon, 145, 170
— nigra, 105, 193, 237, 263
— Síssco, 40, 80, 84, 85, 273-4
Dalby Myall, 191
Damíniya, 167
Dammar, White, 254
Dánmarra australis, 196
— robásta, 245
Daphnéandra, micrántha, 270
Daphne, Native, 168
Dargan, 150
Date-palm, 87
Date, Káfr, 167
Date-plum, 167, 240
Dékéwigia arbórea, 86, 261
Deal, 37, 80, 85, 89, 97, 98, 167, 276, 303-4
Deal, Dantzie, 167
— Native, 158
— Prussian, 98
— Red, 80, 167, 240
— Spruce, 167, 276
— White, 89, 97, 167, 277
— Yellow, 167, 240
Deals, Canadian, 276
— Lower Ports, 276
Decay, 37, 58-9
Degame, 166-7
Del, 167
De Lapparent's process, 72
Den, 149
Density of wood, 113-4
Deodar, 80, 100, 163
Deodhari, 267
Dermatogen, 6
Desmogén, 8-9
Deva-dara, 267
Devadari, 267
Devander, 156-7
Devil-wood, 234
Dhaura, 87, 167
Dhoura, 271
Dikar, 283
Díálium indicum, 100, 198
— Indum, 198
— larinum, 198
— Maingíyi, 198
— platýsejálam, 198
Dicorgínya paraénís, 105, 127
— gniáníusí, 77
Dicotyledons, Wood of, 3
Dickéhyllium carbóphyllánum, 154, 270
Diffuse-porous woods, 316
Dilléiá indica, 48
— pentágyña, 39, 257
Dito, 257
Dimorphándra Mára, 78, 105, 217
Diospyros, 44, 85, 311
— chloróxylon, 170
— Dénó, 170
— ebonástér, 169, 170
— ébenum, 169
— hýpodéstíla, 170
— hírsútília, 152
— Kúrzi, 215, 302
— Malácapái, 171
— Melánóxylon, 39, 169
— mésplífornís, 170
— micrólómbs, 170
— philípngínsis, 170
— pilósánthéra, 100, 146, 169
INDEX

 Diospyros quassia, 87, 132
 — rúbrá, 170
 — tesselária, 170
 — teotrapérmum, 105, 170
 — virgínúnia, 36, 49, 87, 240, 315, 4-5
 Diptécorcarpáceae, 47, 171, 312
 Diptécorcarpus álátus, 183
 — théáter, 79, 109, 201
 — tuberélátus, 45, 173
 — turbinátus, 183
 Diptéryx odoriá, 289-290
 Dios Forezing, 94
 Djo, 285-6
 Diosódía viscósá, 142, 203
 Dogo, 212
 Dogwood, 25, 53, 91, 151, 167-8, 263-292
 — Black, 167
 — Stripped, 215
 — Western, 168
 Domba, 79
 Dombeya mélanxylon, 170
 Dominica, 106
 Dungon, 109, 168
 Doob, 255
 Doornbooni, 289
 Doxýphora Sásafás, 270
 Douglas Fir, 109, 321
 — Spruce, 35, 36, 43, 81, 109, 321
 Druxy knot, 59
 Dryobolánops aromátié, 50, 153
 Dry-rot, 60, 62-3
 Dubina, 208
 Dúbo crus myxopóroides, 164, 173
 Dudhi, 168
 Dugútiá quitarénsis, 105, 199
 Dunga-runga, 234
 Dungon, 78
 Dupa-maram, 254
 Duróbbi, 193
 Dye-woods, 93
 Dijera costulátá, 194
 Dysóxylon Frasérvánnum, 77, 86, 101, 158, 263
 — Muéllerí, 77, 101, 158
 — rájum, 153-6
 Dysóxylon spectábulé, 198
 Eagle-wood, 169
 Ebano real, 170
 Ebenáceae, 39, 311-3
 Ebénier, Faux, 84, 170
 Ebénus, 169
 Eberesche, 264
 Ebony, 28, 36, 39, 44, 71, 84, 85, 87, 88, 100, 104, 165, 169, 311
 — Acapulco, 169
 — American, 169
 — Bastard, 169
 — Bombay, 169
 — Camagoon, 169
 — Cape, 86, 169
 — Ceylon, 169
 — Coromandel, 169
 — Corsican, 84, 170
 — Cuba, 170
 — Cuernavaca, 169
 — False, 170
 — Flowered, 88
 — Gaboon, 170
 — German, 170
 — Godavery, 169
 — Green, 86, 88, 169
 — Jamaica, 169
 — Lagos, 170
 — Macasser, 170
 — Madagascar, 170
 — Manila, 170
 — Mauritius, 170
 — Mexican, 169
 — Mountain, 170
 — Orange River, 169
 — Purple, 170
 — Red, 170
 — Queensland, 170
 — St. Helena, 170
 — Senegal, 145
 — Siam, 169
 — West Indian, 169
 — White, 171, 284
 Eckéborgia capénsis, 86, 104, 132
 Eda Kula, 161
 Ególlas, 149
 Eíbe, 301
 Eíbenbaunm, 301
 Eki, 171
 Elseócrus cyánus, 132
 — denátus, 80, 187
 — grándis, 152-3
 — holapéntus, 132
 — Kértóni, 133
 — longífolía, 133
 — obovátus, 130
 Elseócrónus unstráltí, 132, 160
 — cróceum, 86, 265
 Elah, 288
 Elava, 272
 Elder, 8, 24, 25, 29, 51, 171, 293
 Elm-bark beetle, 64
 Elm, 18, 25, 32, 35, 48, 63-4, 80, 82, 83, 84, 87, 117, 171, 314
 — American, 79, 171, 314
 — Canadian, 18, 171
 — Cedar, 48
 — Cork, 171-2
 — Crew's-foot, 273
 — Dutch, or Sand, 172
 — English, 18, 48, 57, 171-2
 — European, 79
 — False, 183-4
 — Grey, 78
 — Indian, 172
 — Moose, 172
 — Red, 48, 172
 — Rock, 48, 78
 — Scotch, 48, 172
 — Slippery, 48, 172
 — Spanish, 165, 172
 — Spreading, 173
 — White, 48
 — Winged, 48, 173
 Els, Klip or Rock Ash, 173
 — Rood, 86, 159, 173
 Elsbeerbaunm, 272
 Else, 125
 Elzenbount, 159
 Emmenopérurm alphi- toniós, 169
 Endianda virens, 235
 Eng, 45, 100, 173, 183
 Engraving woods, 88
 Engyin, 173
 Entandrophragma Ango- lense, 207-9
 — Candolleánum, 207-9
 — Candollié, 207-9
 Enterolóbium Timbolóuva, 236
 Epe, 127, 173
 Epel, 173
 Epidermis, 6
 Epérna décandra, 272
 — Jaláctina, 294
 — Jénmani, 294
 Épi de blé, 294
 Eremophila Mitchellii, 263, 267
 — Startii, 267
 Eriostémon squáméus, 199
 Erica arboresc, 89, 150
 Eriobótrya japónica, 205
 Erith process, 72
 Erythrina suberosa, 35, 39
 Erythropélium Labouch- érii, 124
INDEX

Erythroxylon arcalatum, 192
— _monogynum_, 267
Espinha de meicha, 268
Espinheiro branco, 176
Essen-boom, 86, 104, 132, 173
Eta-balli, 146
Eucalyptus, 4, 104, 178-183, 190
— _acmenioides_, 101, 280
— _amygdalina_, 77, 82, 101, 102, 133, 144, 181, 239
— _Baikeyana_, 178
— _Bosistoana_, 102, 149
— _botryoidal_, 78, 101, 219
— _calophylla_, 102, 181
— _capitophylla_, 81, 102, 182, 239, 280
— _cornuta_, 102, 299
— _corymbosa_, 82, 101, 145
— _corynocalyx_, 182
— _cretbra_, 77, 83, 180, 190
— _doratocylon_, 275
— _diversicolor_, 77, 82, 102, 196
— _eugenioides_, 280
— _eximia_, 145-6
— _fucunda_, 183
— _Glouclus_, 78, 80, 82, 101, 102, 178-9
— _gomphocerata_, 57, 78, 102, 288
— _gymnocalyx_, 83, 102, 133, 148, 149, 180
— _Gunnii_, 179, 182
— _hamatumia_, 133, 144, 181
— _hemiphloia_, 78, 80, 101, 102, 147, 149, 150, 153-4
— _largoiflora_, 147, 180, 181-2, 190
— _lencocylon_, 77, 101, 133, 147, 179, 190
— _longicornis_, 180
— _longifolia_, 101, 148, 209
— _loxophleba_, 102, 183
— _maclotia_, 78, 101, 182
— _macracarpa_, 217
— _macrorhyncha_, 102, 190, 279
— _marginata_, 77, 79, 81, 82, 86, 102, 193
— _melliodora_, 102, 194-150
— _microcorys_, 78, 82, 101, 210, 239, 282
— _microtheca_, 148-9
— _Muelleria_, 280
— _Muelleriana_, 102
— _obliqua_, 78, 82, 101, 102, 118, 279-280
— _odorata_, 147, 239-40
— _paniculata_, 77, 101, 145, 190
— _papenii_, 102, 144
— _pauciflora_, 133, 179, 180, 239
— _pinulatis_, 78, 82, 101, 133, 144
— _piperita_, 102, 144, 239, 261
— _polyandra_, 148, 239, 263
— _populifolia_, 149, 180
— _propingua_, 101
— _punctata_, 148, 180, 202
— _reduncia_, 102, 296
— _regnans_, 102, 133-4, 144
— _robusta_, 210
— _resinifera_, 180, 210
— _rostrata_, 78, 79, 80, 82, 101, 179, 181
— _salix_, 78, 101, 149, 179, 180
— _salmonophloia_, 181
— _salubris_, 179-180
— _sidrophloia_, 77, 79, 101, 190
— _siderocylon_, 77, 101, 190
— _Sieberiana_, 102, 133, 144, 179
— _stellulata_, 147, 178
— _Stuartiana_, 78, 13, 147, 178, 239
— _tereticornis_, 101, 148, 179, 180
— _terminalis_, 145
— _tesselaris_, 133
— _versicolor_, 316-7
— _viminalis_, 78, 82, 147, 179, 180
— _virgata_, 102
— *Euclia pseudobacan*, 86, 169
— _undulata_, 260
— *Eucryphia Moorei_, 123, 266
— *Eugenia frangrans cuneata*, 302
— *Eugenia mairi*, 211
— _myrificola_, 161, 220
— _Smithii_, 204
— _Ventralitii_, 220
— _Euonymus_, 29, 53
— _europaeus_, 53, 88, 236-275
— _lacrus_, 39
— *Euroschinus falcatus*, 219
— Europe, Forest areas of, 96
— *Eusideroxylon zwageri*, 77, 100, 141
— *Eucarpus cressiflorus*, 87, 162
— _latifolia_, 267
— Exogenous wood, 3, 9-10
— *Eyn*, 265
— *Fagraea fragrans*, 79, 80, 126-7
— *Fagus betuloides*, 263
— *Cunninghamiaii*, 102, 139, 220
— _ferruginea_, 87, 139, 317
— _fusca_, 142, 143, 284
— _Menzisiiii_, 143, 284
— _obliqua_, 80, 203
— _Sotandrii_, 82, 142
— _sylvestra_, 78, 117, 137-8
— Featherwood, 173
— Felsen Eiche, 227
— Felt, 26
— Fenceholm, 269
— Fence-posts, 107
— Fencing-woods, 82, 106
— Fernow, B. E., 106, 111
— *Feronia Guianensis*, 270
— _variegata_, 270
— Fibres, 12, 28
— Fibrous cells, 28
— *Ficus aurea*, 35
— _bengalensis_, 44
— _macrophylla_, 310-1
— _Sykomorus_, 281-2
— Fiddleneck, 83, 173
— Fig, 32, 84, 174
— Blue, 152-3
— *Ilawarra* (Port Jackson or Rusty), 174
— Large-leaved, or Moreton Bay, 174, 310-1
— *Leichhardt’s Clustered*, 174
— *Maddagawrie*, 132
— *Prickly*, 132, 174
— Figure, 206, 214-5
— Filaf. 233
— *Fir*, 41, 98, 117, 174, 233, 240, 242
INDEX

Fir, Balsam, 41, 110, 174
—— Colorado Silver, 175
—— Dantzic, 57, 79, 81, 98, 261
—— Douglas, 79, 81, 321
—— Great Silver, 175
—— Indian Silver, 175
—— Japanese Hemlock, 290
—— Memel, 117
—— Oregon, 79
—— Red, 175
—— Riga, 79, 98, 117
—— Saglihen, 100
—— Scots, 4, 78, 80, 117, 175
—— Silver, 4, 41, 92, 98, 175
—— Spruce, 78, 277
—— Swedish, 81, 117
—— Western (or Lovely) Silver, 175
—— White, 277
Fire-tree, 173-6
Flaechenbaum, Dreilapiger, 238
Flame-resistant wood, 75
Flatterrister, 173
Fliedersia australis, 82, 138
—— Chataucaiona, 139, 213
—— Oxlegina, 138, 176, 193
Flindosa, 138, 282
Flintamentoza, 176
Flint-wood, 144
Forest-areas of Europe, 96
Forest-clearing, 94
Fowke, Captain, 118
Foxiness, 37, 223
France, Timber-supply of, 97-8, 111
Fraxinus, 45
—— acuminata, 130-1
—— americana, 45, 78, 85, 130-1, 313
—— Berlandieriiana, 134
—— cupaniensis, 130-1
—— Carolina, 134
—— excelsior, 45-6, 78, 117, 129-130
—— lanceolata, 132-3
—— nigra, 131
—— Oregena, 134
—— Pennsylvanica, 132-3, 134
—— pistaciaefolia, 134
—— platycarpa, 134
—— pubescens, 46, 134
—— quadrangulata, 132
—— sambucifolia, 46, 78, 131
—— tomentosa, 134
—— velutina, 134
—— viridis, 45, 132-3
Frenclia, 166
—— Endlicheri, 166
—— Paribatorei, 166
—— rhomboidei, 166
—— robusta, 166
Fromage d'Hollande, 164
Fuchsia, 176
—— carpocapita, 176
Fuel value, 115
—— wood, 91, 106
Fujitsu-matsu, 200
Funera, 176
Fungal attack, 59-63
Fura, 241
Furniture woods, 83-6
Furze, 88
Fusinus eygynorum, 267
—— pericarpius, 267
—— spicatus, 102, 267
Fustie, 93, 105, 176
Fyr, 241
Gaiac, 290
Gabas, 161
Galaba, or Galba, 176, 282-9
Galba, 86, 105, 106
Gamble, J., S., 38-9, 116, 309-311
Gandamani, 268
Gangaravi, 292
Gangaw, 192
Gardenia Thunbergii, 87, 151
Garrong, 296-7
Garapa, 197
—— piniiata, 197
Gashi, 222-225
Geel Hout, 80, 300
Geija pareiflora, 299
Geissospernum Velllosii, 79, 153
Genievrier, 195, 289
German forests, 98
Gibbons, Grilling, 84-5
Gidgee, 210
Gidiya, 219
Ginkgo biloba, 3
Gishtischa, 47
—— triisochi, 205
Gmelina arborea, 79, 85
—— Leichhardtii, 79, 101, 134
Goat-moth, 64
Gold-spangle wood, 176, 233
Gontiona Kamassi, 148, 195
Goompana, 197
Grain, 32
Grandadillo, 105, 169, 176
Grape, Seaside, 176
Greenheart, 35, 38, 77, 80, 94, 105, 176-7, 312
—— African, 323
—— West Indian, 274
Greentop, 179
Grenada, 106
Grevillea robusta, 101, 233
—— striata, 86, 140
Grewia tiliaefolia, 167
Grignon, 177
—— fou, 177
Growth, rates of, 4
Gru-gru, 177
Guaiacum, 35, 36, 44, 177-8
—— officinale, 79, 105, 202-3, 311-2
—— arboreum, 204
—— sanctum, 203
Guarana, 78, 177, 260
Guatteria virginia, 199
Guayacan, 177-8, 203
Guazuma tomentosa, 155
Guelder-rose, 88
Guettarda speciosa, 105, 302
Guiana, Timbers of, 105
Guio, 78, 100, 265
Guira, 152
Gumbar, 79, 85
Gum, 178-183
—— Apple-scented, 178
—— Bailey, 178
—— Bally, 136
—— Bastard, 179
—— Bastard Blue, 179
—— Black, 178, 292
—— Blue, 78, 82, 101, 102, 148, 178-9, 180, 181, 209
—— Botany Bay, 210
—— Broad-leaved Water, 183
—— Brown, 210
—— Cabbage, 133, 179
—— Californian Red, 182-3, 318
—— Cider, 179
—— Cotton, 292
—— Creek, 181
—— Drooping, 179, 180
—— Flooded, 78, 179, 180, 181
—— Fluted, 179-60
—— Forest, 181
—— Giant, 133, 179
—— Ginlet, 179-180
INDEX

Gum, Green. 178, 180
— Grey, 78, 101, 148, 179, 180, 190, 202, 210
— Lead, 178, 180
— Manna, 179, 180
— Morrell, 180
— Mountain, 179, 180
— Mountain in White, 179, 180
— Murray Red, 181
— Nankeen, 180
— Orange, 128
— Peppermint, 180-1
— Poplar-leaved, 149
— Red, 53, 78, 79, 82, 101, 102, 128, 150, 178, 181, 202, 210, 240
— Ribbony, 180
— River, 101
— Rusty, 128, 145-6, 181
— Salmon, 181
— Scribbly, 133, 181
— Scribbly Blue, 179
— Silky, 179
— Slaty, 180-2
— Sour, 292
— Spotted, 78, 101, 102, 148, 182, 250
— Sugar, 179, 182
— Swamp, 102, 179, 180, 182
— Sweet, 53, 182-3, 318
— Tupelo, 292
— Water, 146, 183
— Wattle, 183
— Weeping, 180
— White, 101, 148, 149, 178, 179, 180, 181, 183, 283, 296
— Yate, 102
— Yellow, 179, 183, 202, 292
— York, 102, 183
Gunpowder-charcoal, 91
Gun-stocks, 70
Gurjun, 183
Guri-kina, 183
Guttifera, 313
Gymnocladus, 47
— canadensis, 163
Gymnosperms, Wood of, 2

Hackberry, 47, 183-4
Hackia, 203
Hackmatack, 78, 109, 283
— American, 283
Hemitéylon campechiánum, 36, 93
Hainbuche, 188

Hākea lençóptera, 240
— scirca, 239
Hal, 254
Haldin, 39, 184
Halmilla, 290
Hannoki, 184
Hardwickia binata, 35, 44, 87, 127
— pinnata, 198
Hardwoods, 4
Háritaka, 184
Harpephyllum Caferum, 167
Harpullia píndula, 78, 101, 291
Harra, 81, 184
Hartogia coróensis, 87, 199
Haskinising, 72
Hasselman process, 73
Hat-tree, 282
Haw, 107
Hawthorn, 25, 29, 33, 53, 88, 184, 319
Haya, 138
— Americana, 139
Hazel, 25, 32, 33, 52, 88, 184-5
Hazel-pine, 182-3, 318
Heart-shake, 56-8
Heartwood, 17, 113, 191
Hedycdrya angustifolia, 86, 187
Heldanthus, 11, 12
Hemlock bark extract, 109
— Fir, 185
— Japanese, 290
— Spruce, 33, 82-3, 185
— Western, 185
Heppelwhite, 85
Heritiera fórmes, 281
— littorális, 146, 281
Heymossili, 268
Hiba, 185
Hibiscus tiliácus, 164
Hickory, 35, 36, 49, 78, 83, 87, 88, 89, 144, 173, 185-7, 202, 210, 219, 275, 314
— Australian, 187
— Big (or Thick) Shell-bark, 186
— Bitter-nut, 186
— Black, 186
— Mocke-nut, 186
— Pecan, 186
— Pig-nut, 186
— Shell-bark, 186
— Water, 186
Hicória, 49, 83, 87, 185, 314

Hicória álba, 78, 186
— aquática, 186
— glábra, 78, 186
— laciniosa, 186
— mínua, 78, 186
— ováta, 78, 186
— Pécan, 78, 186
Hic, 208
Hijjul, 234
Hinau, 80, 187
Hinoki, 100, 187
Hippománé Manchinella, 211
H’nau, 184
Hobnim, 169
Hóheria populnea, 199
Holly 24, 29, 32, 36, 53, 88, 187, 318
— American, 187
— Smooth, 187
Honey-combing, 70
Honey-locust, 47
Honey-suckle, 86, 87, 187-8, 310, 317
— coast, 188
— Silvery, 140, 187
— wood, 187, 262
Honoki, 187
Hooboball, 188
Hooke’s law, 115-6
Hoop-tree, 215
Hópea, 272
— Meránti, 216
— odoráta, 77, 78, 288, 312
Horco Cebil, 188
— moll, 188
— American, 189
— Hop, 189
Horse-chestnut, 25, 30, 89, 188
Horseflesh-wood, 151, 210
Hulahnik, 163
Humbah, 183
Humbug, 146-7
Humbug, 133
Humiria floribunda, 46, 151, 311
Hungarian forests, 97-8
Huvian Pine, 42, 86, 102, 189
Hurihi, 200
Hyawaballi, 302
Hyénnea, 126
— Courbaril, 80, 105, 204
Ichii, 301
Ichii-gashi, 231
INDEX

Icaca allissima. 136, 157
Izumia elainemaya. 239
Ikusi. 103
Ilex. 53
--- Aquifolium. 187
--- Himalayan. 231
--- opaca. 187, 318
Illarea. 128
Illinois nut. 186
Illipe latifolia. 210-1
--- Malabroorum. 210-1
Illupi. 80. 210-1
Humba. 133
Imbool. 272
Importations of timber. British. 95
Impregnation methods. 72-5
Indian forests. 100
Inga xylocarpa. 123
Initsia amboinensis. 272
--- bijuga. 272
Ipi. 78. 100
Iroko. 86. 189-90
Ironbark. 77, 79, 101, 102, 173, 181-2, 190, 270
--- Bastard. 178
--- Black. 190
--- Broad-leaved. 190
--- Grey. 190
--- Leguminous. 124
--- Narrow-leaved. 101, 190
--- Pale. 190
--- Red. 101, 190
--- Sce. 191
--- Silvertop. 102
--- Wattle. 77, 101, 179, 190
Ironwood. 35, 44. 77, 79, 80, 81, 82, 87, 100, 123, 189, 190, 197, 213, 217, 220, 233, 261, 273, 283
--- Black. 192
--- Borneo. 141
--- Morocco. 103
--- Martinaque. 203
--- of India. 87
--- Wattle. 104. 192, 293
--- West Indian. 203, 274
Irosun. 153, 192, 263
Italian forests. 93
Itaya-Kayede. 213
Iti. 145
Ivy wood. 192
Ivy. 29
Ixon jferrea. 203
Jablon. 127
Jacaranda. 192-3
Jacaranda brasiliensis. 236
--- eabiana. 193-237, 263
--- prato. 193, 264
--- roxa. 193, 264
Jack. 85. 193
--- Loa. 193
Jackoia scaparia. 168
Jallow. 203
Jambolana. 193
Jambool. 193
Jambu. 193
Jang. 219
Jangli. 219
Jamoon. 193
Jambwood. 219
Jangli badam. 279
Jango-jango. 300
Jaoz. 294
Japanese forests. 99-100
Jarray. 35, 40, 77, 79, 80, 82, 86, 102, 193-4
--- Bastard. 209
Jarul. 77-8, 80, 193-4
Jasai. 129
Jati. 283-6
Jeulotung. 194
Jemmy Donnelly. 219
James. 44, 194, 311
Jimmy Low. 210
Johnson. Professor. 113
Judas-tree. 194-5
Juglans australis. 221
--- cinerea. 51, 296, 316
--- madshurica. 198, 296
--- nigra. 51, 78, 85, 293-6, 316
--- regia. 51, 84, 127, 294-5
--- Siebolliana. 296
June-berry. 272
Jungle Jack. 127
Juniper. 78, 100, 195
--- Indian. 195
Juniperus. 42
--- barbadensis. 155
--- Buxidenta. 77, 79, 89, 156
--- communis. 42. 195
--- macropoda. 158, 195
--- Oxycetra. 42, 67
---Sabinales. 159
--- virginiana. 42, 89, 90, 109, 135, 158
Kaayno. 263
Kaddam. 195
Kahikatea. 254
Kahua. 123
Kakarate. 146
Kakerelli. 195
Kala Kulu. 168
Kal-otthi. 163
Kaln-medira. 152
Kalnwar. 169
Kamahi. 195
Kamassi. 195
Kamulboom. 289
Kanapa. 234
Ka-na-za. 281
Kanigi. 234
Kanthal. 193
Kanyin. 183
Kapor. 80
Karamatsu. 200
Karri. 40, 77, 82, 102, 196, 316-7
Karung. 139
Katamanakku. 290
Kath. 197
Kathikta. 288-9
Katope. 104
Kstsura. 196
Kaufmann. Angelica. 83
Kauri. 59, 78, 86, 101, 196
--- Queensland. 245
Kaya. 197
Kaya Kapor Birus. 153
Kayn-puti. 152
Keurboom. 197
Keyaki. 100, 197
Khaire. 197
Kharpat. 197
Khat. 197
Kheya anthotheca. 208
--- grandifoliosa. 207-9, 315
--- Purchii. 207-9
--- semeia. 207-9
Their. 100, 293
Khotrow. 277
Kiabocca-wood. 126
Kiamil. 197
Kidgi-kidgi. 158
Kiggeldria Dregedana. 210
Kikar. 153-6
Kilm-drying. 69-70
Kindal-kindal. 222
Kingwood. 105
Kirai. 197
Kirton-wood. 133
Kiefer. 98
Kizi. 87, 198
Kiplooord. 239
Knauers. 63
Knightix excelsa. 86, 262
Kneobout. 198
Knobthorn. 198
Kohekohe. 198
Kohomba. 215
Kohnuhutu. 176
Koko. 206, 322
Kola. 198
Kolavu. 198
INDEX

Knon, 198
Koomassia excelsa, 284
— malacensis, 100, 164
Koon, 198
Koorooobovilli, 260
Kooruk, 197
Kos, 193
Kosun, 198
Kowah, 128
Kowhai, 198
Koya-maki, 253
Kranji, 100, 198, 283
Kranjiaspan, 198
Kretti, 198
Krenzlohn, 150-1
Ku-chandana, 208
Kuchila, 274
Kulu, 198
*Kiuna pedunculiris, 285
Kura, 154
Kurana, 136, 157
Kuro-matsu, 246, 279
Kurumi, 198
Kurana, 139
Kusoombh, 198
Kuyon, 285
Kyai-tha, 234
Kyanising, 73

Laboucheria chlorostachys, 124
Labordonnaisia calophylloides, 146
— glauca, 146
Laburnum, 25, 36, 47, 84, 85, 313-4
— Indian, 311
Lacebark, 199
Lacewood, 87
Ladlewod, 87, 199
Lagerstramia Flos-reginae, 77, 100, 194
— parvifolia, 44, 136
Lagunaria Patersomi, 233-4, 291
Lalona, 104
Lancewood, 39, 88, 105, 199, 220-1
— Cape, 135
— Degame, 166-7
— American, 272
— Red, 151
Lanunu, 202
Lanza, Professor, 116, 118
Lapacho, 199
Lepidaceae Hermatodylon, 192
Lepidoptera gypa, 221
— photinia phyllospadora, 221
Lapparent's process, 72
Larch, 60-63, 78-80, 81, 82, 92, 98, 99, 110, 117, 199-200, 321
Larch, American, 283
— Black, 283
— Chinese, 200
— disease, 60-63
— fir, 175
— Golden, 200
— Himalayan, 200
— Western, 200, 283
Larix americana, 78, 109, 238
— európea, 78, 117, 199-200, 324
— Griffithii, 200
— leptolipis, 200
— occidentalis, 283
— pendula, 283
— sibirica, 99
Laslett, Thomas, 76, 116, 118, 120, 129, 222, 312
Larixin, 200
Lauan, 79, 100, 201
Lauquossi, 201
Laureceae, 312
Laurel, 201
— Alexandrian, 79, 201
— Big, 206
— California, 201
— Madrona, 201
— wood, 279
Laurier Cypre, 201
— des Iroquois, 269
— Grec, 137
— Madame, 201
— Marbre, 202
Laurus bullata, 279
— nobilis, 201
— Taiw, 284
Leatherjacket, 133, 163, 202
Lebuk, 256
Lecythis grandiflora, 217
— Ollaria, 195
Leguminosae, 44, 311-4
Leichhardt's tree, 154
Lein, 202
Lein, 202
Leinben, 202
Leitneria floridana, 164
Lemon-wood, 29, 202, 235
Leopard-wood, 88, 202
Leptospermum ericoides, 212, 285
— flavescus, 284
— lanigerum, 284
— scoparium, 212
Lesuca, 256
Letterwood, 15, 88, 202
— Red, 202
— Striped, 202
Lever-wood, 189
Libneh, 259
Libocedrus, 42
Libocedrus Bidwillii, 158
— decurrens, 82, 157-160
— tetragona, 126
Licari, 270
Lightwood, 144, 163
Lign-aloes, 169
Lignification, 12
Lignum Rhodium, 176
— Rhodii, 264
— vitae, 35, 36, 44, 55-6, 79-80, 105, 140, 149, 202-3, 219, 289-293, 311-2
— African, 203
— Bahama, 203
— British Guiana, 203
— Guayaquil, 203
— Maracaibo, 204
— New Zealand, 204
Lilac, 51, 204
— Cape, 137
— Persian, 137, 202
Lime (see Linden), 204
Linden, 24, 29, 35, 36, 40, 53, 62, 84, 89, 318-9
— American, 137
Lingua-wood, 126
Linnoceris ligustrina, 264
Lipa, 204
Liquidambar styraciflua, 52, 82, 181, 182-3, 318
Liriodendron tulipifera, 36-7, 53, 83, 85, 89, 165, 318
Litsea dealbata, 132
— reticulata, 136
— calicaris, 211
Lloyd's Register, 77-8
Load, 303-4
Loblolly pine, 107
Locust, 14-15, 36, 46, 80, 105, 123, 204, 313
— bean, 154
— Black, 14-15, 36, 46, 205
— Honey, 47
Logwood, 36, 93, 105, 205
Long-leaved Pine, 107
Looking-glass-tree, 281
Lophira alata, 47, 231-2, 312
Loquat, 205
Lotos-wood, 84
Love-tree, 194
Luecaena galactáylon, 158, 217
Lythóma Sábien, 77, 79, 86, 105, 265
INDEX

New Zealand timbers, 103
Nicaragua-wood, 93, 238
Nila-Pila, 168
Nim, 137
Nispero, 269, 272
Nodion-Brettonneau process, 74
Nogal, 221
Nonna maram, 154
Norway, 90
Nodoëa pigmentina, 79, 191
— longifolia, 135
Norwegian forests, 97
Nut, Queensland, 222
Nyssa floribunda, 293
Nyssa multiflora, 183
— sylvatér, 89
— tomentosâ, 178, 292
— uniflora, 178, 292
Oak, 4, 9, 15, 18, 23-33,
35, 36, 37, 39, 49,
55, 59, 60-4, 70,
77, 80, 81, 82, 83,
84, 88, 89, 92, 97,
98, 99, 103, 110
— Adirondack, 77, 99,
117, 223-6
— African, 47, 57, 77,
80, 103, 117
— American, 77, 226-230
— White, 89, 314
— Baltic, 98
— Baltimore, 230
— Basket, 227
— Black, 49, 228-9, 230
— Bog, 223
— Botany, 232-3
— Bay, 232
— British, 222-5
— Brown, 37, 223, 230
— Bull, 232-3
— Burr, 227
— California Chestnut, 229
— Canadian, 18, 117
— Red, 85, 117, 228
— Chestnut, 224, 227
— Chinquapin, 227
— Common, 222-5
— Congo, 150
— Cork, 24, 84, 88, 225
— Cow, 227
— Dantzic, 117, 222, 225
— Duck, 229
— Durmast, 224
— East Country, 98
Oak, English, 18, 117, 222-5
— European, 222-5
— Evergreen, 103, 226-7
— Forest, 232-3
— French, 77, 80, 222, 225
— Green, 230-1
— Grey, 231
— Holm, 225, 231
— Indian, 234, 310
— Iron, 225, 228
— Italian, 77, 99
— Kermes, 225
— Live, 49, 77, 80, 226,
— 228
— Manl, 228
— Modena, 99
— Mossy-cupped, 225-6
— Mountain, 232
— Neapolitan, 99
— Over-cup, 227
— Peach, 229
— Pin, 228
— Portuguese, 77
— Possum, 229
— Post, 228
— Pump, 229
— Quebec, 229-30
— Quercitron, 228, 230
— Red, 49, 228-9
— Riga, 224
— Ring-cupped, 231
— River, 146-7, 232-3
— Rock, 227
— Roman, 99
— Salt-water Swamp, 233
— Sardinian, 99
— Scarlet, 229
— Scrub Silky, 213
— She, 102, 232-3
— Shingle, 86, 232-3
— Sicilian, 99
— Silky, 86, 101, 233
— Silvery, 233
— Oaks, Indian, 44, 230-1,
— 310
— Japanese, 231
— Oak, Spanish, 77, 229
— Swamp, 232-3
— Spanish, 228
— Tan-bark, 229
— Turkey, 225-6
— Tuscan, 99
— Valparaíso, 228
— Waimuscat, 225-6, 304
— Water, 229
— Weeping, 230
— Western, 230
— White, 49, 78, 81,
— 229-30, 233, 291
Oaks, Willow, 230
— Yellow, 227, 230
— Zeeu, 226
Ochna arborea, 261
Ocotéa barbata, 37, 77, 86,
104, 279
— cératia, 201
Ocune, 105, 268
Olina Wédtier, 197
Odonomokyu, 322-3
Odoors of woods, 37
Oeum, 189
Oelbaum, 234
Oiodcalus Britsaa, 238
Oganwo, 208
Okan, 323
Oldfieldia africana, 57, 77,
80, 103, 117, 287
Olía, 36, 44, 87
— Cunninghamii, 211
— cupénosis, 191
— cupédita, 234
— didicha, 224
— eucalpp, 44, 234
— exasperita, 191
— larvae, 211
— glandulifera, 234
— jamieu, 191
— undulata, 191
— verrucosa, 191, 234
Oleária argophylla, 87, 218
Olima-wood, 234
Olina cymosa, 238
Oliva, 36, 44, 84, 88, 234,
— 310
— Black, 235
— bark, 235
— Mock, 135, 234
— Native, 132, 150, 215
— in Australia, 234
— in North America,
— 234
— Wild, 234
— Indian, 234
Olneya Tesota, 192
Olse, 125
Olyvenhout, 191
Onatsu, 246
Omorica, 278
Onycholobium Lambértii, 302
Onara, 231
Onore, 143
Ooday, 197
Opepe, 235
Oplohera Úngos, 274
Oplohera varipunctata, 274
Orange, 29, 88, 235
Oranges, 235
22-2
INDEX

Oranges, Black, 88, 150
— Native, 235
— Osage, 235
— wood, 193
Ordnance woods, 76
Oregon Fir, 79, 321
— Pine, 79, 321
Oren, 242
Oredaphne bullata, 279
— fidelis, 31
Orham-wood, 236
Ortes excelsa, 233
Osier, Golden, 298-9
— Purple, 298
— Stag’s head, 298
Osiers, 297-8
Osminthus americanus, 234
Osrin, 153
Ostrya carpinifolia, 189
Osun, 192, 263
Osyla, 131-5
Osyris tenuifolia, 267
Oxygenia dalbergioides, 268
Owvia acidula, 257
— venosa, 257, 291
Owowe, 322
Paardepram, 198
Pacara, 236
Packing-case woods, 89-90
Pader, 236
Padouk, 83, 85, 100, 236, 311
— Andaman, 236, 311
Padri, 236
Pahantea, 236
Paicha, 88, 236
Pajasan, 124
Palisander-wood, 236-7
Palo Blanco, 237
— Cruz, 237
— Maria, 78, 100, 237, 257
— Mulato, 116
— narango, 237
Palu, 237
Panacoco, 237
Panagah, 79
PANAX elegans, 201
— Murayi, 239
— samgohin, 132
Paniala, 272
Pao d’arco, 237
— de cobra, 274
— precioso, 237
— roxo, 177, 260
Papaw, 237
Paper-bark-tree, 285
— pulp, 90-1, 109, 110
Papri, 172, 238
Paracou, 238
— Parenchyma, 12, 28
Parinari taoninum, 211
— oblongifolium, 287
Parish-pippul, 292-3
Parrota persica, 192
Parsipu, 292-3
Partridge-wood, 88, 238
Patanga, 269
Patawa, 238
Paulowia imperialis, 87, 198
Paving, Wood, 82
Payena Betis, 78, 100, 140
Peach, Native, 257
— wood, 238
Pear, 29, 53, 84, 85, 87, 88, 170, 238, 319
— Hard, 238
— Native, 238-9
— Red, 239
— Thorn, 239
— Wolf, 239
— wood, White, 239
Pelucon, 244
Peki, 274-5
Peltogyna confertiflora, 177, 200
— macrolobium, 78, 177
— paniculata, 200
— venosa, 239
Penagah, 209, 257
Penago, 79
Pencil Cedar, 77, 86, 217, 263
— wood, 239
Pen-lay, 154
Pentaclethra micrantha, 288-9
Pentaclethra filamentoa, 146
Pepperidge, 292
Peppermint, 81, 101, 102, 133, 178, 239, 280, 282
— Bastard, 83, 318
Peral, 238
Periblum, 7
Pernambuco-wood, 238
Peroba branca, 79, 240
— de campos, 240
— vermelha, 240
Persea gratissima, 135
— indica, 210
Persicon, 294
Persimmon, 210
Persimmon, 36, 49, 87, 210, 314-5
Peruche, 185
Peizia Willkommi, 60, 62, 200
Philippine, Timbers of the, 100
— Export to, 107
Philom, 9-10, 13
Phung-nyet, 79
Phyllanthus emblica, 126
— Ferdinandii, 149, 158, 203
Phylocladus rhomboidealus, 244
— trichomanoides, 81, 238-4
Physocydia semberium, 291
Pieca, 42, 275-9
— ajmannis, 276, 278-9
— alba, 83, 109, 276, 278, 320-1
— Alcockiana, 276
— boralis, 275
— cephalonica, 99
— Englemanni, 276, 278
— excelsa, 18-19, 38, 78, 81, 82, 83, 88, 89, 97, 98, 167, 275, 277, 320-1
— Glabella, 276
— Hondoeensis, 276, 278
— Jezoensis, 278-9
— Morinda, 276, 277
— nigra, 81, 109, 167, 276
— obovata, 276
— Omorica, 275, 278
— orientalis, 275
— polita, 276
— pungens, 276
— rubra, 276, 278
— septentrionalis, 275
— sitchensis, 276, 278
— Smithiana, 90, 277
Pieronea excelsa, 260
Pila Champa, 161
Piles, 80
Pila marda, 184
— murda wood, 184
Pimienta officinalis, 88, 240
Pimento, 88, 240
Pin-bush, 240, 310
Pine, 16-23, 36, 43, 70, 81, 84, 96, 97, 99, 110, 240-54, 304, 321
— Adventure Bay, 214
— Allepo, 44, 242
— American, 82
— Red, 78, 110, 117
— Apple, 253
— Austrian, 241, 242
— Awned, 245
— Baltic, 82, 248
— Banksian, 110
— Bastard, 245
— Bhotan, 81, 242
INDEX

Pinus Murrayana. 246
--- Murray, 248
--- muriicata, 250
--- palustris, 44, 79, 81, 82, 107, 108, 246-7, 321
--- Picus, 275
--- Pinaster, 44, 80, 89, 103, 104, 244
--- Pinca, 89, 252
--- ponderosa, 243
--- pungens, 245
--- premio, 248
--- radiata, 248
--- resinosa, 43, 57, 78, 79, 81, 243
--- rigida, 78, 251
--- rubra, 243
--- Sabini, 250
--- serotina, 251
--- Smithiana, 277
--- syvdistris, 22, 43-44, 57, 78-9, 80, 81, 82, 90, 97, 98, 108, 117, 167, 240, 241, 248-50, 261
--- Tedia, 43, 81, 107, 246
--- Thunbergii, 246
--- uncinata, 248
--- virginiana, 246
--- Piptadenia cebil, 165
--- communis, 188
--- peregrina, 302
--- rigida, 127, 261
--- Piratimera guianensis, 20
--- Pisodina Erythrina, 168
--- Piatacea Terebinthus, 84, 288
--- Pitch-pine, 35
--- Fith, 8, 10-11, 24-25
--- Pinheolium, 71
--- Pith-flecks, 33, 37
--- rays, 9-10, 20, 25, 33
--- Fits, 13-15
--- Pittosporum bicolor, 282
--- phillyraeoides, 299
--- tentfonf, 212
--- undulatum, 161
--- Plagianthus betulinus, 199
--- Plane, 24, 29, 39, 51, 52, 84, 255-6, 281, 317
--- Eastern or Oriental, 255
--- Western or Occidental, 255
--- Plancia Richardi, 302

Plaqueminier de Virginie, 240
--- Plaeana occidentalis, 51, 87, 188, 255, 317
--- orientalis, 39, 255
--- racemosa, 255
--- Platylphys trifoliatus, 125-6
--- Platymiscium platystachyum, 262-3
--- Electronia ventosa, 271
--- Plume, 6
--- Plum, 29, 50, 256
--- Black, 256
--- Burdekin, 256
--- Grey, 220
--- Hog, 256
--- Sebestan, 256
--- Sour, 257
--- Sweet, 256
--- Wild, 128
--- Podocarpus asplenifolius, 79, 244
--- coriacea, 299
--- dacyrdoideus, 254
--- elata, 86, 101, 158
--- elongata, 81, 299-300
--- ferruginea, 86, 243
--- latifolia, 80, 81, 300
--- pruinosis, 290-300
--- Purdieana, 299
--- Thunbergii, 80, 299, 300
--- Tedana, 79, 80, 81, 86
--- Pohutakawa, 79, 192
--- Polypomma Cunninghamii, 173
--- Poison-berry, 299
--- Polyporus sulphureus, 61
--- --- vaporarius, 62
--- Pomaceae, 319
--- Pomaderis apetala, 168
--- Pomegranate, Native, 256
--- --- Small Native, 235
--- Pomeranzen, 235
--- Pommier, 127
--- Poma d’Adao, 197
--- Ponga, 311
--- Pongyania glabra, 139, 311
--- Poon, 212
--- Poons, 32, 79, 80, 257, 313
--- --- Bastard, 279
--- Poonga, 139
--- Poplar, 18, 29, 33, 35, 36, 55-6, 61, 70, 83, 89, 109, 110, 257-9, 290-1
--- American Yellow, 36-7, 290-1
--- Aspen, 89
--- Balsam, 110, 258

Poplar, Balm of Gilead, 258
--- Black, 24, 258
--- --- Italian, 258
--- Blue, 36-7
--- Carolina, 258
--- Grey, 258
--- Large-toothed, 259
--- Lombardy, 89
--- Necklace, 258
--- Swiss, 258
--- Virginian, 290-1
--- White, 36-7, 89, 259, 290-1
--- Yellow, 53, 259, 290-1
--- Topulus, 257-9
--- alba, 259
--- --- balsamifera, 258
--- canescens, 89, 238
--- dilatata, 259
--- ephratica, 259
--- fastigiata, 89
--- grandidentata, 135, 259
--- monilifera, 89, 238
--- nigra, 258
--- trinula, 89, 134-5
--- tremuloides, 135
--- Porasham, 271
--- Porcupine-wood, 3, 259
--- Pores, 39, 309
--- Poris, 292-3
--- Porte-noix Torreyia, 197
--- Portia-tree, 259, 292-3
--- Powellizing, 74
--- Powihihi, 199
--- Prickwood, 167
--- Pride of India, 137
--- Princewood, 165
--- Procambium, 8-9
--- Proscopis alba, 126
--- --- juliflora, 216
--- --- nigra, 126
--- --- spicigera, 44, 194, 311
--- Proteaceae, 310
--- Protmplasm, 6
--- Protoxytem, 16
--- Prununopsis spicata, 243
--- Prunus, 316
--- --- avium, 89, 161
--- --- Cerasus, 51, 161
--- --- domestica, 50, 236
--- --- marainata, 162
--- --- laurocerasus, 201
--- --- Mahaleb, 50, 89, 161
--- --- Pudus, 50, 161
--- --- serotina, 87, 161
--- --- spinosa, 51, 144
--- Prussian forests, 98
--- Pseudocedrela excelsa, 209
INDEX

Quercus alba, 49, 78, 81, 89, 109, 229-30, 314
— annulata, 231
— aquatica, 229
— ballota, 103
— birch, 49, 230
— Cérris, 77, 99, 225-6
— chrysopéloïs, 228
— cocífera, 225
— cocícea, 229
— densiflora, 229
— dilataba, 81, 230-1
— Durandii, 230
— falcata, 229
— fexcrétoire, 81, 231
— Garryana, 230
— glix, 231
— glácea, 230-1
— Griffithii, 81, 231
— grossératat, 231
— Tex, 49, 77, 103, 225-6, 231
— incína, 231, 310
— lannéllosa, 44, 81, 231, 310
— lancefréria, 231
— lapáccea, 231
— lobátata, 230
— macrócarpa, 227
— Mybécttii, 226
— Michéralii, 227
— Muhlénbergii, 227
— myrsínavuláta, 231
— pachýphylla, 81, 231
— obtusíloïa, 49, 228
— palástria, 49, 228
— Phéllos, 230
— Prinúss, 227
— pyrénnica, 77, 99
— Ródor, 49, 55-6, 77, 89, 98, 99, 117, 222-5
— rábra, 49, 85, 228-9
— semecarpífolá, 81, 220
— serrátata, 231
— spé cita, 231
— Súber, 24, 49, 77, 88, 103, 225
— tinétória, 49, 230
— vibragéminá, 231
— víreca, 49, 77, 80, 226, 228
Quibaba da Musangue, 208
— da Queta, 208
Quina-quína, 260
Quince, 32
Quirapáiba, 146, 170
Radami, 234
Railroad-ties, 106
Rakt-chandán, 268
Rakta chandana, 268
Ranai, 261
Ranjanas, 268
Raspberry-jam, 102, 219
Rassak, 80, 100, 261
Rata, 77, 261
— Northern, 261
— Southern, 261
Ratka-chandán, 208
Rayndiana, 257
Redheart, 198
Redwood, 42, 57, 81, 85, 106, 106, 192, 239, 261
— Californian, 261-2, 320
— Coromandel, 209, 261
Resin ducts or passages, 19-20
Resonance of woods, 37-8
Rewa-rewa, 68, 262
Rhánnus euthériacus, 45, 150-1, 167, 316
— Frángula, 51, 91, 151, 167, 316
— Purshiana, 316
Rhizomorphs, 60
Rházspórra muconáta, 212
Rhodánnia argéntea, 221
— trinérrea, 292
Rhododendron, 33
Rhópala montána, 140
Rhús Célticas, 50, 51, 176, 316
— lavícgita, 282
— lúcida, 282
— rhodanthémá, 300
— Thunbérgetii, 173
— typhína, 51, 280-1
Rift-sawing, 66
Rimu, 86, 262
Rind-gall, 58
Ring-porous woods, 313
Rings, Annual 2, 3, 28, 39
— False, 28
Ring-shake, 55-6
Robúnia panáeota, 237
— Pscedacácia, 15, 29, 33, 36, 46, 83, 123, 205, 313
Roger Gough, 145
Rohuna, 209
Rolleston, Sir J. F. L... quoted, 93-6
Ron-rón, 302
Rood Els, 86
Rose, Balkan, 288
— femelle, 270
— Guelder, 288
INDEX

Salting, 50
Sambucus, 35
Sally, 60
Sallow, 93
Sdlix, 28
Sal., 88
Saj, 25
St., 45
Sala, 20
Sala, 20
Sala, 20
Salamandra excelsa, 188, 262

Sabicu, 57, 77, 79, 86, 105, 210, 265
Saddebaum, Virginscher, 159
Saddle-tree, 250-1
Safed Simal, 272
Saffron-wood, 36, 265
Ságun, 285
Sahleweid, 266
St. John’s bread, 154
Saj, 44, 100, 265
Sal, 51, 80, 81, 85, 100, 265-6
Sala, 265
Salee, 219
Saliewood, 86, 266
Sáliz, 297-8
— ábla, 89, 298, 319-320
— Caprón, 260, 320
— frágilis, 298, 319-20
— nigrar, 298
— purpurea, 298
— vitellina, 298-9
Sallow, 266, 320
— in Australia, 266
Sally, 178, 266
— Black, 144
— White, 266
Salting timber, 71
Samandar-phal, 234
Samara robusta, 39
Samibucus, 51
— nigrar, 171

Sandaku, 266
Sandal, 266
— Surkh, 268
Sandalwood, 37, 87, 100, 168, 266
— Australian, 267
— Bastard, 168, 267
— East African, 267
— Fiji, 267
— Fragrant, 267
— Indian, 212
— Native, 267
— New Caledonia, 267
— Red, 93, 268
— Sandwich Islands, 267
— Scentless, 267
— Scrub, 267-8
— White, 266
— Yellow, 266
Sandan, 268
Sanders, Red, 93, 100
— wood, Red, 268
— Yellow, 268, 271
Sandoricum indicum, 212
Santalum album, 87, 266
— austro-caledonicum, 267
— aegnororum, 102
— freycinetidnum, 267
— lanceolatum, 267
— obtusifolium, 267
— paniculatum, 267
— Yási, 267
Santa Maria, 86, 268-9
Sao, 288
Sapang, 269
Sapodilla, 86, 151, 269
Sapotáceo, 39, 312-3
— Sapóta gonocarpa, 79, 240
— Milléri, 151
— Siderógylon, 151
— Sapan, 93
— Sapan-wood, 269
— Sapucia-nut, 195
— Sapwood, 17, 113
— Saqui-saqui, 269
— Sarcocóphalus cordatus, 154
— Sargent, Professor, 108
— Saro, 233
— Sássafraas, 46, 140, 153, 269-70
— Sássafraas, Assam, 153, 269
— Australian, 269-70
— Brazil, 270
— Burmese, 133
— Cayenne, 270
— Sássafraas officinale, 269
— Satíné, 270
— rouge, 290
— Satiné rubanné, 270
— Satin Walnut, 182-3, 318
— Satinwood, 85, 86, 187-271
— in Australia, 271
— North American, 271
— West Indian, 271
— Saul, 265
— Savin, 159
— Saxony, Forests of, 98
— Sawing, 66
— Scandinavian timber-supply, 97
— Schaapdrolletje, 271
— Schawari, 274-5
— Schima Wallchii, 80, 163
— Schinópsis Lorántzii, 260
— Schizomeria ovata, 138, 163, 164
— Schleicheria trijuga, 198
— Schlich, Dr., 90, 96-7
— Schóditpes verticillata, 253
— Sclótopia Ecklónnii, 239
— Leyheri, 239
— Scolytus destructor, 64
— Scots Fir, 4, 22
— Seasoning, 67-75
— Sebestiana officinalis, 256
— Secondary tissues, 11
— Securipara, 78, 272
— Selangan, 272
— Sequoia, 42, 106, 166
— gigantea, 140
— sempereirens, 261, 320
— Scrayah, 272
— Service, 53, 272
— tree, 272
— Sha, 197
— Shad-blow, 272
— Shad-bush, 272
— Shajr-ul-jin, 272
— Sharples, S. P., 114, 120
— She-beech, 282
— Shelf-fungi, 64
— Shembal, 90, 164
— She-oak, 32, 33, 86, 102, 232-3
— Coast, 232
— Desert, 232
— Erect, 232
— River, 232
— Scrub, 232
— Stunted, 233
— She-pine, 101
— Sheraton, 85
— Shingles, 82
— Shipbuilding woods, 76-9
— Shiragashi, 124, 231
— Shittim-wood, 151, 272
— Shoe-pegs, 96
INDEX

Syncarpia Hillii, 292
— laurifolia, 78, 101, 292
— leptopetala, 220, 292
Synomum glandulosum, 145.
168, 263, 292
Syringa vulgaris, 51
Syzygium, 258
Tacamahac, 258
Tallicoma, 258
Tamarack, 282
Talura, 282
Tamarack, 43, 78, 109, 283
— Western, 283
Tamarindus indica, 57, 283
Tamarind Plum, 198
Tamboti, 258
Tannin woods, 93
Tapang, 284
Tar, 92
Taraire, 284
Tarcce, 284
Tarruidia argyrodendron, 82, 273
Tasmanian timbers, 101-2
Tatajuba, 274-5
Tatamaka, 79, 86, 257
Tavola, 126
Tawa, 284
Tawhai, 284
— raumui, 284
— rauriki, 142
Taxodium, 42
— distichum, 165-6
Taxis baccalta, 42, 301, 320
— brevifolia, 42, 301
— cuspidata, 301-2
Tchecergun, 144
Tea, 284
Teak, 4, 39, 35, 50, 57,
67-8, 76-7, 89,
84, 100, 117, 285-
7, 304, 315
— African, 57, 103, 287
— Bastard, 85, 287
— Jllohere, 287
— New Zealand, 259
Teassur, 147
Tea-tree, 178, 285
— Black, 285
— Broad-leaved, 146-7,
— Mountain, 285
— Paper-barked, 101,
— Prickly-leaved, 285
— River, 146-7
— Soft-leaved, 285
— Swamp, 152, 285
— White, 212, 285
Teazle, 88, 285
Teclzma Guayanac, 177
— leucorylum, 146, 170
— pentaphylla, 88, 149
— speciosa, 237
Tecoxa grandis, 50, 57,
117, 285-7, 315
Tee, 282
Telegraph-poles, 81, 106,
Tendu, 169
T'eng-li-mu, 88, 288
Teng, 153
Ten-sile strength, 112
Terebinth, 288
— Syrian, 84
Terodolavilis, 63
Terminnula acuminata, 78,
— Arjuna, 128-9
— beliana, 202
— belicr, 44, 81
— Bucanas, 235
— Catippa, 126
— Chébula, 81, 184
— Tamboiuca, 201
— tomenloa, 44, 265
Termites, 63-4
Terms used, 303
Tetraluchins articulata, 83,
103, 126, 203, 289
Tetranthera calicaris, 211,
Tewart, 57, 78, 102, 288
Techo, 301
Thalai, 172
Tha amassica, 284
Theit-to, 212
Thespis populnea, 86,
292-3
Theya, 289
Thingan, 78, 100, 288, 312
Thitka, 288-9
Thitkado, 157-8
Thit-si, 289
Thitya, 289
Thorn, 289
Thoutinúa winmannifolia,
284
Thujópsis dolabrata, 185
Thumbagum, 289
Thurston, Professor, 120
Thuya, 258
Thuya articulata, 289
— giginta, 40, 42, 67,
— occidentalis, 40, 42,
— plicata, 82
Thyne wood, 83, 289
Tif, 37
Tilia americana, 85, 137,
318-9
— argentea, 204
— cordata, 204
— heterophylla, 137
— platyphyllos, 204
Timber, 76, 81, 106, 303
— Appreciation of,
93-6, 322
— Converted, 303
— European, 96-7
— exports and im-
ports, 96-7
— Seasoning of, 113
Tipa blanco, 289
— Colorado, 289
— White, 289
Tipuana speciosa, 289
Tipuila, 33
Tirzah, 165
Tissues, 6
Titoki, 234
Tochi, 289
Toddfilia bunocola, 101,
191, 293
Toga, 200
Tohi, 278
Toi, 144
Tohngah, 154
Tong-schi, 242
Tonka-bean, 103, 289-290
Touquin-bean, 290
Toolookar, 128
Toon, 37, 85, 99, 100,
157-8
Toona, 157-8
Toorays nucifera, 197
Totex viridána, 55
Totara, 79, 80, 81, 290
Touloucouna, 165
Towhai, 195
Tow-war, 140
Tracee, 16, 26-28
Tracehals, 16, 27-28
Tramétes radicípera, 56,
61
Trichilia, 322
— Príciriána, 207-9
Trincocalce-wood, 290
Tristinia conferta, 101,
148, 149
— laurina, 138, 148
INDEX

Tristánía neriifólia, 183
— suaveolens, 83, 101, 183
Trochocarpus laurina, 136. 138, 161
Trumpet-tree, 290
Tsága, 41, 290
— Arrageï, 290
— canadensis, 41, 83, 109, 185
— Merteniana, 41, 109, 185
— Sibiñájí, 290
Tubuli-pullía, 148
Tu chung mu, 236
Tuggan-tuggan, 233
Tulip-tree, 36-7, 89, 175-6, 206, 290-1, 292
Tulip-wood, 37, 78, 101, 165, 291
Tulpenbaum, 291
Tupeo, 89, 292
— Guá, 292
Turnery woods, 87
Turnip-wood, 158, 263, 292
Turpentine, 101, 106, 178, 202
— Brush, 220, 292
— tree, 78-9, 101, 282, 292
Turrai, 140
Tyal-dyal, 132
Ullagol Mabbie, 235
Úlmos, 48, 236
— alata, 48, 173
— americana, 48, 171, 314
— campstris, 48, 78, 117
— crassifolia, 48
— effusa, 173
— fálva, 48, 172
— glabra, 88
— integrifolia, 172
— montana, 48, 172
— racemosa, 48, 171
Umblíllaria Califórnia, 201
Umbomoana, 86, 265
Umbrella-tree, 292-3
Umceza, 144-5
Umceya, 80, 300
Umtdakane, 239
Umdogan, 239
Umguma, 191
Umguna, 86, 135, 234
Umgwenyuzinjwa, 86, 132
Umkoza, 300
Umnoiso, 135
Umnonono, 238
Umounari, 279
Umntati, 86, 274
Untensema, 261
Unzumbit, 87, 104, 293
United States forests, 106
Unkaza, 86, 266
Unyic, 146-7
Unwin, Professor 113-14, 117, 119
Urajiro-gashii, 231
Uroobie, 293
Urticácea, 311
Vaivai, 293
Vanatika, 77
Varnish, Black, 293
— Burmese, 293
Vátria acuminíta, 254
— indica, 254
Vítico Ríssak, 80, 100, 261
Vem-pu, 137
Véne, 263
Venatíco, 210
Venerees, 87
Vesi, 272
Vesívesi, 139
Vessels, 11, 26-28, 39
Viburnum Opulus, 88, 288
Victoria. Timbers of, 101-2
Vidi, 256
Villorosíá Mórci, 213
Vináctio, 210
Vine, 48, 293
Violet-wood, 87, 104, 105, 219, 293
Violín-wood, 38, 277
Virgília expénsís, 197
Vitéx altíssíma, 78, 100, 216-7
— divaricáta, 146
— geniculáti, 78, 100, 217
— lignum-více, 203
— littoralís, 79, 80, 259
— umbrosa, 147
Vitéx, 48
— vinífera, 293
Vlier, 293
Waal, 137
Wacapou, 294
Wadascura, 217
Wahoo, 173
Waibainá, 294
Wai-hwa, 301
Walking-sticks, 87-8
Wallaba, 294
— Ituri, 294
Wallang-unda, 294
Wallundun-deyren, 161
Walnuß, 294
Walmart, 25, 29, 36, 51, 63, 84, 85, 87, 88, 97, 294-6
— African, 322-3
— American, 85, 295-6, 316
— Ancona, 294
— Austrian, 295
— Auvergne, 294
— Belgium, 296
— Black, 51, 78, 295-6
— Cape, 279
— Circassian, 294
— Common, 51, 294-5
— East Indian, 296
— English, 294
— European, 294
— French, 295
— Grey, 296
— Italian, 84, 294-5
— Japanese, 296
— Manchurian, 296
— Queensland, 296
— Satin, 182-3, 318
— substitutes, 322-3
— Turkish, 295
— White, 51, 316
Wandoo, 102, 296
Wane, 177
Wangara, 133
Wapa-gras, 294
Ward, Professor H. M., 38, 222
Washiba, 270
Water-bush, 168
Water-tree, 240
— wood, 106, 296
Wat-tah, 297
Wattle, 206-7
— Black, 296-7
— Broad-leaved, 297
— Featherý, 296-7
— Golden, 297
— Green, 297
— Hickory, 296-7
— Prickly, 297
— Silver, 79, 144, 296-7
Weale, Mr. J. A., 306, 309
Weinmännia Buthamíi, 202
— racemósa, 195
— rubífolia, 164, 216
Wellenmisel, 205
Wellingtonia, 140
Wene (in Jolof), 263
West Indian timbers, 105-6
Whistle-wood, 215
Whitebeam, 53
Whitethorn, 88, 184
Whitetop, 144
Whitewood, 36-7, 53, 161, 258-9, 290-1, 297
INDEX

Whitewood. American, 83, 85, 291
—— Canary, 83, 85, 89, 290-1, 318
—— Mowbula, 201
Widdringtonia juniperoides, 83, 104, 158
—— White, 83, 158-9
Wig-tree, 51
Wilga, 299
Willow, 29, 33, 35, 61, 83, 84, 89, 90, 91, 144, 297-9, 318-19
—— Bedford, 298
—— Black, 298
—— Crack, 298, 319-320
—— Goat, 320
—— Redwood, 298
—— White, 24, 298, 319-320
—— Yellow, 298-9
Wineberry, 173
Withy, 298
Wood as fuel, 91-2
—— Brasiletto, 299
—— Brazil, 269
—— Cayenne Rose, 270
—— Colour of, 36-37
—— Defects of, 55-64
—— Distillation of, 91
—— Durability of, 66-7
—— Function of, 2
—— Hardness of, 35-36
—— Honeysuckle, 255
—— lace, 255
—— leopard, 64
—— Microscopic Examination of, 305-6
—— Structures of, 309-321
—— oil tree, 183
—— Our supplies of, 94-111
—— parenchyma, 28
—— paving, 82
—— pepper, 270
—— Plants producing, 2-3
—— Rate of consumption, 1, 94
—— Selection of, 65-6, 112
—— spirit, 92
—— Structure of, 9, 309-321
—— Testing, 112, 121
—— Uses of, 1, 5, 76-93
—— vinegar, 91-92
—— Waste of, 94
—— Weight of, 34-5
Woods, Classification of, 38-54
—— Hard, 4
—— of commerce, 123-302
—— Odours of, 37
—— Recognition of, 34-37
—— Resonance of, 37-8
—— Soft, 2
—— Woody fibres, 28
—— Woode, 130
—— Woolly But, 101, 178, 180, 209-299
—— Worms, 64
—— Wound-parasites, 60-1
—— Wrightia tinctoria, 168
—— Wyagerie, 176
—— Wyeb-hazel, 172
—— Ximenia americana, 268
—— Xylem, 9-12, 15-20
—— Xylica dolabriformis, 44, 79, 81, 83, 100, 123-4
—— Xylocarpus granatum, 154
—— Xylomelum pyriforme, 238-9
—— Xylatos process, 73
—— Yaba, 127
—— Yacal, 78, 100
—— Yacca, 299
—— Yangoura, 279, 280
—— Yaralla, 173
—— Yarriyari, 199
—— Yarrah, 181
—— Yate, 102, 299
—— Yava, 199
—— Yellow-jacket, 149-150, 181
—— Yellow-wood, 53, 89, 81, 93, 299-300
—— Bastard, 299-300
—— Dark, 300
—— Deep, 300
—— Light, 300
—— Natal, 300
—— Outeniqua, 300
—— Prickly, 134
—— Real, 300
—— Thorney, 300
—— Upright, 300
—— White, 300
—— Yendike, 300
—— Yen-ju, 301
—— Yepi, 173
—— Yew, 3, 37, 42, 63, 85, 87, 88, 170, 301-2, 320
—— Californian, 301
—— Japanese, 301-2
—— New Zealand, 290
—— Pacific, 301
—— Western, 301
—— Yezo-matsu, 279
—— Vic-yiel, 175-6
—— Yok, 302
—— Ypil, 173
—— Yw, 301
—— Zaith, 234
—— Zanthoxylum brachycyndrum, 271
—— Ollea-Herculis, 134
—— flava, 271
—— floridum, 271
—— Zapateri, 260
—— Zebra-wood, 105, 302
—— Zelkova, 302
—— Zelkova acuminata, 100, 197
—— crenata, 302
—— Zeúzera, 64
—— Zizyphus Chlorólyron, 160
—— Zwartbast, 144-5
—— Zyb, 87, 273

BILLING AND SONS, LTD., PRINTERS, GUILDFORD
Mr. Edward Arnold’s List of
Technical & Scientific Publications

Extract from the LIVERPOOL POST of Dec. 4, 1907:

"During recent years Mr. Edward Arnold has placed in the hands of engineers and others interested in applied science a large number of volumes which, independently altogether of their intrinsic merits as scientific works, are very fine examples of the printers' and engravers' art, and from their appearance alone would be an ornament to any scientific student's library. Fortunately for the purchaser, the publisher has shown a wise discrimination in the technical books he has added to his list, with the result that the contents of the volumes are almost without exception as worthy of perusal and study as their appearance is attractive."

Power Gas Producers.
Their Design and Application.

By PHILIP W. ROBSON,
Of the National Gas Engine Co., Ltd.; sometime Vice-Principal of the Municipal School of Technology, Manchester.

Demy 8vo., cloth, 10s. 6d. net.

The recent enormous increase in the use of gas power is largely due to the improvements in gas producers. This book, which is written by a well-known expert, goes thoroughly into the theory, design, and application of all kinds of plants, with chapters on working and general management.

Electrical Traction.

By ERNEST WILSON, WHIT. SCH., M.I.E.E.,
Professor of Electrical Engineering in the Siemens Laboratory, King's College, London,

AND FRANCIS LYDALL, B.A., B.Sc.

Two volumes, sold separately. Demy 8vo., cloth.

Vol. I., with about 300 Illustrations and Index. 15s. net.

Vol. II., with about 170 Illustrations and Index. 15s. net.

"We are most decidedly of the opinion that both of these volumes will prove of great value to engineers, and that the last volume, in view of the present great interest in the question of single phase traction, is of the utmost importance, for in it for the first time is published a great amount of data with reference to which, hitherto, the manufacturing companies concerned have observed great secrecy."—The Times (Engineering Supplement).

A Text-Book of Electrical Engineering.

By DR. ADOLF THOMÄLEN.

Translated by G. W. O. HOWE, M.Sc., WHIT. SCH., A.M.I.E.E.,
Lecturer in Electrical Engineering at the Central Technical College, South Kensington.

With 454 Illustrations. Royal 8vo., cloth, 15s. net.

This translation of the "Kurze Lehrbuch der Elektrotechnik" is intended to fill the gap which appears to exist between the elementary text-books and the specialized works on various branches of electrical engineering.

LONDON: EDWARD ARNOLD, 41 & 43 MADDOX STREET, W.
Alternating Currents.
A Text-Book for Students of Engineering.

By C. G. Lamb, M.A., B.Sc.,
Clare College, Cambridge; Associate Member of the Institution of Electrical Engineers;
Associate of the City and Guilds of London Institute.

viii + 325 pages. With upwards of 230 Illustrations. Demy 8vo., cloth, 10s. 6d. net.

The scope of this book is intended to be such as to cover approximately the range of reading in alternating current machinery and apparatus considered by the author as desirable for a student of general engineering in his last year—as, for example, a candidate for the Mechanical Sciences Tripos at Cambridge.

Electric and Magnetic Circuits.

By Ellis H. Crapper, M.I.E.E.,
Head of the Electrical Engineering Department in the University College, Sheffield.

viii + 380 pages. Demy 8vo., cloth, 10s. 6d. net.

This, the introductory volume of a treatise on Electrical Engineering, deals with the fundamental principles of Electricity and Magnetism, and explains fully all the essential relationships of Electric and Magnetic Circuits met with in continuous current working. It contains a very large number of worked examples, and several hundreds of numerical examples taken from everyday practice.

Applied Electricity.

A Text-Book of Electrical Engineering for "Second Year" Students.

By J. Paley Yorke,
Head of the Physics and Electrical Engineering Department at the London County Council School of Engineering and Navigation, Poplar.

xii + 420 pages. Crown 8vo., cloth, 7s. 6d.

This volume is a text-book of Electrical Engineering for those who have already become acquainted with the fundamental phenomena and laws of Magnetism and Electricity.

Hydraulics.

By F. C. Lea, B.Sc., A.M.Inst.C.E.,

With about 300 Illustrations. Demy 8vo., 18s. net.

This book is intended to supply the want felt by students and teachers alike for a text-book of Hydraulics to practically cover the syllabuses of London and other Universities, and of the Institution of Civil Engineers.

Hydraulics.

By Raymond Busquet,
Professeur à l'Ecole Industrielle de Lyon.

Authorized English Edition.

Translated by A. H. Peake, M.A.,
Demonstrator in Mechanism and Applied Mechanics in the University of Cambridge.

viii + 312 pages. With 49 Illustrations. Demy 8vo., cloth, 7s. 6d. net.

This work is a practical text-book of Applied Hydraulics, in which complete technical theories and all useful calculations for the erection of hydraulic plant are presented.
The Balancing of Engines.

By W. E. DALBY, M.A., B.Sc., M.Inst.C.E., M.I.M.E.,
Professor of Engineering, City and Guilds of London Central Technical College.
SECOND EDITION, REVISED AND ENLARGED.
xii + 283 pages. With upwards of 180 Illustrations.
Demy 8vo., cloth, 10s. 6d. net.

CONTENTS.

I. The Addition and Subtraction of Vector Quantities.
II. The Balancing of Revolving Masses.
III. The Balancing of Reciprocating Masses.—Long Connecting-rods.
IV. The Balancing of Locomotives.
V. Secondary Balancing.
VI. Estimation of the Primary and Secondary Unbalanced Forces and Couples.
VII. The Vibration of the Supports.
VIII. The Motion of the Connecting-rod.
APPENDIX. EXERCISES. INDEX.

Valves and Valve Gear Mechanisms.

By W. E. DALBY, M.A., B.Sc., M.Inst.C.E., M.I.M.E.,
Professor of Engineering, City and Guilds of London Central Technical College.
xviii + 366 pages. With upwards of 200 Illustrations.
Royal 8vo., cloth, 21s. net.

Valve gears are considered in this book from two points of view—namely, the analysis of what a given gear can do, and the design of a gear to effect a stated distribution of steam. The gears analyzed are for the most part those belonging to existing and well-known types of engines, and include, amongst others, a link motion of the Great Eastern Railway, the straight link motion of the London and North-Western Railway, the Walschaert gear of the Northern of France Railway, the Joy gear of the Lancashire and Yorkshire Railway, the Sulzer gear, the Meyer gear, etc. The needs of students and draughtsmen have been kept in view throughout.

"No such systematic and complete treatment of the subject has yet been obtainable in book form, and we doubt if it could have been much better done, or by a more competent authority. The language is exact and clear, the illustrations are admirably drawn and reproduced."—The Times.

The Strength and Elasticity of Structural Members.

By R. J. WOODS, M.E., M.Inst.C.E.,
Fellow and Assistant Professor of Engineering, Royal Indian Engineering College, Cooper's Hill.
SECOND EDITION, REVISED.
xii + 310 pages. With 292 Illustrations. Demy 8vo., cloth, 10s. 6d. net.

"To students for the final examination of the R.I.B.A. we can strongly recommend such a practical and thorough text-book."—British Architect.

"This is a practical book, and, although written mainly for engineering students, may be commended as one likely to prove equally useful to those engaged in active practice."—Mechanical Engineer.

Calculus for Engineers.

By JOHN PERRY, M.E., D.Sc., F.R.S.,
Professor of Mechanics and Mathematics in the Royal College of Science, London; Vice-President of the Physical Society; Vice-President of the Institution of Electrical Engineers.
EIGHTH IMPRESSION.
viii + 382 pages. With 106 Illustrations. Crown 8vo., cloth, 7s. 6d.
Mathematical Drawing.
Including the Graphic Solution of Equations.

BY G. M. MINCHIN, M.A., F.R.S.,
Professor of Applied Mathematics at the Royal Indian Engineering College, Cooper's Hill;

AND JOHN BORTHWICK DALE, M.A.,
Assistant Professor of Mathematics at King's College, London.

Crown 8vo., cloth, 7s. 6d. net.

Graphic methods in Mathematics, which have attracted so much attention within the last few years, may be said to have attained a greatly increased importance by the decision of the University of London to require a knowledge of Mathematical Drawing from all candidates for the B.Sc. Degree.

The present work is largely an attempt to systematize somewhat vague methods of solving the non-algebraic equations which so often contain the solutions of physical problems.

Five-Figure Tables of Mathematical Functions.

Comprising Tables of Logarithms, Powers of Numbers, Trigonometric, Elliptic, and other Transcendental Functions.

BY JOHN BORTHWICK DALE, M.A.,
Assistant Professor of Mathematics at King's College, London

vi+92 pages. Demy 8vo., cloth, 3s. 6d. net.

This collection of Tables has been selected for use in the examinations of the University of London.

"This is a most valuable contribution to the literature of Mathematical reference To anyone engaged in almost any form of higher physical research this compilation will be an enormous boon in the way of saving time and labour and collecting data The five-figure tables of roots and powers are, perhaps, the most useful features of the work."—Mining Journal.

Logarithmic and Trigonometric Tables (To Five Places of Decimals). BY JOHN BORTHWICK DALE, M.A.,
Assistant Professor of Mathematics at King's College, London.
Demy 8vo., cloth, 2s. net.

Traverse Tables.
With an Introductory Chapter on Co-ordinate Surveying.

BY HENRY LOUIS, M.A., AND G. W. CAUNT, M.A.,
Professor of Mining and Lecturer on Surveying, Armstrong College, Newcastle-on-Tyne.

xxviii+92 pages. Demy 8vo., flexible cloth, rounded corners, 4s. 6d. net.

"The admirable, compact, and inexpensive tables compiled by Professor Henry Louis and Mr. G. W. Caunt. They are just what is required by the mining student and by the practical mine surveyor. . . . Their publication at a low price renders this convenient and rapid method of working out traverse surveys accessible to a class of workers from whom it has hitherto been debarked."—Mining Journal.
Organic Chemistry for Advanced Students.

By JULIUS B. COHEN, Ph.D., B.Sc.,
Professor of Organic Chemistry in the University of Leeds, and Associate of Owens College, Manchester.

Demy 8vo., cloth, 21s. net.
The book is written for students who have already completed an elementary course of Organic Chemistry, and is intended largely to take the place of the advanced text-book. For it has long been the opinion of the author that, when the principles of classification and synthesis and the properties of fundamental groups have been acquired, the object of the teacher should be, not to multiply facts of a similar kind, but rather to present to the student a broad and general outline of the more important branches of the subject. This method of treatment, whilst it avoids the dictionary arrangement which the text-book requires, leaves the writer the free disposal of his materials, so that he can bring together related substances, irrespective of their nature, and deal thoroughly with important theoretical questions which are often inadequately treated in the text-book.

The Chemical Synthesis of Vital Products and the Inter-relations between Organic Compounds.

By RAPHAEL MELDOLA, F.R.S., V.P.C.S., F.I.C., etc.,
Professor of Chemistry in the City and Guilds of London Technical College, Finsbury.

Vol. I., xvi + 338 pages. Super Royal 8vo., cloth, 21s. net.
The great achievements of modern Organic Chemistry in the domain of the synthesis or artificial production of compounds which are known to be formed as the result of the vital activities of plants and animals have not of late years been systematically recorded. The object of the present book is to set forth a statement, as complete as possible, of the existing state of knowledge in this most important branch of science.

The Chemistry of the Diazo-Compounds.

By JOHN CANNELL CAIN, D.Sc. (Manchester and Tubingen),
Editor of the Publications of the Chemical Society.

Demy 8vo. 10s. 6d. net.

Lectures on Theoretical and Physical Chemistry.

By Dr. J. H. VAN 'T HOFF,
Professor of Chemistry at the University of Berlin.

Translated by R. A. LEHFELDT, D.Sc.,
Professor of Physics at the Transvaal Technical Institute, Johannesburg.

In three volumes, demy 8vo., cloth, 28s. net, or separately as follows:

Part I. CHEMICAL DYNAMICS. 254 pages. 12s. net.
Part II. CHEMICAL STATICS. 156 pages. 8s. 6d. net.
Part III. RELATIONS BETWEEN PROPERTIES AND COMPOSITION. 143 pages, 7s. 6d. net.
Experimental Researches with the Electric Furnace.

BY HENRI MOISSAN,
Membre de l'Institut; Professor of Chemistry at the Sorbonne.

AUTHORIZED ENGLISH EDITION.

Translated by A. T. de MOUILPIED, M.Sc., Ph.D.,
Assistant Lecturer in Chemistry in the University of Liverpool.

xii + 307 pages, with Illustrations. Demy 8vo., cloth, 10s. 6d. net.

"There is hardly a page of it which is not crowded with interest, and hardly a section which does not teem with suggestion; and if the coming of this English edition of the book has been so long delayed, we may still be thankful that it has come at last, and come in a form which it is a pleasure to handle and a delight to read."—Electrical Review.

Electrolytic Preparations.
Exercises for use in the Laboratory by Chemists and Electro-Chemists.

BY DR. KARL ELBS,
Professor of Organic and Physical Chemistry at the University of Giessen.

Translated by R. S. HUTTON, M.Sc.,
Demonstrator and Lecturer on Electro-Chemistry at the University of Manchester.

xii + 100 pages. Demy 8vo., cloth, 4s. 6d. net.

The book contains a complete course of examples on the application of electrolysis to the preparation of both inorganic and organic substances. It will be found useful as filling a distinct gap in the textbook literature suitable for use in chemical laboratories, and should enable the chemist to make use of the many valuable and elegant methods of preparation which have been worked out during recent years, the advantages and ease of application of which he cannot appreciate without such a guide.

Introduction to Metallurgical Chemistry for Technical Students.

BY J. H. STANSBIE, B.Sc. (Lond.), F.I.C.,
Associate of Mason University College, and Lecturer in the Birmingham University Technical School.

SECOND EDITION.

xii + 252 pages. Crown 8vo., cloth, 4s. 6d.

An Experimental Course of Chemistry for Agricultural Students. By T. S. DYMOND, F.I.C., Lately Principal Lecturer in the Agricultural Department, County Technical Laboratories, Chelmsford.

New Impression. 192 pages, with 50 Illustrations. Crown 8vo., cloth, 2s. 6d.

A History of Chemistry.

BY DR. HUGO BAUER,
Royal Technical Institute, Stuttgart.

Translated by R. V. STANFORD, B.Sc. (Lond.),
Priestley Research Scholar in the University of Birmingham.

Crown 8vo., cloth, 3s. 6d. net.
The Becquerel Rays and the Properties of Radium.

By the Hon. R. J. Strutt, F.R.S.,
Fellow of Trinity College, Cambridge.

viii + 222 pages, with Diagrams. Demy 8vo., cloth, 8s. 6d. net.

"If only a few more books of this type were written, there might be some hope of a general appreciation of the methods, aims, and results of science, which would go far to promote its study. . . . A book for which no praise can be excessive." Athenaeum.

Astronomical Discovery.

By Herbert Hall Turner, D.Sc., F.R.S.,
Savilian Professor of Astronomy in the University of Oxford.

xii + 225 pages, with Plates and Diagrams. Demy 8vo., cloth, 10s. 6d. net.

An Introduction to the Theory of Optics.

By Arthur Schuster, Ph.D., Sc.D., F.R.S.,
Recently Professor of Physics at the University of Manchester.

xvi + 340 pages, with Illustrations. Demy 8vo., cloth, 15s. net.

"We know of no book written with a set purpose better adapted to serve the purpose for which it was written, nor any that the earnest student of optics will find more interesting and profitable. The work itself, without the confession of the preface, shows that Professor Schuster is a teacher, and every page bears evidence that he is a master of his subject . . . We heartily recommend the book to our readers."—Ophthalmic Review.

Wood.

A Manual of the Natural History and Industrial Applications of the Timbers of Commerce.

By G. S. Boultzer, F.L.S., F.G.S., A.S.I.,
Professor of Botany and Lecturer on Forestry in the City of London College, and formerly in the Royal Agricultural College.

New Edition. Revised and Enlarged and profusely illustrated. Demy 8vo., 12s. 6d. net.

"It is just the book that has long been wanted by land agents, foresters, and woodmen, and it should find a place in all technical school libraries."—Field.

By Charles G. Matthews, F.I.C., F.C.S., etc.

xvi + 295 pages, with 8 Plates, and 40 Illustrations. Crown 8vo., cloth, 7s. 6d. net.

"This is a book worthy of its author, and well worth perusing by every student. . . . The student, both old and young, as well as the practical brewer, will find this book gives him some very useful information."—Brewers' Guardian.
The Evolution Theory. By Dr. August Weismann, Professor of Zoology in the University of Freiburg in Breisgau. Translated, with the Author’s co-operation, by J. Arthur Thomson, Regius Professor of Natural History in the University of Aberdeen; and Margaret Thomson. Two vols., xvi + 416 and viii + 396 pages, with over 130 Illustrations. Royal 8vo., cloth, 32s. net.

"The subject has never been so fully and comprehensively expounded before; and it is not necessary to subscribe to all the author’s tenets in order to recognise the value and the absorbing interest of his exposition, with its prodigious wealth of illustration, its vast store of zoological knowledge, its ingenious interpretations and far-reaching theories. English readers have reason to be grateful to Professor and Mrs. Thomson for their admirable translation."—The Times.

The Life of the Salmon. With reference more especially to the Fish in Scotland. By W. L. Calderwood, F.R.S.E., Inspector of Salmon Fisheries for Scotland. Illustrated. Demy 8vo., 7s. 6d. net.

"We have no hesitation whatever in advising all persons interested in the salmon, whether as fishermen, naturalists, or legislators, to add this book to their libraries." —Nature.

Animal Behaviour. By Professor C. Lloyd Morgan, LL.D., F.R.S., Principal of University College, Bristol. viii + 344 pages, with 26 Illustrations. Large crown 8vo., cloth, 10s. 6d.

This important contribution to the fascinating subject of animal psychology covers the whole ground from the behaviour of cells up to that of the most highly developed animals.

BY THE SAME AUTHOR.

Habit and Instinct. viii + 352 pages, with Photogravure Frontispiece. Demy 8vo., cloth, 16s.

Professor Alfred Russel Wallace:—"An admirable introduction to the study of a most important and fascinating branch of biology, now for the first time based upon a substantial foundation of carefully observed facts and logical induction from them."

BY THE SAME AUTHOR.

The Springs of Conduct. Cheaper Edition. viii + 317 pages. Large crown 8vo., cloth, 3s. 6d. This volume deals with the Source and Limits of Knowledge, the Study of Nature, the Evolution of Scientific Knowledge, Body, and Mind, Choice, Feeling, and Conduct.

BY THE SAME AUTHOR.

An Introduction to Child Study. By Dr. W. B. Drummond. Crown 8vo., cloth, 6s. net.

LONDON: EDWARD ARNOLD, 41 & 43 MADDOX STREET, W.