-7 JUL 1969

UNIVERSITY OF AGRICULTURAL
SCIENCES
FTHERENCE UNIVERSITY LIBRARY
BANGALORE-ジ
This book should be returned on or before the date mentioned below; or else the Borrower will be liable for overdue charges as per rules from the DUE DATE Cl. No. 584.9 Cgec. Ac 33562 RHI

BEPEDENGE:

G.K.V.K, Libren

5

The Grasses of Burma

By

D. Rhind, I.A.S.

Published under the authority of the Government of Burma
584.909531 RHI

(Y. N. Th. LBran

INTRODUCTION.

This account of the Gramineae of Burma is an attempt to gather together the scattered information about the composition of the Burmese grass flora and to place it on record. The list of species is undoubtedly incomplete because, amongst other omissions, it lacks all but a few collections from the hith hills. In a country extending over more than 18 degrees of latitude, from sea-level to perpetual snows at over 19,000 feet and with a rainfall varying from under 25 to over 250 inches most diverse ecological conditions occur with a correspondingly great variation in the flora. There is no comprehensive Flora of Burma nor even an enumeration of the plants comparable to those of most of the surrounding regions and, though a proper Flora is long overdue, there seems to be no immediate prospect of one being compiled. The attempt now made to list the known Gramineae may be of some assistance when the time comes for a proper Flora to be written and in the meantime it will preserve such information as now exists. Much scientific data were lost at the time of the Japanese invasion of Burma through their not having been published and it is well to preserve as much as possible of what was saved.

The list of species has been compiled partly from the representative sheets of grasses sent from the Mandalay Agricultural College herbarium in December 1941 to Dr. N. L. Bor, Forest Botanist, Dehra Dun, for safe keeping, and partly from other sources. The Mandalay sheets comprised only one of each species represented in that herbarium and are all that remains of that collection and probably of all the herbarium material left in Burma. I am greatly indebted to Dr. Bor for giving these sheets safe refuge. The sheets have since been transferred to the care of Dr. Biswas at the Lloyd Botanic Garden, Darjeeling. I am grateful to Dr. Biswas for facilities to re-examine and list the Mandalay sheets and also to examine all the Sibpur collection of bamboos without which no list of the bamboos could have been compiled. I have also examined the whole of the collection of Gramineae in the herbarium of the Forest Research Institute, Dehra Dun, and am much obliged for the facilities granted me there. For numerous library references my thanks are specially due to Mr. D. B. Krishna Rao, Librarian, Agricultural College, Coimbatore, and to Mr. K. Cherian Jacob for the use of the Madras herbarium.

Past work on the grasses of Burma has been almost entirely due to the efforts of the numerous Forest Officers who have been nearly the sole collectors of plants in Burma. In a country whose life and wellbeing is so intimately bound up with its crops and its vegetation it is a curious reflection how little has been done to study its plant life systematically. Outside one Department of Government almost nothing has been done and even in that Department the collections and the publications of results show a strong bias towards the larger species to the relative neglect of the smaller. This is reflected in the collections of the Gramineae by the preponderance of bamboos and in the greater amount of critical systematic study devoted to that tribe compared to the smaller grasses. Further, it can be ascertained from a study of the density of the collections from different areas just where the economically
valuable timber trees grow and where therefore Forest Officers tour frequently. There is a noticeable lack of collections from places of little economic interest such as, for example, the Chin Hills (cf. the numerous collections from the neighbouring Naga and Khasi Hills) and the eastern Shan States (cf. the Chiengmai area of Siam), but in spite of these limitations it is to the efforts of Government Forest Officers that we are indebted for nearly all of what is known of the Burmese fla.

Previous publications on the Gramineae of Burma have been more or less fragmentary or are now seriously out of date. Kurz's Forest Flora of British Burma (1878) dealt only with the bamboos. Hooker's Flora of British India (1897) gave the first full account of the Gramineae but is now out of date and incomplete. Gamble in his Bambuseae of British India (1896) included a complete account of the Burmese bamboos as they were then known. Collett and Hemsley (1891) gave a list of plants including some grasses, collected by them in Upper Burma and the Shan hills adding several new records to those then known. Gage recorded a number of grasses during a tour in 1906 of the Minbu District of Upper Burma. McKerral (Bull. No. 20 of 1924 of the Burma Agric. Dept.) dealt with some of the commoner species of fodder value and Sawyer and Daw Nyun (1927) listed a number of species but neither of these last two works attempted a complete list. In the present work an attempt has been made to include all known species from Burma but it is probable that it is not complete because some of the important herbaria have not been available for consultation. A number of species which are thought to be new have been omitted because a proper study of them is not possible at the present time. Where a species has been described in readily accessible floras no description is given here but in the case of little-known species or those which have been described in less easily available journals a description is given in full, generally the original. No attempt has been made at a complete synonymy, the name currently accepted being given as far as it has been possible to ascertain it with only enough synonyms to permit its being traced in the literature. To bring the nomenclature into line with modern practice it has been necessary to nake six new combinations. These are:-

> Chimonobambusa gallatlyi for Arundinaria gallatlyi Gamble.
> Echinochloa notabile for Panicum notabile Hook.f.
> Microstegi:!n trandisii for Pollinia brandisii Stapf.
> Eulalia burmanica for Pollinia burmanica Hook.f.
> Chrysopogon distichophyllus for Andropogon distichophyllus Hook.f. - Hackelochloa porifera for Manisuris porifera Hack.

Keys have been provided to the tribes, genera and species. A list of the fungi recorded on grasses from Burma has been included. This list was kindly compiled by Dr. L. N. Seth, Mycologist, Government of Burma, and Dr. B. B. Mundkur, Imperial Agricultural Research Institute, New Delhi.

The Bamboos.

Burma is a land 'wreathed in bamboos'. The Burman's whole existence is bound up with the bamboos which play an enormously important part in his everyday life, providing his house, much of his furniture, utensils, farm implements, baskets and containers, binding
materials and some of his food. The rural Burman cannot imagine an existence in a country without bamboos. Often the whole aspect of the country-side is more effectively dominated by the bamboos than by the larger trees. It is impossible to estimate the value of the bamboos to Burma because they are everywhere and enter into almost every phase of life and commerce. Certain species are confined to particular habitats and because diferent species have specific uses there is a very large internal trade in cut bamboos which are transported about the country in large amounts. Exploitation of the bamboos yields much revenue to Government and forms a not inconsiderable part of the work of the Forest Department.

By far the commonest bamboo in Burma is Dendrocalamus strictus, the so-called Male Bamboo. It is found nearly everywhere in the plains where drainage is good or rainfall moderate. It is the main constituent of the Dry Deciduous Bamboo Brake of central Burma. It extends into the higher rainfall areas (where it is not deciduous) and up to about 2,500 feet. But though so common and largely used it is by no means the most useful species; the culms are often crooked and knotty while its habit of growing in tangled clumps makes its cutting laborious. Probably the second most abundant species is Cephalostachyum pergracile (Tin-wa) which occurs throughout the country and is at least as useful as D. strictus. In Arakan the predominant species is Melocanna bambusoides (Kayin-wa). This non-caespitose bamboo forms almost pure forests of great extent completely ousting other plants. It is a useful bamboo for general purposes, easily extracted and has been considered as a source for paper pulp. The large vivaparous fruit is eaten. In the rice-growing areas of Lower Burma one of the most abundant species is Bambusa tulda. It is common along water-courses and creeks and is frequently cultivated. In Tenasserim the most plentiful species is Oxytenanthera nigrociliata with which O. albociliata is often associated. The former finds many uses but the latter is of little value. In the hills up to about 5,000 feet several large species of Bambusa and Dendrocalamus (including the enormous D. giganteus, probably the largest of the Gramineae) are found. Above about 6,500 feet the larger species disappear until finally only species of Arundinaria or allied genera are found. These often form dense thickets, moss-covered and impenetrable. They are thin-stemmed, small species of little use.

The Grasses.

The very wide range of ecological conditions found in Burms has naturally resulted in a large number of species existing there ar it is probable that this list of the grasses is very incomplete, even wore so than in the case of the bamboos. It is regrettable that so fof species from high levels have been collected. With few exceptions the collections represent the grass flora of the more accessible part only; they might with a good deal of truth be said to comprise tte Commoner Grasses of Burma with only a few exceptions. Apart frod the cultivated cereals the grasses of Burma play an important part in eeding the cattle population but are otherwise of small direct economi value. They are important as soil-binders on sloping ground partularly in the hills where rainfall is high. A few are used for thatchand two or three for
the oils they yield, but taken as a whole they enter into the trade of the country to only a small extent apart from their use as fodder.

In the southern rain forests the species tend to be large-leaved, weak-stemmed shade-lovers, such as species of Acroceras, Alloteropsis; Centotheca, Microstegium, Oplismenus with larger species of Saccharum, Sclerostachya, Imperata, Coix and Sorghum in clearings. The principal species of the deltaic monsoon areas, where flooding in the monsoon is usual, belong to Phragmites, Saccharum and Neyraudia. In areas not usually flooded Ischaemum spp., Rottboellia exaltata, Chrysopogon aciculatus, Cynodon, Leersia, Eragrostis unioloides, Isachne australis and I. albens, Echinochloa crus-galli and E. stagnina, Axonopus, Dichanthium annulatum and D. caricosum, Ottochloa, Hemarthria compressa and Paspalidium spp. form the common mixture characteristic of paddyfield bunds and low uplands.

The northern wet zone, extending from about Kawlin to north of Fort Hertz, resembles the Lower Burma rain forests in its grass flora to a large extent but Phragmites is less common while Coix spp. are more abundant. There is some change in the composition of the mixture of smaller species; Elytrophorus is often abundant in open places and Leersia generally so; species of Saccolepis are common while Bothriochloa intermedia, Arthraxon spp., Panicum auritum and Isachne australis are more abundant than in the south. Eragrostis unioloides is everywhere plentiful on grazed and trampled ground. In the wet evergreen forests of the north species with commeliniform leaves are frequent, such as Acroceras, Alloteropsis and Centotheca while larger species of Themeda, Eulalia and Saccharum are abundant in clearings and on the edges of forests.

Between the northern and southern wet zönes lies the Dry Zone with a very different flora. This area has a rainfall of $25-40$ inches all falling in the monsoon season between May and November with hot, dry weather during the rest of the year. Except in low-lying places where water is permanent the large species of Phragmites and Saccharum are absent though xerophytic forms of Saccharum spontaneum may be found even in dry places. In permanent swamps Vetiveria zizanioides, Echinochloa crus-galli and E. stagnina are common. On dry uplands the characteristic species are Heteropogon contortus, Eragrostis spp., Sporobolus noramandelianus, Aristida depressa, Tragus biflorus, Setaria lutescens, Cropetium thomaeum, Bothriochloa pertusa, Chloris barbata, Perotis indica and the elegant Ratzebergia. Sporobolus tremulus is often dominant ovei large areas, particularly on fallow land. On stony hill-sides species of Thomeda, Cymbopogon and Aristida form the principal grasses.

Inthe hills between about 4,000 and 6,000 feet under a rainfall of $60-100 i_{\text {nsches }}$ the grass flora is of two main types: woodland and open downland. The woodland is mostly a fairly open Oak-Chestnut association witı. light undergrowth so that shade species of grasses are rare. Themeda, Eut lia, Erianthus, Thysanolaena and Arundinella are some of the commonest ge era but from the fodder point of view they are all coarse and tend to be pw in calcium and phosphorus. The open grassland is generally inhabily by small forms often with resupinate stems; the common species at Chrysopogon aciculatus, Microchloa indica, Sporobolus

nudum. In swamps amongst an abundance of sedges Pennisetum hordeiforme and Panicum humile are common. Above about 6,000 feet the open grassland is mixed with an abundance of moss and there are extensive patches of bracken under which Muehlenbergia huegelii, Microstegium nudum and Arthraxon lancifolius are the dominant species. In high level swamps Imperata and Coix often form dense colonies. The composition of the alpinte grasslands is almost unknown.

A special type of grass formation occurs along the rivers of the plains where extensive sand and silt deposits are laid down by the big rivers. On these deposits Saccharum spontaneum is often the first coloniser, binding the soil and, if prolonged inundation does not recur frequently, is the precursor of other species leading to a seral type of savannah.

Vernacular Names.

Vernacular names have been recorded wherever these have been entered on the herbarium labels or recorded in published lists. It must be admitted at once that they are of limited use and are rarely diagnostic. So far as the Burmese names are concerned they are more often descriptive than specific though there are a few well-known bamboos and grasses with names of fair individuality, However, only too many of the entries are of such vague names as $W a-b o$, meaning any large, thick-stemmed bamboo, Tabindaing-wa for any non-caespitose kind, Myet-ya for any awned or irritating grass, Myet-hmwe for any scented grass, etc.

> D. R.

Simla, 27th December, 1944.

THE GRASSES OF BURMA.

Key to the sub-families of the Gramineae.

Spikelets 1 -many-flowered, breaking up at maturity above the more or less persistent glumes, or if falling entire then not 2 -flowered with the lower floret male or barren and the upper hermaphrodite, usually more or less laterally compressed or terete

Pooideae
Spikelets 2 -flowered, falling entire at maturity, usually with the upper floret fertile and the lower male or barren and in the latter casc often reduced to the lemma, all alike or different in size, shape and structure, frequently dorsally compressed.

Panicoideae

Key to the tribes of Pooideae.

A. Shrubs or trees with woody, often tall, persistent culms; leaf-blades flat, many-nerved, often with transverse veinlets, usually with a petiole-like base which is articulated with the sheath; spikelets bisexual; lemmas 5 -many-nerved, usually awnless; lodicules usually 3 ; stigmas mostly 2 or 3 ..
AA. Perennial or annual herbs; leaf-blades usually sessile and not articulatal with the sheaths:
B. Spikelets borne in open or contracted or spike-like panicles, less often in racemes or spikes and then with the lower or both glumes suppressed if on opposite sides of a continuous rhachis, or with 2 or more fertile florets if on one side of the rhachis:
C. Spikelets with 2 or more fertile florets, or if with one fertile floret then with sterile florets above it:
D. Lemma and rhachis glabrous or hairy, in the latter case with the hairs not cnveloping the lemma or if so then with the lemma bearing in geniculate awn; low or moderately tall grasses:
E. Glumes usually shortcr than the lowest floret and with the upper florets distinctly exserted, rarely longer, and then with firm, dull margins like the lemmas; lemmas awnless or with a straight or curved awn from the entire or bifid apex, or several-awned or lobed:
F. Lemmas usually 5 -many-nerved:
G. Leaf-blades broad, many-nerved, with transverse veinlets. .

GG. Leaf-blades flat, convolute or involute, without transverse veinlets:
H. Lemmas entire or shortly 2 -5-toothed at the apex, awnless or awned
HH. Lemmas cleft into 3 or more lobes, with or without fine, straight awns from their sinuses

1. Bambuseae
2. Centotheceae
3. Festuceae
4. Pappophoreac

FF. Lemmas 1 -3-nerved
EE. Glumes usually as long as or longer than the lowest floret, often as long as the spikelet and enclosing the florets; lemma awnless or more often awned from the back or the sinus of the 2 -lobed tip; the awn usually geniculate; glumes or lemmas or both frequently with thin, shining margins
10. Aveneac

DD. Lemmas or rhachilla joints bearing long, silky hairs which envelop the lemma (at least in fertile florets); lemmas awness or with a straight awn from the tip, often thin; tall grasses with usually large, plume-like panicles
CC. Spikelets with one fertile floret (male or female in unisexual 1 -flowered spikelets), with or without 1 or 2 male or barren florets below it:
I. Glumes very minute or suppressed; palea 3-9-nerved; stamens usually 6 ; leaf-blades not transversely veined
15. Oryzeae
11. Glumes usually well developed, at least the upper, rarely minute or suppressed:
J. Spikelets with 3 florets, the lower 2 florets male or barren and the terminal hermaphrodite

14. Phalarideae

JJ. Spikelets with 1 or 2 florets:
K. Spikelets with 2 florets, the lower male or barren, the upper hermaphrodite:
L. Lower floret barren and without a palea; glumes up to half the length of the spikelet; rhachilla produced beyond the upper floret; spikelets disarticulating with part of the pedicel attached
16. Thysanolaenae

LL. Lower floret male or barren, usualy with a palea; upper glume as long as the spikelet; rhachilla disarticulating below the upper floret and not produced beyond it; glumes more or less persistent
KK. Spikelets with one floret:
M. Spikelets usually breaking up at maturity. the rhachilla disarticulating above the more or less persistent glumes, very rarely falling entire and then with firmly membranous, awned or 5-nerved lemmas:
N. Lemmas hyaline or membranous at maturity, rarely indurated and then laterally compressed, awnless or awned from low down on the back or from the entire or bifid tip:
O. Lemmas usually 3-5-nerved, frequently awned; glumes firmer and longer than the hyaline lemma or if shorter than the lemma, herbaceous-membranous and dull; grain usually with an adhering pericarp
11. Agrosteac

OO. Lemmas 1-3-nerved, awnless; glumes and lemma very similar in texture, hyaline or thinly membranous, shining; grain usually with a free pericarp
8. Sporoboleae

NN. Lemmas indurated and rigid at maturity, terete or dorsally compressed, with involutc or convolute margins, tightly enveloping the grain; with a terminal awn or sometimes awnless
12. Stipeac
MM. Spikelets falling entire at maturity, either singly or in clusters from the axis of slender spike-like panicles or racemes; lemma delicate, 1-3-nerved
13. Zoysieac

BB. Spikelets sessile or shortly pedicelled along one side of the rhachis of solitary, digitate or scattered spikes or spikelike racemes (with 1 fertile floret and 1-3-nerved lemmas), or on the opposite sides of the rhachis of solitary spikes or racemes:
P. Spikelets on opposite sides of the rhachis of solitary spikes
5. Hordcae
9. Chlorideae nuous rhachis of digitate spikes
Key to the tribes of Panicoideae.
A: Spikelets all hermaphrodite or with male or barren or hermaphroditc spikelets mixed in the same inflorescence and so arranged that a male or barren spikelet is near a hermaphrodite spikelet; if unisexual then the lemma of the fertile floret indurated:
B. Spikelets solitary or paired, more or less similar; glumes usually membranous, the lower usually smaller or sometimes suppressed; lower lemma mostly resembling the upper glume in texture; upper lemma papery to very tough and rigid, usually awnless
18. Paniceae

BB. Spikelets often paired, with one sessile and the other pedicelled, those of each pair similar or more or less dissimilar, rarely solitary and all alike; glumes as long as the spikelet and enclosing the florets, more or less rigid and firmer than the lemmas which are both hyaline or membranous; upper lemma usually awned
19. Andropogoneae

AA. Male and female spikelets in separate inflorescences or in different parts of the same inflorescence and of different appearance; lemmas hyaline or membranous and thinner than the glumes
20. Maydeae

The tribes Phalarideae and Festuceae are not represented in the present list but are included in the key because members of them may occur as introductions or be discovered.

I. BAMBUSEAE.

Key to the genera of Bambuseae.

A. Stamens 3, rarely 6:
B. Styles short:
C. Leaves more or less tessellate; shrubby; ultimate branches of the inflorescence without bracts at the base:
D. Style 1, bifid; culm-sheaths persistent

DD. Styles 2, free or connate at the base:
E. Glumes tessellate, smooth
3. Arundinaria

1. Sinobambusa

EE. Glumes not tessellate, with raised, longitudinal nerves
2. Chimonobambusa
CC. Leaves not tessellate; ultimate branches of the inflorescence with bracts at the base
(Thamnocalamus)
BB. Styles long
4. Phyllostachys

AA. Stamens 6, rarely more:
F. Pericarp thin, adnate to the grain, adhering to the hilum:
G. Filaments united below the middle in groups of 2 or 3 , one being free
9. Dendrochloa

GG. Filaments all free:
H. Spikelets many-flowered (rarely few-flowered); palea 2-keeled
5. Bambusa

HH. Spikelets few-flowered:
I. Paleas not keeled; spikelets 1, rarely 2
6. Klemochloa
II. Paleas (at least in the lower florets) keeled:
J. Paleas all strongly keeled
8. Gigantochloa.

JJ. Paleas of upper florets not or obscurely keeled, those of the lower florets 2-keeled:
K. Paleas of lower florets 2-dentate, teeth awned
7. Thrysostachys

KK. Paleas of lower florets not dentate
10. Oxytenanthera

FF. Pericarp crustaceous or fleshy, separable from the grain:
L. Paleas 2-keeled, not like the lemmas:
M. Spikelets more than 1 -flowered:
N. Spikelets with 2-5 central florets hermaphrodite:
O. Spikelets with 2-3 central florets female or hermaphrodite: pericarp crustaceous

11. Dendrocalamus

OO. Spikelets with 3-5 central florets hermaphrodite; lodicules 3 ; fruit globose
NN. Spikelets with 1 central fioret hermaphrodite, crowded in globose or obconical heads
16. Cephalostachyum

MM, Spikelets 1 -flowered, in long, narrow spikes
14. Schizostachyum

LL. Palea similar to the lemma:
P. Filaments connate into a tube
15. Neohouzeauu

PP. Filaments free:
Q. Fruit large, pyriform
17. Melocanna

QQ. Fruit small
12. Dinochloa

Alternative key to the genera of Bambuseae.
Fruit a berry or nut ; pericarp thick, fleshy or crustaceous:-
Stamens 6 or more:-
Paleas 2-keeled, at least in the lower florets; spikelets
1-many-flowered (Dendrocalaminae):-
Culms single, overhanging; transverse veins of leaves conspicuous
13. Pseudostachyum

Culms tufted ; transverse veins usually not conspicuous:Lodicules 0:Spikelets 2-6-flowered, in large globose heads
11. Dendrocalamus

```
    Lodicules 3, conspicuous:-
            Spikelets in long narrow spikes, 1-flowered
            Spikelets crowded in globose or obconical heads, 1 -flowered
Paleas keelless or resembling the lemmas or 0 ; spikelets mostly 1 -flowered (Melocaminae):-
Lodicules 0:-
Culms zig-zag, climbing; spikelets 1 -flowered, minute
Culms single, erect; spikelets in large panicles, 1-flowered and unisexual; fruit large, pyriform .
Fruit a true caryopsis or rarely with a thin, free pericarp:-
Paleas usually 2 -keeled; shrubby, usually tall with woody culms:-
Stamens 6; lower, and often the upper, florets imperfect (Bambusinae):-
Filaments free:-
Palea not keeled:-
Palea not aristate at the top ...................... 6. Klemochloa
Palea 2-aristate at the top .......................... 15. Neohouzeana
Palea keeled:-
Palea entire or slightly 2 -dentate, prominently
```



```
Palea deeply 2-dentate, teeth awned, the uppermost nearly entire, keels indistinct
5. Bambusa
7. Thrysostachys
Filaments connate:-
Filaments connate in groups of 2 or 3 below the middle
9. Dendrochloa
Filaments connate into a single tube:-
Spikelets many-flowered; paleas all prominently keeled
8. Gigantochloa
Spikelets few-flowered; palea of upper flower indistinctly or not at all keeled
10. Oxytenanthera
Stamens 3, rarely 6 and then with the lower florets perfect
(Arundinariinae):-
Style short:-
Leaves more or less tessellate; ultimate branches of the inflorescence without basal bracts:-
Styles 2:-
Glumes tessellate
1. Sinobambusa
Glumes not tessellate ................................
Style I
2. Chimonobambusa
Leaves not tessellate; ultimate branches of the inflorescence with basal bracts
3. Arundinaria
Style long
(Thamnocalamus)
4. Phyllostachys
```


1. SINOBAMBUSA Makino

Spikelets racemose, sub-phyllopodous; glumes tessellate, acute; stamens 3; styles 2 ; stigmas plumose.

Shrubby bamboos. Culm-sheaths deciduous, appendiculate; internodes very long; oral setae smooth, rigid.

1. Sinobambusa elegans (Kurz) Nakai, Jr. Arn. Arbor. VI (1925) 152. Arundinaria elegans Kurz, Jr. As. Soc. Beng. XLII (1873) 248 . F.B.I. VII, 378.

Hills of eastern Burma, extending from Tenasserim and the stunted forests of the Nattaung hills of Martaban at 5,000 to 7,500 feet elevation northwards into the Naga hills of Assam. Used for walls of huts.

2. CHIMONOBAMBUSA Makino

Spikelets racemose; glumes not tessellate but longitudinally nerved; nerves raised; stamens 3 ; styles 2 ; stigmas plumose.

Shrubby bamboos. Culm-sheaths almost inappendiculate ; oral setae smooth.

Key to the species of Chimonobambusa.

Inflorescence on leafy branches; leaves with transverse veinlets; glumes not mucronate.
C. gallatlyi.

Inflorescence on separate, leafiess culms; transverse veinlets absent; glumes shortly mucronate.
C. khasiana.

1. Chimonobambusa gallatlyi (Gamble) comb. nov. Arundinaria gallatlyi Gamble in Ann. Roy. Bot. Gard. Calc. VII (1896) 23 et Parkinson in Kew Bull. 1928, 47. F.B.I. VII, 384.

Densely tufted, $4 \frac{1}{2}-7 \frac{1}{2} \mathrm{~m}$. high. Culms cylindrical, $2-2 \frac{1}{2} \mathrm{~cm}$. diam., green, glabrous, hollow, the walls $2-3 \mathrm{~mm}$. thick; nodes $20-30 \mathrm{~cm}$. apart, thickened and furnished with a ring of blunt or decurved spines. Culm-sheaths papery, finely striate, $10-15 \mathrm{~cm}$. long, $3 \frac{1}{2}-5 \mathrm{~cm}$. wide at the base and $0.8-1.2 \mathrm{~cm}$. wide at the top; imperfect blade narrowly lanceolate, $3-5 \mathrm{~cm}$. long; ligule $1-2 \mathrm{~mm}$. wide. Leaves oblong-lanceolate, acuminate, pale green, $8-10 \mathrm{~cm}$. long, $1 \frac{1}{2}-2 \mathrm{~cm}$. broad, attenuate at the base into a short, 3 mm ., petiole; ending in a scabrous, setaceous point, smooth above, pale beneath, scabrous on one edge; main vein slender, shining, secondary veins 3 pairs, intermediate 5 or 6 , transverse veinlets numerous, fine, regular; leaf-sheaths striate, ending in a narrow callus and somewhat produced at the mouth w:hich is furnished with a few, usually 3, long, stiff bristles; ligule rather long, triangular, pubescent. Inflorescence much branched, forming lax, compound, terminal and axillary panicles; rhachis fine, wiry. Spikelets linear, 4-6 cm. long, slender, 5-7-flowered, terminal flower imperfect ; rhachilla compressed, 7 mm . long, thickened towards the top, ciliolate along the two lateral edges and furnished at the top with a ring of hairs which surround the terminal floret. Empty glumes 2, the lower 5 mm . long, oblong-lanceolate, acute, margins ciliate in the upper part, 3-nerved, the upper glume 7 mm . long, ovate-lanceolate, acute, margins ciliate in the upper part, 5 -nerved. Lemma ovate-lanceolate, subacute, $1 \cdot 1 \mathrm{~cm}$. long, about 9 -nerved, margins ciliate in the upper part; palea 1.2 cm . long, 2-keeled, obscurely 2-cleft, with a few minute hairs at the apex. Lodicules 3, a narrowly triangular one, 3 mm . long, at the base of the palea and 2 ovate-lanceolate ones barely 2 mm . long opposed, all long-ciliate. Stamens 3 ; filaments free; anthers 6 mm . long. Ovary glabrous, narrowly elliptic; style divided from the base into 2 plumose stismas. Caryopsis unknown.

Mulayit range, Amherst District. Gallatly's No. 276 is without flowers; Parkinson's No. 5126 from the same locality has flowers. Rogers' No. 335T from Maungpok, Nwalabo Ridge, 3,000 feet, Tavoy District, probably belongs here.

Examination of Parkinson's flowering specimens and his revised description in Kew Bull. make it clear that this plant must now be placed in Makino's genus Chimonobambusa in accordance with Nakai's revision of Arundinaria in Jr. Arn. Arbor. VI (1925). The 3 stamens, 2 free styles, completely non-tessellate, longitudi-nally-nerved glumes, non-appendiculate culm-sheaths and not abnormally long internodes agree with the characters of Chimonobambusa.
2. Chimonobambusa khasiana (Munro) Nakai, Jr. Arn. Arbor. VI (1925) 151. Arundinaria khasiana Munro. F.B.I. VII, 381.

Upper Chindwin (Mackenzie No. 5, 1915, flowering).
C. intermedia Nakai (Arundinaria intermedia Mumro) is recorded by Brandis (No. 376) without precise locality, but it appears to bc a very doubtful record for Burma and most probably represents a Sikkim plant wrongly labeled.
C. polystachya Nakai and C. griffithiana Nakai occur in the Khasi Hills and are likely to be found within the western frontier of Burma.

Thamnocalamus prainii E.-G. Camus (Arundinaria prainii Gamble) is found in the Naga Hills of Assam and may occur in the Chin Hills of Burma.

3. ARUNDINARIA Micheaux.

Key to the species of Arundinaria.
Culms thin, under 1.25 cm . diam.; leaves very thin; branchlets numerous, wiry, geniculate

Culms thicker, over 2.5 cm . diam.; a belt of straight, short

 spines below the nodesA. armata

1. Arundinaria kurzii Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 25. F.B.I. VII, 385.

Coasts of southern Burma.
2. Arundinaria armata Gamble, l.c. p. 130. F.B.I. VII, 385.

Mogok and Bhamo areas.
Shan-Mai-tut.
From an examination of both the Calcutta and Dehra Dun materials of Rogers No. 335T I consider it most likely to be Chimonobambusa gallatlyi and not A. armata.

4. PHYLLOSTACHYS Sieb. et Zucc.

Key to the species of Phyllostachys.
Leaves thick, spinulose-serrate on one edge; petiole 8 mm . long P. mannil
Leaves often in pairs:-
Transverse veins of the leaves forming squares and rectangles with the nerves
P. bawa

Transverse veins not forming distinct squares and rectangles with the nerves
P. sedan

1. Phyllostachys mannii Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 28. F.B.I. VII, 386.

Gamble states that he received specimens from Oliver from Bernardmyo, Mogok Subdivision, where it was said to be cultivated and the culms used for walking sticks. I have seen no specimens.

Shan-Mai-pang-puk; Sedlan.
Species dubia.
(a) Phyllostachys bawa E.-G. Camus, Les bambusees (1913) 66. Brandis, Ind. Trees (1911) 719 (4).

Hills north of Papun, Salween District; generally near streams.
Burmese-Bawa.
Karen-Mepwe.
(b) Phyllostachys sedan E.-G. Camus, l.c. Brandis, Ind. Trees (1911) 667 (3).

Hills east of Bhamo, 6,500 feet. Used for pipe stems.
Burmese-Sedan (?)
P. bambusoides Sieb. et Zucc. which is known from the Mishmi Hills, Yunnan and Shantung, is likely to bc found in the northern hills of Burma.

5. BAMBUSA Schreber.

Key to the species of Bambusa.
Culms with spines
B. arundinacea

Culms without spines:-
Spikelets cylindric:-
Arborescent:-
Imperfect blade of culm-sheath triangular from a broad base:-
Culm-sheath with large auricles:-
Palea ciliate on the keels:-
Spikelets long:-
Spikelets $2 \cdot 5-7 \cdot 5 \mathrm{~cm}$. long B. tulda
Spikelets up to 15 cm. long B. longispiculata
Spikelets short, up to 2.5 cm . long B. burmanica

Palea not ciliate on the keels; young culms white
scurfy

B. polymorpha

Culm-sheath with small auricles B. pallida
Imperfect blade of culm-sheath narrow and without auricles:-
Culms short
B. affinis
Culms long
B. copelandi
Shrubby
B. nana
Spikelets flattened:-
Culms yellow-striped . B. . vulgaris
Culms not striped:-
Fertile flower one only . B. griffithiana

Fertile flowers 3 or 4; anthers obtuse B. oliveriana
Fertile flowers 5 or 6:-
Anthers blunt or with one hair only at the tip B. binghami
Anthers acute or with 3 or more hairs at the tip B. kingiana
Fertile flowers about 10 ; lodicules $0 . .$. B. lineata
Species with flowers unknown.
Culms erect:-
Internodes much swollen in the lower half B. wamin
Internodes not or scarcely swollen in the lower half:-
Imperfect blade absent
B. villosula
Imperfect blade present:-
Culms with light brown, silky hairs matted at the nodes
B. sinthana
Culms without matted hairs at the nodes:-
Young culms densely white-silky
B. kyathaungtu
Young culms not as above; imperfect blade densely brown-hairy inside
B. thalaw-wa
Culms scandent; leaves shaggy at the tips
B. marginata

1. Bambusa arundinacea Willd., Sp. Pl. II (1799) 245. F.B.I. VII, 395. B. spinosa Roxb. (non Bl.)

Throughout the Pegu Yomas and extending into Tenasserim. This widelydistributed bamboo occurs in two distinct forms, a tall, handsome, large-culmed variety of moist valleys and an almost dwarf, thick-branched, thorny, small-culmed type of low hills and laterite ridges. The latter is commonest in Burma. Isolated clumps flower sporadically but as a rule it flowers gregariously over large areas at intervals of about 30 years.

Used for buildings, mats, etc. Makes good hedges when kept clipped. Tender shoots eaten and also used for poultices. Seeds edible. Sometimes called the Spiny Bamboo.

Burmese_Kyakat-wa; Nga-chat: Wa-chat.
Shan-Mai-sang-nam.
Karen-Wakyu.
Talaing-Dunhalè.
2. Bambusa tulda Roxb., Hort. Beng. (1814) 25. F.B.I. VII, 387.

Widely distributed from Victoria Point to north of Myitkyina, ascending to about 4,500 feet in the Shan hills. Common on flat land and along streams, often cultivated. Flowers gregariously but single culms may flower at any time. Used for a variety of purposes but liable to insect attack if not seasoned in water. Tender shoots eaten.

Burmese-Thaik-wa; Talagu-wa; Wa-pyu; Tabindaing-wa.
Shan-Mai-nawng: Mai-wang; Mai-wawng.
Karen-Wabuthu; Wa-ponwe; Wabgai.
3. Bambusa Iongispiculata Gamble, Brandis, Ind. Trees (1911) 668.

Tenasserim, Salween and Ruby Mines areas.
Burmese-Thaik-wa; Tabindaing-wa.
4. Bambusa burmanica Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 35. F.B.I. VII, 388.

From Mergui to Katha District; common. Similar to B. tulda but larger. Burmese-Thaik-wa; Thaik-wa-gyi; Wa-ya; Chat-wa; Tabindaing-anet; Hnee-wa. Karen-Wa-ther; Wa-keur.
5. Bambusa polymorpha Munro, Trans. Linn. Soc. XXVI (1868) 98. F.B.I. VII, 389.

Common in the mixed forests of Lower Burma and the Shan hills. Good for walls, floors, roofs, etc.

Burmese-Kyathaung-wa.
Shan-Mai-sa-lawn.
6. Bambusa pallida Munro, Trans. Linn. Soc. XXVI (1868) 97. F.B.I. VII, 389. B. critica Kurz in Jr. As. Soc. Beng. XLII (1873) 350. ? Dendrocalamus criticus Kurz in For. Fl. Bur. II (1878) 559.

From Bhamo southwards to the Pegu Yomas, generally in moist valleys. Apparently wild in the hills up to 5,000 or 6,000 feet and cultivated in the plains. Used for building and general purposes.

Burmese-Gya-wa.
Kachin-Madaukran (Mddau Hkrar); Maipyu.
7. Bambusa affinis Munro, Trans. Linn. Soc. XXVI (1868) 93. F.B.I. VII, 390.

Tavoy, Pegu, Sittang and Yunzalin valleys. It does not seem to have been collected in flower in Burma.

Burmese-Thaik-wa; Wabwe; Thishe; Wa-byauk.
Karen-Wa-buk.
8. Bambusa copelandi Gamble apud Brandis, Ind. Trees (1911) 671. Thrysostachys copelandi Gamble MS.

Said to be largely cultivated in the Northern Shan States.
Burmese-Wa-gyi.
9. Bambusa nana Roxb., Hort. Beng. (1814) 25. F.B.I. VII, 390.

The Chinese Bamboo. A native of China and Japan but often cultivated in Lower Burma. It makes good hedges when clipped and is so used in Rangoon and elsewhere. Young shoots edible.

Burmese-Pilan-pinan-wa.
10. Bambusa vulgaris Schrad., Wendl. Collect. PI. II (1810) 26. F.B.I. VII, 391.

An introduced species, cultivated and run wild in Lower Burma. Sometimes called 'Siamese Bamboo'. There is an ornamental yellow-striped variety, var. striata. Young shoots eaten.

Burmese-Wa-net; Shwe-wa.
11. Bambusa oliveriana Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 130. F.B.I. VII, 392.

Collected about 30 miles north of Mandalay, in the Ruby Mines area (Mogok) and Bhamo, 1,000 to $2,000 \mathrm{ft}$.

Burmese-Wa-pyu-san: Sinmidu.
In a manuscript note on a plant of Oliver's in Herb. Calcutta Debbarman points out that the description given by Gamble (l.c.) is erroneous in several particulars. The following amended description is based on Debbarman's note and a re-examination of the material in Herb. Calcutta.

Culms 12 to 15 m . long, 2.5 to 5 cm . diam.; internodes about 35 cm . long; branches many from the base upwards. Culm-sheaths thin, 20 to 25 cm . long, 10 to 12.5 cm . broad, attenuated upwards into a rounded top 5 to 7.5 cm . broad; glabrous on both sides or slightly hirsute on the back when young; imperfect blade triangular-lanceolate, cordate at the base, 10 to 20 cm . long, 5 to 7.5 cm . broad, scattered stiff brown hairs on both sides, auricles short, long-fringed, that on one side
rounded, about 2 to 8 mm . long, that on the other side decurrent, often 2.5 cm . long; ligule about 2 mm ., serrate. Leaves small, linear, thin, 10 to 18 cm . long, 1. to 1.6 cm . broad, ending above in a long needle-like twisted point, glabrous on both surfaces, edges minutely scabrous; main vein pale, secondary veins 4-5 pairs, faint, intermediate 7; leaf-sheaths glabrous, ending in an emarginate callus and produced at the edges to meet the rather long ligule. Inflorescence a much-branched panicle of one-sided spikes with distant bracteate clusters of spikelets; bracts glabrous, striate; spikelets flattened, 1.2 to 1.5 cm . long, glabrous; empty glumes 1 or 2 , ovate-lanceolate, veined; fertile flowers 3 or 4, distichous, separated by conspicuous rhachillae; terminal flower imperfect, on a long flattened rhachilla; lemma ovatelanceolate, 9-13 nerved, slightly hairy near the apex, tip bristly; palea rather shorter than the lemma, acute, 2 -keeled, upper portion including the keels somewhat hairy, 3 -nerved between as well as on either side of the keels. Lodicules 3, rounded or sub-truncate, long-fimbriate, many-nerved. Stamens long-exserted; anthers striped red and yellow at first, becoming purple; anther cells rounded, obtuse and approximate, one cell slightly longer than the other. Ovary trigonal, ovate, elongate, upper half hairy, somewhat decply furrowed on one side ; style inconspicuous or 0; stigmas 2, plumose. Caryopsis 8 mm . long, trigonal, furrowed, hairy near the apex.
12. Bambusa binghami Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 45. F.B.I. VII, 392.

Tenasserim, Nyaungdaungle Forest (Bingham 1891, flowering).
Burmese-Nga-chat-wa.
13. Bambusa kingiana Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 46. F.B.I. VII, 393.

Petsut and Naba, Katha District.
Burmese-Thaik-wabo.
14. Bambusa lineata Munro, in Trans. Linn. Soc. XXVI (1868) 118. F.B.I. VII, 393. B. rumphiana Kurz, in Jr. As. Soc. Beng. XXXIX (1870) 86.

Tenasserim coasts and the Andaman Islands. In marshy coast forests. Con-stant-fiowering.
15. Bambusa schizostachyoides Kurz ex Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1897) 48. F.B.I. VII, 393. Cephalostachyium schizostachyoides Kurz, in For. Fl. Bur. II (1878) 565. Melocanna (?) kurzii Munro, in Trans. Linn. Soc. XXVI (1868) 134.

Macpherson's Strait, South Andaman and probably Middle Andaman.
Rogers 577 ! from semi-indaing forest in Yonbin Reserve, Yamethin District, is from a juvenile plant and is a very doubtful record for this species.
16. Bambusa griffithiana Munro, in Trans, Linn. Soc. XXVI (1868) 99. F.B.I. VII, 394. Dendrocalamus griffithianus Kurz, in For. Fl. Bur. II (1878) 562.

Myitkyina District.
Burmese-Wa-myin. Kachin-Wa-ra.
17. Bambisa villosula Kurz, in For. Fl. Bur. II (1878) 553. F.B.I. VII, 396.
'On limestone hills. Attaran, Salween, Thoungyin, Yunzalin; not found in Pegu. Good for basket work' (Brandis 384 !).

Burmese-Talimdaing-wa; Karen-Wami.
18. Bambusa marginata Munro, in Trans. Linn. Soc. XXVI (1868) 114. F.B.I. VII, 396.

Dawna Range, Tenasserim, 5,000 feet.
This species may prove to be a Dinochloa; Brandis so named it on his sheet 371 !

The fringe on the upper margin of the leaves is very remarkable and characteristic.
Burmese-Wa-thabut. Karen-Wame.

Species dubia.

E.-G. Camus in Les Bambusées (1913) makes the following species based on imperfectly known plants described by Brandis in Indian Trees (1911).
(a) Bambusa kyathaungtu E.-G. Camus, 1.c., p. 116. Brandis l.c., p. 669 (8).

Forests of Bawben, Pegu District.
Burmese-Kyathaungtu-thaiktu.
(b) Bambusa wamin E.-G. Camus, l.c., p. 135. Brandis l.c., p. 685 (3).

Cultivated in gardens in the Northern Shan States. Said to have come from China or perhaps Siam. The internodes are much swollen in the lower part.
(c) Bambusa thalaw-wa E.-G. Camus, l.c., p. 135. Brandis, 1.c., p. 685 (4).

Cultivated in the Northern Shan States, 2,000 to 4,000 feet.
Burmese-Thalaw-wa.
(d) Bambusa sinthana E.-G. Camus, l.c., p. 135. Brandis 1.c., p. 685 (2).

Pyinyaung forests, Meik tila District. Along banks of streams and on low, moist ground.

Burmese-Sinthana.

6. KLEMACHLOA Parker.

Spikelets 1-2-flowered, flowers hermaphrodite. Glumes membranous or papery, many-nerved, slightly enlarged upwards, the two lower empty. Palea of upper flower of 2 -flowered spikelets or of single flower of 1 -flowered spikelets not keeled. Lodicules 3 or 2. Stamens 6; filaments frec. Ovary with pubescent apex ; style long, not divided ; stigma plumose. Caryopsis oblong, apex rostrate, hilum basilar, punctiform.

Arborescent, scandent bamboos. Spikelets separated into distinct groups on the elongated branches. Rhachilla of the upper flower not produced.

1. Klemachloa detinens Parker, in Ind. Forester LVIII (1932) 7.

Culms scandent, $20-30 \mathrm{~m}$. high ; internodes about 60 cm . long, glabrous, shining, mealy-white when young. Culm-sheaths narrow, about 15 cm . long, early deciduous. Leaves $20-30 \mathrm{~cm}$. long, $4-6 \mathrm{~cm}$. wide, oblong-lanceolate, base rounded, cuneate, apex acuminate, margins scabrid, glaucous below and slightly rough, smoother above; secondary nerves on both sides $9-10$, intermediate $7-8$; sheath glabrous, striate; Iigule $3-5 \mathrm{~mm}$. long, erect, truncate, glabrous. Panicles arising from the leafy stems, mostiy terminal, unbranched; rhachis pulverulent. Spikelets in congested heads of few spikelets each spaced along the flowering branches; spikelets $7-8 \mathrm{~mm}$. long. Empty glumes $4-6 \mathrm{~mm}$. long, papery, irregularly $9-15$-nerved. Lemma more acute and narrower than the empty glumes and 1 mm . longer. Palea 7 mm . long, oblong, subhyaline, subacute, 2 -nerved, sometimes apparently $5-8$-ncrved of which 2 are valid, back minutely puberulous. Lodicules $2-3$, apex ciliate. Anthers 4 mm . long, base sagittate, apex acute; filaments glabrous. Caryopsis 6 mm : long including the rostrum, 2 mm . diam., oblong; embryo about 1 mm . long.

Myinmolekat, Mergui District, 2,000-2,700 ft. (Parker 3130, 3132).

7. THRYSOSTACHYS Gamble

Key to the species of Thrysostachys.
Flowers large; culm-sheaths straight-truncate at top; leaves moderately large ... T. oliveri
Flowers small; culm-sheaths triangular-truncate at top and with pointed auricles; leaves small T. siamensis

1. Thrysostachys oliveri Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 58. F.B.I. VII, 397. Bor in Ind. For. Rec. (N.S.) Bot. II (1941) 221.

Katha and Bhamo Districts and Shan Hills.
Walls thin; seed eaten.
Burmese-Thanat-wa. Kachin-Mai-tong; Ura.
Shan-Mai-sa-lawn; Mai-he; Mai-pao.
2. Thrysostachys siamensis Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 59. F.B.I. VII, 397. Bambusa regia Thomson ex Munro (non Kurz) in Trans. Linn. Soc. XXVI (1868) 116. B. siamensis Kurz MS.
'Cultivated in the drier parts of Burma, particularly in monastery compounds.' Recorded from Kyaukse and Meiktila Districts in the north and from Salween and Tenasserim in the south.

Used for umbrella handies.
Burmesc-Tiyo-wa; Ti-wa; Kyaung-wa.
Shan-Mai-fiyo.

8. GIGANTOCHLOA Kurz

Key to the species of Gigantochloa.
Spikelets rounded, oblong:-
Spikelets small, under 1 cm. , glabrous G. verticillata Spikelets narrow, acute, cylindrical:-

Spikelets very long ($2.5-5 \mathrm{~cm}$.); edges of the glumes blackciliate
G. macrostachya

Spikelets up to 1.25 cm . long; edges of glumes pale-ciliate. . G. apus

Spikelets distinctly flattened:-
Spikelets up to 2.5 cm . long; ligule of leaves $1-2 \mathrm{~mm}$. long, fringed with white bristles
G. compressa

Species dubia. Not in the key.

1. Gigantochloa verticillata Munro, in Trans. Linn. Soc. XXVI (1868) 124. F.B.I. VII, 398. G. maxima Kurz, in Tijdschr. Nederl. Ind. XXVII (1864) 266. Bambusa verticillata Willd., in Sp. Pl. II (1797) 245. B. pseudarundinacea Steud., Syn. 330.

There appears to be only one collection of this plant from Burma, a flowerless specimen of McHarg's from Tenasserim. It occurs in Malaya. Culms strong; used for buildings ; young shoots edible.

Burmese-Wa-pyu.
2. Gigantochloa macrostachya Kurz, For. F1. Bur. II (1878) 557. F.B.I. VII, 399.

From Tenasserim northwards to Arakan and the Kachin Hills of Bhamo District, the Upper Chindwin and the Lushai Hills. Walls thin; used for matting and basketwork. Culm-sheath hairs irritating.

Burmese-Wa-net; Thaikthada-wa; Wapyu-gyi; Tabindaing-wa; Wa-de; Wabyauk; Wa-pyu; Wa-byaw (Tavoy).

Shan-Mai-pok-lam; Mai-hok-lam.
Karen-Wa-me; Wa-ma; Wa-kle-ma.
3. Gigantochloa apus Kurz ex Munro, Trans. Linn. Soc. XXVI (1868) 126. G. kurzii Gamble. F.B.I. VII, 399.

Extends from Malaya up the Tenasserim coast into Chittagong. Used for basket work.

Burmese-Ko-wa.
Karen-Wa-tho; Wa-do; Wa-po-do.
4. Gigantochloa compressa Parker, in Ind. Forester LIV (1928) 98.

A large loosely tufted plant. Culms $12-18 \mathrm{~m}$. long, 10 cm . diam., grey-powdery when young, afterwards green; internodes about 60 cm . long, walls about 8 mm . thick. Culm-sheath about half the length of the internode, persistent, covered with black hairs when young, apex rounded with inconspicuous auricles on either side, imperfect blade small, lanceolate, reflexed; ligule the full width of the sheath, fringed with long, white bristles. Leaves $20-45$ by $3 \cdot 5 \cdot 7 \cdot 5 \mathrm{~cm}$., glabrous above but somewhat scabrid towards the lower edge, glaucous and slightly pubescent beneath especially towards the base and along the stout yellow midrib, margins scabrid, apex narrowed into a long, twisted, scabrid point; secondary nerves 7-14 pairs, intermediate veins 7; petiole $3-5 \mathrm{~mm}$. long, pubescent; sheath striate, grey-pubescent when young and sometimes also clothed with black bristles, callus pubescent, 2 very small marginal naked calli; ligule $1-2 \mathrm{~mm}$. long, fringed with white bristles.

Inforescence a leafless or sometimes leafy panicle. Spikelets arranged in discrete half-whorls of 2-3 fertile and several sterile spikelets in the axils of ovate or lanceolate bracts; rhachis densely grey-pubescent. Fertile spikelets $20-25 \mathrm{~mm}$. long, $5-6 \mathrm{~mm}$. broad, distinctly flattened or compressed consisting of 3-4 broadly ovate, mucronate, many-nerved empty glumes which are obscurely brown-hoary and conspicuously black-ciliate, followed by $2-4$ fertile glumes similar to the empty but larger, $15-20 \mathrm{~mm}$. long and more distinctly mucronate, these followed by a glume containing an empty palea and sometimes an empty convolute glume. Palea $15-18 \mathrm{~mm}$. long, strongly keeled and ciliate on the keels, tip rounded or minutely bifid, 5-6-nerved between the keels. Lodicules 0 . Stamens $6-7$; filaments united into a tube as long as the palea; anthers yellow or pinkish-purple, $9-13 \mathrm{~mm}$. long, connective produced into a hairy point about 1 mm . long. Ovary narrowly cylindric, glabrous except at the top; style long, slender, hairy; stigmas 3 , very slender, hairy.

Nagawan Reserve, Mergui District. Common on low hills; also on the Yangwa klong (Parker).

Siamese-Maipai-kai-hdam.

Species dubia.

E.-G. Camus in Les Bambusées (1913, pp. 140-141) makes the following species to accommodate the eight plants whose flowers are unknown and which Brandis lists on pages 672-3 of his Indian Trees (1911). Gamble includes $(d),(f)$ and (g) under G. macrostachya.
(a) Gigantochloa mogaungensis E.-G. Camus, 1.c. Brandis 1.c. No. (c). Mogaung forests, Myitkyina District.
(b) Gigantochloa wunthoensis E.-G. Camus, 1.c. Brandis 1.c. No. (d). Wuntho, Katha District, 500 ft .
(c) Gigantochloa kathaensis E.-G. Camus, l.c. Brandis l.c. No. (e).

Hills east of Katha, 2,000 ft.
(d) Gigantochloa wanet E.-G. Camus, 1.c. Brandis l.c. No. (f). Shwegu, Upper Burma.
(e) Gigantochloa kachinensis E.-G. Camus, 1.c. Brandis l.c. No. (g).

Kachin Hills, Bhamo District, $1,500 \mathrm{ft}$., in moist forest.
(f) Gigantochloa toungooensis E.-G. Camus, 1.c. Brandis 1.c. No. (a).

Karen Hills east of Toungoo.
(g) Gigantochloa yunzalinensis E.-G. Camus, 1.c. Brandis 1.c. No. (b).

Hills on the headwaters of the Maitharauk river, ascending to the crest of the Bithoko range; also in the Sinzway forest of the Yunzalin valley (Brandis).

9. DENDROCHLOA Parkinson

Spikelets 5-7-flowered; rhachilla articulate-pedicellate between the lemmas; flowers hermaphrodite; lower glumes sterile, rigid, mucronate. Lemma rigid, strongly convolute, many-nerved, aristo-mucronate. Palea as long as the lemma or longer, 2 -keeled, apex obscurely bidentate. Lodicules 3 , large, subequal, margins ciliolate. Stamens 6, one free, the rest with filaments of 2 or 3 united below the middle. Ovary attenuated into the elongated style; style apex obscurelv 3-fid. Caryopsis large, elliptic-cylindric, crowned by the persistent style, enclosed in the lemma and palea. Pericarp adnate to the seed.

Tall arborescent grasses, culms laxly caespitose, internodes very long. Leaves large, transverse veinlets not markedly conspicuous. Flowers borne on leafy culms in terminal panicles at the nodes of the branches.

Species 1 ; indigenous in Burma.

1. Dendrochloa distans Parkinson, in Ind. Forester LIX (1933) 707.

Culms arborescent, erect, $15-20 \mathrm{~m}$. high, up to 11 cm . diam., naked below; internodes $1 \cdot 2-1 \cdot 5 \mathrm{~m}$. long or more, walls 5 mm . thick. Culm-sheaths large, base 24-30 cm . wide, $35-40 \mathrm{~cm}$. long, outside with adpressed pale hairs, inside glabrous, shining; imperfect blade $35-40 \mathrm{~cm}$. long, base dilated to $5-10 \mathrm{~cm}$. wide, abruptly attenuated above the base, apex gradually long-acuminate; ligule irregular. Leaves large, 30-50 cm . long, 5-6 cm. wide, linear-lanceolate, apex long-acuminate, base sub-rounded or slightly attenuated into the 1 cm . long petiole, glabrous above, pale and adpressedpubescent below or at length glabrous, margins scabrid; secondary nerves about 15-16, not at all conspicuous, transverse veinlets inconspicuous and somewhat distant; sheath adpressed-hairy, later glabrous, mouth not fimbriate; ligule erect and conspicuous, obtuse, $3-7 \mathrm{~mm}$. long. Panicles terminal, up to 75 cm . long, base leafy. Spikelets in verticells at the nodes at intervals of $5-6 \mathrm{~cm}$., internodes short-hairy; lower glumes empty, $3-10 \mathrm{~mm}$. long. Flowers $5-7$, rhachilla 2 cm . long between the lemmas, slightly dilated upwards and dorsally compressed. Lemma $2-2 \cdot 4 \mathrm{~cm}$. long, 1 cm . broad, rigid, strongly convolute, margin ciliate above the middle, then glabrate. Palea 2.6 cm . long, 1.1 cm . broad, convolute, $2-\mathrm{kee}$ led, ciliate towards the apex, 6 -nerved between the keels and between the keels and the margins up to 5 -nerved. Lodicules $1-1.2 \mathrm{~cm}$. long, narrowly obovate-oblong, hyaline, inconspicuously nerved. Anthers 1.4 cm . long, apex obtuse; filaments 2.6 cm . long. Ovary glabrous; style $3-3.5 \mathrm{~cm}$. long. Caryopsis 2 cm . long, 6 mm . diam.

Forests near Theindaw and Tharabin on the Big Tenasserim river, Mergui District and near Tenasserim town. Used for rafts and mats.

Burmese-Tamyin-wa; Kamyin-wa.
Notable for the very long internodes which sometimes reach nearly 6 feet and for the large leaves.

10. OXYTENANTHERA Munro

Key to the species of Oxytenanthera.
Heads usually few-flowered:-
Edges of glumes ciliate:-

Cilia of glumes white:-
Spikelets $15-17 \mathrm{~mm}$. long O. hosseusii
Spikelets 20 mm . long or more O. albociliata
Edges of glumes not ciliate ..
Heads many-flowered:-
Spikelets 1-flowered o. thwaitesii
Spikelets 2-flowered …...

1. Oxytenanthera nigrociliata Munro, Trans. Linn .Soc. XXVI (1868) 128. Gigantochloa andamanica Kurz. G. auriculata Kurz. Oxytenanthera auriculata Prain. Bambusa auriculata Kurz.

The common bamboo of Tenasserim, the Andaman Islands and southwards to Malaya. Used for house-building and basket work.

Burmese-Wa-nwe; Wa-ya; Wa-byauk; Talagu-wa; Wa-pyu-gyi; Wa-gok; Wathaik; Nat-wa.

Karen-Wamay; Wa-ba; Wa-kle-ma.
28

2. Oxytenanthera hosseusii Pilger, Fedde, Rep. Sp. Nov. III (1906)

 116.Leafy branches bearing sheaths to the base. Leaves papery, broadly lanceolate, attenuate at the base into a short petiole, gradually acuminate at the tip into a very sharp point furnished with several hairs, edges scabrid, slightly puberulent-hirsute beneath, about $13-17 \mathrm{~cm}$. long, $22-25 \mathrm{~mm}$. wide; secondary nerves indistinct, nontessellate; sheaths setose, auricles very short, rounded; ligule rounded, not fimbriate. Inflorescence a large panicle, heads of flowers on slender, leafless branchlets or leafy below the flowers, heads of $6-12$ flowers each, the fertile spikelets intermixed with short, sterile ones, furnished at the base with short, shining bracts. Spikelets slender, subulate, $15-17 \mathrm{~mm}$. long. Glumes 2 , oval or broadly oval, obtuse or shortly apiculate, edges densely clothed with white cilia; lower flower male, upper hermaphrodite. Lemma narrowly elliptic, finely mucronate, rigid, striate, rounded, involute, edges in the upper part long white-ciliate, $12-14 \mathrm{~mm}$. long. Palea $10-12 \mathrm{~mm}$. long, narrow, linear, hyaline, membranous, obtuse, 2-keeled, tip slightly hirsute. Stamens 6; filaments united in a tube; anthers with a small setulose mucro at the tips. Lemma of the upper flower lanceolate, rigid, shortly pointed, bearing several hairs, about $14-15 \mathrm{~mm}$. long, rather narrower than that of the lower flower, scarcely keeled, many-nerved, involute. Rest unknown.

Amherst (Soe Min 436!). Closely resembles O. albociliata but differs in the setose leaf-sheaths and hairy leaves, the less acute glumes and the shorter and broader bracts. Fairly frequent-flowering.

Burmese-Hmyin.
3. Oxytenanthera albociliata Munro, Trans. Linn. Soc. XXVI (1868) 129. F.B.I. VII, 401. Gigantochloa albociliata Kurz.

Mainly from about Pyinmana southwards to south Tenasserim. Of very little value.

Burmese-Nganat-shaw; Mene; Kanat-shaw; Wa-ya; Wa-pyu; Wa-nwe; Wa-pyu-gale; Wa-pyu-gyi; Wa-gok; Wa-gauk.

Karen-Wa-kle.
Shan-Mai-lai.
4. Oxytenanthera parvifolia Brandis ex Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 72. F.B.I. VII, 402.

Yunzalin valley (Brandis) and Wazunchoung, Tavoy District (Rogers).
5. Oxytenanthera thwaitesii Munro, Trans. Linn. Soc. XXVI (1868) 129. F.B.I. VII, 402.

Roger's No. 322T! from near the top (3,000. ft.) of Naungpo Nwalabo ridge, Tavoy District, seems to be the only collection of this plant from Burma though his No. 385 from Kaleinaung Reserve, Tavoy District, may belong here too.

Burmese-Kyaungwa-ame.
6. Oxytenanthera lacei Gamble, in Kew Bull. 1910, 385.

Culms erect, green or green-glaucescent, fistular, laxly fasciculate at the base, leaf-bearing branches hard, the last not fistular, flowering branches fistular or solid, terete. Culm-sheaths $20-30 \mathrm{~cm}$. long, $15-20 \mathrm{~cm}$. broad, at the base $4.4-6 \mathrm{~cm}$. broad, straw-coloured at the apex, conspicuously striate, densely covered on the back in the upper part with blackish spinules; blade subulate-lanceolate, reflexed, $10-30 \mathrm{~cm}$. long, slightly contracted at the base and there provided with 2 short, plicate, fimbriate auricles; ligule about 5 mm . long, long-fimbriate. Leaves thin, pale, on slender, geniculate, fasciculate branches which are arranged alternately on branches arising from the sides of the nodes; sheaths straw-coloured, striate, white-spinulate on the back; auricles long, sparingly long-fimbriate, deciduous; leaf-blade $10-20 \mathrm{~cm}$. long, $1-2 \mathrm{~cm}$. broad, very scabrous above, pubescent beneath, margins scabrous, apex very acuminate, base subcordate, nerves 5 pairs, conspicuous beneath; ligule short, dentate, membranous.

Inflorescence on separate flower-bearing culms; flowers in glomeruli at the nodes of branches $20-40 \mathrm{~cm}$. long which are alternately fascicled at the nodes; glomeruli about 2 cm . diam., bearing 10-12 fertile spikelets with many smaller sterile ones and paleaceous bracts. Spikelets $5-7 \mathrm{~mm}$. long, quite glabrous, supported at the base by $1-3$ small bracts; empty glumes 2-3, ovate, mucronate, lower 3 mm . long, upper
$4-5 \mathrm{~mm}$. ; fertile flowers 2. Lemma ovate, long-mucronate, of the lower flower 6 mm . long, of the upper 8 mm . Palea of the lower flower 2-keeled, keels ciliate, marginate at the apex, 5-nerved, of the upper flower convolute, glabrous, apiculate. Stamens purple, the younger ones subsessile, free, the older ones united into a long-exserted tube; anthers linear, mucronate at the apex. Ovary ovate-lanceolate, attenuate into a slender, pubescent style. Caryopsis unknown.

Hlaingbwe Reserve and Melaung, Thaton District (Lace). Tavoy (Parker).
Closely resembles Dendrocalamus membranaceus, the monodelphous stamens being the only distinction.

11. DENDROCALAMUS Nees

Key to the species of Dendrocalamus.
Spikelets in spinous, congested, spicate heads; leaves usually narrow:-
Caryopsis rounded:-
Spikelets hirsute
D. strictus
Spikelets almost glabrous
D. strictus
var. prainiana
Caryopsis elongate; spikelets usually glabrous
D. membranaceus

Spikëlets in large, soft, congested heads; leaves usually broad:-
Spikelets acute; culm-sheaths very hairy:-
Heads large, 3.25 cm . broad, dark coloured; leaf- and culm-
sheaths conspicuously fringed
(D. sikkimensis)

Heads not exceeding 2.5 cm . broad, pale; leaf-sheaths naked; culm-sheaths little fringed
D. hookeri

Spikelets blunt; culm-sheaths glabrous or nearly so; not fringed:-
Ligule of culm-sheath smooth, entire
D. hamiltonii

Ligule of culm-sheath hairy, serrate
D. messeri

Spikelets few, in small heads, many sterile:-
Spikelets long:-
Spikelets reddish, ovate-oblong, flattened
D. latiflorus

Spikelets not reddish:-
Culm-sheaths broad, nearly glabrous; ligule long; palea bifid
D. giganteus

Culm-sheaths hirsute; ligule short; palea acute D. calostachyus

Spikelets short:-
Spikelets blunt; culm-sheaths elongate, thin D. longispathus
Spikelets ovate:-
Heads moderately large, many-flowered D. brandisii
Heads small, few-flowered:-
Leaves without fringed auricles D. flagellifer
Leaves with long-fringed auricles D. longifimbriatus
Spikelets large, white, in soft, loose heads
D. collettianus
(Species dubia not in the key.)

1. Dendrocalamus strictus Nees, Linnaea IX (1834) 476. F.B.I. VII, 404.

The Male Bamboo. The principal bamboo of the drier parts of Burma and spreading into the higher-rainfall areas where rocky slopes provide suitable habitats; ascending to about 3,000 feet. Used for buildings, mats, furniture, baskets, binding materials, for making special gold-beaters paper, etc. Flowers gregariously over large areas and also sporadically every year. Flowers November to April; seed ripe in June. The culms are typically solid or nearly so but in moist situations they are often hollow. In dry places it is deciduous but not in moist places.

Prain's specimen from Great Cocos Island (Var. prainiana Gamble) has almost glabrous glumes.

Burmese-Myin-wa; Hmyin-net; Hmyin-pyu; Hmyin-ba.
Karen-Wa-milur; Wa-me-pree.
Shan-Mai-hpyit; Mai-sang.
2. Dendrocalamus membranaceus Munro, Trans. Linn. Soc. XXVI (1868) 149. F.B.I. VII, 404.

Throughout Burma and the Kachin Hills up to about 3,000 feet. Flowers gregariously over large areas and also sporadically. Very boyant.

Burmese-Wa-pyu; Wa-pyin; Kya-lok-wa; Hmin-byu; Hmyin-san; Wa-hpit; Hmyin-wagyi; Myinwa-apyu; Myin-wa; Nga-byin (Tavoy).

Karen-Wa-mu; Wa-wee.
Shan-Mai-lai-law; Mai-sang.
Kachin-Ugat; Wagat.
3. Dendrocalamus hookeri Munro, in Trans. Linn. Soc. XXVI (1868) 151. F.B.I. VII, 405.

Bhamo District, in moist forests, 800 ft .
Kachin-Kawa-ule.
Burmese-Wabo-e.
4. Dendrocalamus hamiltonii Nees et Arn. apud Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 84. F.B.I. VII, 405. Bambusa monogyna Griffith, Notulae 63, Icon. 2.

Widespread all over the northern parts of Burma, ascending to 5,000 feet. Oliver says 'common along banks of streams in evergreen and moist forests' in Katha and Bhamo. Young shoots eaten. The inner layer of the culm-sheaths is used as a cheroot wrapper. Flowers sporadically and also gregariously.

Burmese-Wabo-myet sangye; Wabo-nwe. Shan-Mai-hok.
Kachin-Uga-kawa; Uhpaw; Wahpaw.
It is not clear why C. E. C. Fischer (Kew Bull. 1932, 106) should disregard the early records of this common plant from Burma prior to Su Koe's No. E37 from Wasaung, Myitkyina District. There are numerous sheets in Herb. Calc. from the same area by early collectors such as Oliver!, Abdul Huk 220!, Cubitt 551 !, Rogers 172!, Toppin 3220!, etc.
5. Dendrocalamus giganteus Munro, in Trans. Linn. Soc. XXVI (1868) 150. F.B.I. VII, 406.

From the Upper Chindwin through the Shan Hills to Moulmein, but uncommon outside cultivation. Probably the largest of the Gramineae, the culms reaching 120 feet in height and 10 inches in diameter. Used for general building purposes, water pots, etc.

Burmese-Wa-bo; Wabo-myetsange.
Talaing-Dunkaloik.
6. Dendrocalamus calostachyus Kurz, in For. Fl. Bur. II (1878) 562. F.B.I. VII, 407. Bambusa calostachya Kurz in Jr. As. Soc. Beng. XLII (1873) 249.

Bhamo and the Shan Hills, often cultivated. Used for small buildings and domestic purposes.

Burmese-Wabo. Kachin-Wara or Ura.
7. Dendrocalamus messerii Blatter, in Ind. Forester LV (1929) 595. Wabo-e, Brandis in Indian Trees (1911) 677 (4).

Tufted. Culms $24-30 \mathrm{~m}$. high; internodes $30-53 \mathrm{~cm}$. long, 12.7 cm . diam., walls $18-25 \mathrm{~mm}$. thick; branches all the way up, near the base thickly set and sometimes 6 m . long; conspicuous rings of arrested rootlets for $2 \cdot 4-3 \mathrm{~m}$. from the ground; buds of undeveloped branches smaller and less prominent than in D. hamiltonii. Culm-sheaths 45 cm . long; ligule 12 mm . broad, hairy; imperfect blade as long as the sheath, hairy. Leaves $20-23$ by 2.5 cm ., nerves 36 on $\frac{1}{4}$ inch. Branches of inflorescence very hollow, up to 8 mm . diam. Flower-heads dense, nearly globosc. Spikelets 18 mm . long, numerous. Glumes glabrous, edges minutely ciliate, the 2 lowest empty. Flowers $8-10$, of which the lowest is usually male. Ovary broad, entirely hairy.

In cool valleys and on the high evergreen Kachin Hills in the Katha District. (Messer.)

Burmese-Wabo-e.
8. Dendrocalamus longispathus Kurz, in For. Fl. Bur. II (1878) 561. F.B.I. VII, 407.

From Arakan southwards to Tenasserim. The hairs on the sheaths are irritating. Flowers gregariously and also often sporadically.

Burmese-Wa-ya; Wa-net; Tabindaing-wa; Talagu-wa.
9. Dendrocalamus brandisii Kurz, For. Fl. Bur. Il (1878) 560. Bambusa brandisii Munro. F.B.I. VII, 407.

From the Kachin Hills southwards to Tavoy; in wet evergreen forests.
Flowers gregariously. Used for water pots, boat masts, etc.
Burmese-Wabo; Wa-pyu; Thaik-wabo; Kyalo-wa; Wa-pyin; Wa-payaung; Taung-wabo; Wa-net.

Karen-Waklu.
Shan-Mai-puk.
10. Dendrocalamus flagellifer Munro, Trans. Linn. Soc. XXVI (1868) 150. F.B.I. VII, 408. D. asper Backer.

Mulayit, Tenasserim, 2,000 feet (Beddome). Culms strong; young shoots eaten.
11. Dendrocalamus longifimbriatus Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 92. F.B.I. VII, 408.

Tavoy and Mergui. The long-fringed auricles are most characteristic.
Burmese-Myin-wa; Wa-myin; Wa-pyaw; Kyauk-wa-ame.
12. Denúrocalamus collettianus Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 93. F.B.I. VlI, 408.

Fort Stedman, Bhamo District.
13. Dendrocalamus latiflorus Munro, Trans, Linn. Soc. XXVI (1868) 152. F.B.I. VII, 407. Bambusa verticillata Benth. B. latiflora Kurz.

Throughout the Shan States, apparently cultivated. A native of China and Formosa.

Burmese-Wa-ni; Wa-bo.
Kachin-Ura or Wara.
Shan-Mai-kao-quai.

Species dubia.

(a) Dendrocalamus wabo E.-G. Camus, Les Bambusées (1913) 154. Brandis, Ind. Trees (1911) 679 (16).

Cultivated in the Southern Shan States, 1,500-2,000 feet.
Burmese-Wabo.
D. sikkimensis Gamble is common in the Naga Hills of Assam and may be found in Burma. D. nudus Pilger (Fedde, Rep. Nov. Sp. III (1906) 117) has been reported as common at Chiengmai (Siam) and is to be expected in the eastern part of the Shan States. It closely resembles D. brandisii Kurz but differs in the naked flowering branches.

12. DINOCHLOA Büse

Key to the species of Dinochloa.
Culms scandent, often trailing, sometimes up to 300 feet
long; joints generally zig-zag:-
Culm-sheaths brittle, hard, pubescence white
D. compactiftora

Culm-sheaths leathery:-
Pubescence golden-brown
D. m'clellandi

Pubescence fugacious, minute, white
D. andamanica

1. Dinochloa compactiflora (Kurz) McClure, Kew Bull. 1936, 251. Pseudostachyum compactiflorum Kurz, Jr. As. Soc. Beng. XLII (1873) 252. Melocalamus compactiflorus Benth., Jr. Linn. Soc. Bot. XIX (1881) 134. F.B.I. VI, 409. Pseudostachyum glomeriflorum Kurz MS.

From Mergui northwards to Myitkyina, usually at over 3,000 feet. An overhanging and trailing bamboo growing in dense, tangled thickets. Culms solid but flexible. Used for basket work, plaited shoes and for the basis of Burmese lacquerware. Seed large, edible, mealy like a chestnut.

Burmese-Wa-nwe; Wa-nwe-kok.
Karen-Kale-o.
Kachin-Usawi.
2. Dinochloa m'clellandi Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 113. D. Maclellandii Kurz, Jr. As. Soc. Beng. XLII (1873) 249. Bambusa M'Clellandi Murro, Trans. Linn. Soc. XXVI (1868) 114.

Pegu and Martaban Hills.
Burmese-Wa-nwe; Sinninwa; Wa-thabut.
3. Dinochloa andamanica Kurz, Jr. As. Soc. Beng. XLII (1873) 253. D. tjangkorreh Büse var. andamanica Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 112. F.B.I. VII, 415.

Andaman and Nicobar Islands. A widespread coastal species forming dense tangled masses.

Burmese-Wa-nwe.

13. PSEUDOSTACHYUM Munro

Key to the species of Pseudostachyum.
Culms single from a creeping rhizome P. polymorphum
Culms tufted
P. wakha

1. Pseudostachyum polymorphum Munro, Trans. Linn. Soc. XXVI (1868) 142. F.B.I. VII, 409.

Khamti Long, Kachin Hills, Myitkyina and Bhamo Districts, ascending to about 3,000 feet. Used for basket work, mats and for binding materials.

Burmese-Bawa; Pauk-wa.
Kachin-Katau.

Species dubia.

(a) Pseudostachyum wakha E.-G. Camus, Les Bambusées (1913) 162. Brandis in Ind. Trees (1911) 685 as Ochlandra sp.

Hmangintaung, 2,500 feet, in an abandoned taungya.

14. SCHIZOSTACHYUM Munro

1. Schizostachyum rogersii Brandis, Ind. Trees (1911) 679.

Andaman Islands. The Andamanese make arrows from it.
Several other species of Schizostachyum are recorded from Malaya and it is likely that some of them, at least, will be found in southern Burma.

15. NEOHOUZEAUA A. Camus

Inflorescence an elongated panicle. Fertile spikelets 1 -flowered; glumes 3-4, mucronate, often gemmiparous; lemma involute, mucronous, sub-aristate; palea elongate, involute, without keels, 2 -aristate at the top; lodicules 0 or very small. Stamens 6, filaments connate; anthers obtuse at the apex. Ovary oblong; style long; stigmas 3, exserted.

Medium-sized bamboos with culms growing in. large tufts, often somewhat scandent, unarmed.

Key to the species of Neohouzeaua (after Blatter).

Anthers 9-10 mm. long:-	
Culms $6-9 \mathrm{~m}$. high, about $2 \cdot 5-7.5 \mathrm{~cm}$. diam.	N. dullooa
Culms $3-4.5 \mathrm{~m}$. high, about 1.5 cm . diam.	N. tavoyana
Anthers 12-18 mm. long	N. helferi
Anthers 4 mm . long	N. stricta

1. Neolouzeaua dullooa A. Camus, in Bull. Mus. Paris (1922) 100. Teinostachyum dullooa Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 101. F.B.I. VII (1897) 411.

Katha District and the Northern Shan States and southwards to Tavoy and Mergui. Occurs in two forms, a large and a small, which may be distinct species. Used for buildings, basket work, etc.

Burmese-Wazun; Wa-byauk; Gya-wa; Thaik-wabo.

Kachin-Lăhkra.

2. Neohouzeaua tavoyana Gamble, in Kew Bull. 1923, 92.

Culms erect, $3-4.5 \mathrm{~m}$. high, about 1.5 cm . diam., solid near the base. Culm-sheaths unknown. Leaves oblong, long setaceous-acuminate at the apex, subobtuse at the base, glabrous, $25-35 \mathrm{~cm}$. long, $3-6 \mathrm{~cm}$. broad, primary nerves $6-10$ pairs; petiole stout, 1 cm . long; sheath glabrous, terete, produced below the petiole and provided at the lower side with a triangular, horned callus; ligule $3-4 \mathrm{~mm}$. long, lacerate at the apex. Spikelets 2 together in heads aggregated at the nodes of the terminal panicle; lower heads subglobose, with many spikelets $2-3 \mathrm{~cm}$. diam., the upper ones gradually smaller, the uppermost bearing 1-2 spikelets or none at all; spikelets 1 -flowered, 2-2.5 cm . long, supported at the base by many bracts and provided at the base with $2-3$ empty mucronate glumes. Lemma ovate-oblong, rather long-aristate at the apex, subglabrous on the back or slightly hirsute, $1-1 \cdot 2 \mathrm{~cm}$. long, minutely ciliate-glabrous on the margins; palea very narrow, much convolute, biaristate at the apex, $2-2.5 \mathrm{~cm}$. long. Stamens 6, monodelphous; anther slender, about 10 mm . long, subobtuse at the apex. Lodicules none or 2 very short. Ovary very long; stigmas red. Caryopsis unknown.

Sinyat hill, Tavoy, 2,000 ft. (Rogers 361 T).
3. Neohouzeaua helferi Gamble, in Kew Bull. 1923, 91. Teinostachyum helferi Gamble, in Ann. Roy. Bot. Gard. Calc. VII (1896) 102. F.B.I. VII (1897) 411. Bambusa helferi Munro, in Trans. Linn. Soc. XXVI (1868) 114. Pseudostachyum helferi Kurz, in For. Fl. Bur. II (1878) 568.

The following are the additions made by Gamble in Kew Bull. to his original description in The Bambuseae of British India:-

Heads of spikelets often large, even up to 5 cm . diam., though usually less. Spikelets usually 2 together, slender, prominently bracteate at the base; empty glumes usually 2 , small, 5 and 8 mm . long, mucronate, the margins slightly strigosely hirsute; flowering glume ovate-lanceolate, long-mucronate, strigosely hirsute, $12-25 \mathrm{~mm}$. long, many-nerved; palea convolute, glabrous except at the tip, 3-4 mm. long, biaristate, the base sometimes with a free terminal rhachilla. Stamens 6, monodelphous, the anthers $\mathbf{1 2 - 1 8} \mathrm{mm}$. long, obtuse at the apex, at length exserted. Ovary oblong, elongate, glabrous; stigmas 3 , short, red. Pericarp of caryopsis leathery, oblong, including the beak over 5 cm . long.

Pegu Yomas and the Chin Hills, at elevations of 3,000 to 4,000 feet and under high rainfall, in wet Dipterocarp forests.

Burmese-Wa-thabut; Wa-nwe; Wase.
Karen-Thawkhwe; Thaw-hkai.
4. Neohouzeaua stricta Parker, Ind. Forester LIV (1928) 97.

Loosely tufted. Culms very straight, erect, $7-9 \mathrm{~cm}$. long, 5 cm . diam., dark green; internodes $60-100 \mathrm{~cm}$. long, walls thin; nodes marked by sharp ledges after the fall of the culm-sheaths; young culms covered with short, harsh hairs. Culm-sheaths
deciduous, about 22 cm . long, clothed on the back with brown irritating bristles, and a little white powder; apex of sheath when spread flat produced on either side into broad, triangular auricles which on the inner side are furnished with a row of stiff, erect, scabrid setae about 12 mm . long; ligule very short, fringed with a row of similar but more slender setae; imperfect blade very narrowly linear-lanceolate, reflexed, about as long as the sheath. Leafy branches switchy, in dense half-whorls at the nodes. Leaves $18-28$ by $3-4 \mathrm{~cm}$. or smaller, scabrid above, narrowed into a long, twisted, scabrid point, palér or slightly pubescent beneath, margins minutely scabrid; main lateral nerves about 7 pairs, intermediate $5-8$; petiole $5-10 \mathrm{~mm}$. long; leaf-sheath grey-pubescent when young; callus with a fringe of minute, white hairs; auricles with long setae; ligule short, with a fringe of slender setae. Inflorescence a large panicle of leafless or sometimes leafy branches in dense half-whorls; rhachis smooth, slender, bearing the spikelets in few-flowered or dense, usually closely approximate, heads. Spikelets fertile and sterilc nixed in equal numbers, the fertile $15-16 \mathrm{~mm}$. long, linear-cylindric, consisting of 3-4 small, ovate, mucronate glumes, increasing in size upwards, the uppermost usually bearing a very small, arrested spikelet followed by a joint of the rhachilla $1 \cdot 5-2 \mathrm{~mm}$. long; flowering glume $8-11 \mathrm{~mm}$. long, convolute, many-nerved, microscopically pubescent, tipped with a mucro 0.5-1 mm. long; palea similar to the lemma, 12-15 mm. long, tipped with 2 scabrid mucros $2-3 \mathrm{~mm}$. long. Stamens 6; filaments connate in a tube; anthers 4 mm . long, obtuse. Ovary and style glabrous; style 12-15 mm. long; stigmas 3, short, plumose.

Common in Tavoy and Mergui and along the Tenasserim river valley.
Burmese-Thabut-wa.
Karen-Tapat-wa.

16. CEPHALOSTACHYUM Munro

Key to the species of Cephalostachyum.
Spikelets in single, terminal, globuse heads

Spikelets in heads in interrupted, paniculate spikes:-
Heads softly hairy, many-flowered:-
Leaves rather large, $15-25 \times 2 \cdot 5-3.75 \mathrm{~cm}$., culm-sheath auricles rounded; rhachis very slender:-
Spikelets densely hirsute; flowering glumes $13-14 \mathrm{~mm}$. long including a mucro $3-4 \mathrm{~mm}$. long
Spikelets minutely hirsute; flowering glumes $7-9 \mathrm{~mm}$. long with a mucro $0.5-1 \mathrm{~mm}$. long
C. flavesce

Leaves small, $7.5-15 \times 1-1.75 \mathrm{~cm}$.; culm-sheath auricles pointed; rhachis moderately thick
Heads nearly glabrous; flowers few:-
Spikelets $5-7.5 \mathrm{~cm}$. long
C. griffithis

Spikelets $1 \cdot 5-1 \cdot 75 \mathrm{~cm}$. long
C. virgatum

1. Cephalostachyum fuchsianum Gamble, Ann. Roy. Bot. Gard. Calc. VII (1896) 107. F.B.I. VII, 413.

Pottinger and Prain (Rec. Bot. Survey Ind. I (1893) 279) record this species from Myitkyina. This appears to be the only record of this plant from outside the Eastern Himalayas.
2. Cephalostachyum pergracile Munro, Trans. Linn. Soc. XXVI (1868) 141. F.B.I. VII, 413.

Throughout Burma; the commonest bamboo after Dendrocalamus strictus. Flowers sporadically every year. Much used for general purposes. Joints used for cooking glutinous rice (kaukhnyin-kyi-dauk). Sometimes planted for hedges.

Burmese-Tin-wa; Paung-tin-wa; Kyat-wa.
Karen-Wabalaw; Wa-blo.
Kachin-Maikpang; Madang.
Shan-Mai-kao-lam.
3. Cephalostachyum burmanicum Parker et Parkinson, Fedde, Rep. Nov. Sp. XXXI (1932) 127.

Arborescent, compactly caespitose. Culms $15-18 \mathrm{~m}$. long; 8-10 cm. diam., internodes about 50 cm . long, when young covered with fine, whitish, irritating hairs;
when old a deep, rich green. Spikelets minutely hirsute; flowering glumes $7-9 \mathrm{~mm}$. long with a mucro $0.5-1 \mathrm{~mm}$. long. In other respects like Cephalostachyum pergracile Munro.

Mergui District: Thamihla-choungbya, Tharabwin choung, Theindaw. Generally on low ground near water. A useful species similar to Cephalostachyum pergracile.

Burmese-Kyat-wa.
4. Cephalostachyum flavescens Kurz, For. Fl. Bur. II (1878) 564. F.B.I. VII, 413. Melocanna lutescens Kurz MS.

Pegu.
5. Cephalostachyum griffithii Kurz, Prelim. Rept. For. Veg. Pegu, App. A p. cxxxviii (1875) App. B, 94 in clavi et in For. Fl. Bur. II (1878) 566. Teinostachyum griffithii Munro.

Northern Burma, in hilly country.
6. Cephalostachyum virgatum Kurz, For. F1. Bur. 11 (1878) 565. F.B.I. VII, 414. Melocanna virgata Munro.

Mergui ,Tavoy, Katha and Myitkyina Districts.
Burmese-Wabo; Wa-ba; Wa-ka; Wa-byauk; Thayaw-wa; Kya-wa.
Kachin-Lahkra.
Cephalostachyum pallidum Munro (Trans. Linn. Soc. XXVI (1868) 139 ; F.B.I. VII, 412) has been recorded by Kurz (For. Fl. Bur. II (1878) 563) from the Khasi and Mishmi hills, the Patkai range and Manipur. Nevertheless the presence of this species in Burma is not certain. When Kurz wrote 'Ava' he meant the Kingdom of Ava, not the town, and the Kingdom of Ava had different confines, though largely undefined, from the Burma of todiy. It is possible that C. pallidum Munr. is confined to the western slopes of the hills it has been recorded from and is absent from the Burma side, so that until a collection from inside modern Burma is made it must be held to be a doubtful Burma plant.

17. MELOCANNA Trin.

Key to the species of Melocanna.
Culms $16-22 \mathrm{~m}$. high, $3 \cdot 5-7.5 \mathrm{~cm}$. diam.; imperfect blade re-
curved .. M. bambusoides
Culms $2 \cdot 5-5 \mathrm{~m}$. high, about $2 \cdot 5 \mathrm{~cm}$. diam., imperfect blade erect M. humilis

1. Melocanna bambusoides Trin., Spreng. Neue Endl. II (1821) 43. F.B.I. VII, 417. M. baccifera Skeels in U.S. Dept. Ag. Bur. Pl. Indus. Bull. 223 (1911) 50. Bambusa baccifera Roxb. in Cor. PI. t. 243.

Arakan and Tenasserim. The most important bamboo in Arakan. Used for buildings, basket work, paper pulp, etc. Said to flower gregariously at about 30 year intervals. Fruit large, up to 3-5 inches long and 2-3 inches broad, fleshy, edible.

Burmese-Kayin-wa; Kayaung-wa; Tabindaing-wa.
Talaing-Khakchat-dun.
2. Melocanna humilis Kurz, For. Fl. Bur. II (1878) 569. F.B.I. VII, 418.

Arakan and the Pazundaung valley of the Pegu river. There is one flowerless specimen from Insein. A very imperfectly-known species.

Burmese-Tabindaing-wa.

II. CENTOTHECE/A.

Key to the genera of Centothecea.

1. CENTOTHECA Desv.

1. Centotheca lappacea Desv., N. Bull. Soc. Phil. Π (1810) 189. F.B.I. VII, 332.

Common in damp, shady forests throughout the plains and in the Andaman Islands. A good fodder but never very abundant.

Burmese-Lin-nwe-thaik-ahlat.

2. LOPHATHERUM Brongn.

1. Lophatherum gracile Brongn., Dup. Voy. Bot. 50 (1829) t. 8. F.B.I. VII, 331.

Burma hills.

III. FESTUCE/E.

While there appear to be no records of any member of the tribe Festuceae from Burma it is probable that a number exist there and await discovery. Brachypodium sylvaticum Beauv. is recorded from the Khasi and Naga hills and may be found in Burma. Poa khasiana Stapf from Assam, P. sphondyloides Trin. from Yunnan are also of likely occurrence. A species of Poa, near P. attenuata Trin., was collected by Su Koe (No. 10074) on the Hpimaw Pass, Myitkyina District, 11,000 feet. Several species of Bromus, e.g. B. asper Murr. known from both Assam and China, B. himalaicus Stapf ex Hk.f. and B. tectorum Limn. from the Naga hills are to be expected within our northern borders. Several species of Festuca may also occur.

A key to the genera most likely to be found in Burma is given to aid recognition and with the hope that collections from the very neglected northern mountain regions of Burma may be made soon.

Key to the genera of Festuceae (after Bor.).
Inflorescence a simple terminal spike or raceme:-

Spikelets terete: racemes nodding	Brachypodium
Spikelets laterally compressed; spike erect Lolium	
Glumes and lemmas muticous:-	
Panicles expanded; glumes and lemmas sub-equal	Poa
Panicles narrow; glumes much shorter than the stronglynerved lemmas	Glyceria
lumes and lemmas caudate, aristate or awned:	
Top of the ovary hairy-appendaged; lemmas keeled	Bromus
p of the ovary without an appendage; lemmas only	
keeled ab	Festuca

IV. PAPPOPHOREA.

1. ENNEAPOGON Desv.
2. Enneapogon elegans T. Cooke, Fl. Bomb. II (1908) 1040. Pappophorum elegans Nees. F.B.I. VII, 301.

Common in dry places in the open in central Burma. Of small grazing value. The grass is usually very glaucous in Burma and seems to differ from the Indian forms.
V. HORDEA.

Key to the genera of Hordece.

1. TRITICUM Linn.

1. Triticum aestivum Linn., Sp. Pl. (1753) 85.

Wheat. The durum varieties are cultivated in the plains, mainly in Shwebo and Kyaukse Districts. The vulgare varieties are grown mainly in the Shan States.

1. Eragrostis theinlwinii Bor, Ind. For. Rec. (n.s.) Bot. III (1941) 144.

Annual. Culms erect, slender, many, with numerous fibrous roots, smooth and glabrous, viscid-glandular, simple or branched, up to 60 cm . tall. Leaf-blades linear, not contracted at the base, tapering to a sharp point, the lower up to 15 cm . long by 5 mm . broad, the upper half as long but as broad, almost subulate, the lower involute, glabrous or with a few large hairs at the insertion on the sheath and on the margins at the base, viscose-glandular; sheaths about half the length of the internode, tight or loose, smooth and glabrous, striate, viscose-glandular; ligule hardly any, a mere rim. Inflorescence an oblong panicle up to 15 cm . long by 3.5 cm . broad; branches whorled or alternate, branching, naked at the base; rhachis glabrous, scaberulous; rhachis, branches and branchlets with many viscous glands, capillary. Spikelets ovate, 6-10-flowered, breaking up from above downwards, in appearance very bristly; shortly pedicelled. Lower glume 1.5 mm . long, somewhat curved, lanceolate-acute scabrid on the keel; upper glume about as long or slightly shorter, lanceolate-acute, scabrid on the keel. Lemma 1.5 mm . long, oblong-elliptic, apiculate, 3 -nerved, smooth on the keel. A row of tubercle-based bristles $0.5-0.75 \mathrm{~mm}$. long is to be found between the marginal nerves and the margins. Palea as long as the lemma, 2 -keeled, longciliate on the keels. Caryopsis very minute, brown, obovoid, 0.5 mm . long.

On roadsides; near Tanbingon village, Gamon Forest Reserve, Zigon Forest Division, Pegu District. (Thein Lwin 5!; 214!).
2. Eragrostis coarctata Stapf ex Hook.f., F.B.I. VII, 314.

Frequent in central Burma on light, sandy soils. Grazed by cattle.
3. Eragrostis riparia Nees, Wight Cat. n. 1787. E. tenella R. et S. var. riparia Stapf in F.B.I. VII, 315.

Recorded by Gage from Minbu District.
4. Eragrostis viscosa Trin., Mem. Acad. Peters. ser. vi, I (1831) 397. F.B.I. VII, 315.

In indaing forest, often forming dense patches in open spaces to the exclusion of other plants. Fairly common. Cattle eat it with reluctance.
5. Eragrostis tenella P. Beauv. ex Roem. et Schult., Syst. II, 576. F.B.I. VII, 315.

Very common in the plains. Grazed by cattle.
Burmese-Yon-gale.
6. Eragrostis plumosa Link., Enum. Hort. Berol. I (1827) 192. E. tenella R. et S. var. plumosa Stapf in F.B.I. VII, 315.

Very common on light soils in the drier parts of Burma. Cattle eat it both fresh and dry.

Burmese-Myet-hmon-hmwa.
7. Eragrostis diarrhena Steud., Syn. P1. Glum. (1855) 266. E. interrupta Beauv. var. diarrhena Stapf in F.B.I. VII, 316.

A very common tussock grass of the dry zone, particularly on heavy clay soils. A poor fodder, being exceptionally low in calcium and phosphorus.
8. Eragrostis diarrhena Steud. var. koenigii (Stapf) C. E. C. Fischer, Fl. Madras X, 1826. E. interrupta Beauv. var. koenigii Stapf in F.B.I. VII, 316.

Common in open places in central Burma; not in the hills. A poor fodder.
9. Eragrostis japonica Trin., Mem. Acad. Peters. ser. vi, I (1831) 405. E. interrupta Beauv. var. tennuissima Stapf in F.B.I. VII, 316.

Fairly frequent in central Burma on light soils.
10. Eragrostis unioloides Nees ex Steud., Syn. Pl. Glum. (1854) 264. E. amabilis W. et A. F.B.I. VII, 317.

Very common in wet areas, ascending to about 3,000 feet. Colour of the glumes very variable. Cattle and horses eat it and it stands grazing and trampling well.
11. Eragrostis malayana Stapf, F.B.I. VII, 317.

Frequent in Lower Burma forests (Thein Lwin 48!).
12. Eragrostis nutans Nees ex Steud., Nom. Ed. II, i, 563. E. stenophylla Hochst. F.B.I. VII, 318 (excl. aliq. syn.).

Common in the plains. A frequent weed of cultivated land. Eaten by cattle.
13. Eragrostis zeylanica Nees et Mey., Nov. Act. 204. E. elongata of the F.B.I. VII, 319.

Frequent in indaing forest and on light soils in central Burma. (Rhind 2501 !, Tatkon, Yamethin District; Thein Lwin 262!, Pegu.)

Burmese-Thaman-myet.
14. Eragrostis gangetica Steud., Syn. Pl. Glum. (1854) 266. E. elegantula Stapf in F.B.I. VII, 318.

Common in damp places, ascending to about 6,000 feet. Not much liked by cattle and yields little fodder. Plant often extremely glaucous.

Burmese-Gyo-gya-myet.
15. Eragrostis cilianensis (All.) Link ex Lutati, Malphigia XVIII, 386. E. major Hochst. F.B.I. VII, 320.

Common all over the dry zone, ascending to about 4,000 feet. A frequent weed of cultivated lands.
16. Eragrostis barbulata Stapf., F.B.I. VII, 319.

Very uncommon. Wallich collected it near Yenangyaung and Su Koe (No. 7851!) found it at Talaingywa in Sagaing District. It is a very striking grass.
17. Eragrostis tremula Hochsi. ex Steud., Syn. Pl. Glum. (1854) 269.

Occasional in the dry zone.
18. Eragrostis poaeoides Beauv., Agrost. (1812) 162. E. minor Host. F.B.I. VII, 321.

Scarce; I have only seen one collection, viz. Thein Lwin 147! from the dry zone. 19. Eragrostis tenuifolia Hochst., Flora XXIV (1841) 1. F.B.I. VII, 322.

A common tussock grass of the hills above 3,000 feet. The tops are grazed but the lower parts of the culms are avoided by cattle. (Rhind 2316! and Hla Maung 18111!, Maymyo.)
20. Eragrostis pilosa Beauv., Agrost. (1812) 71. F.B.I. VII, 323.

Common in central Burma especially on sandbanks along rivers; also in Lower Burma. Cattle and buffaloes eat it but it yields little fodder.

Burmese-Myet-walon; Myet-hmwa-gyi.
21. Eragrostis nigra Nees ex Steud., Nom. ed. 2, I (1840) 563. F.B.I. VII, 324.

Common in the hills and in northern Burma.
22. Eragrostis ferruginea Beauv., Agrost. (1812) 71. F.B.I. VII, 324.

Shan hills, 4,000 feet (Manders).
23. Eragrostis papposa Steud., Nom. ed. 2, I (1840) 564. F.B.I. VII, 322.

Common in the hills up to about 4,500 feet. Often cut for hay but the food value is low.

Eragrostis plana Nees (Dyer, Flor. Capensis VII, 609) was accidentally introduced at the Government Farm, Tatkon, and is running wild. (Rhind 2849!).

3. ERAGROSTIELLA Bor

Spikelets linear to ovate-oblong, strongly or slightly compressed, shortly pedicelled or sub-sessile, in two rows, distant or crowded, in long, slender, terminal racemes; rhachilla tough, persistent, or tardily breaking up, glabrous, angled, slightly swollen at the top of the joint. Florets $\mathbf{6 - 2 0}$, hermaphrodite, or the uppermost more or less reduced. Glumes sub-equal, or the upper the longer, keeled, deciduous, the lower 1-nerved, the upper 3-nerved, glabrous; lemmas imbricate, ovate or lanceolate, slightly or strongly keeled on the back, acute or obtuse, membranous or chartaceous, glabrous; palea as long as the lemma, keeled, winged on the keels or not, often persistent on the rhachilla. Lodicules 2, small, cuneate, fleshy. Stamens 3. Ovary glabrous; style distant, terminal; stigmas plumose, laterally exserted.

Perennial grasses, densely caespitose; leaves mostly convolute, filiform, rarely flat; ligule short; base of the culm covered with the remains of old sheaths.

Key to the species of Eragrostiella.
Spikelets much compressed, 6 -40-flowered E. bifaria
Spikelets slightly compressed, 6-12-flowered E. collettii

1. Eragrostiella bifaria (Wight) Bor, Ind. Forester 66, 270 et in Flora of Assam V (1940) 107. Eragrostis bifaria (Wight) Steud. E. coramandelina Trin. F.B.I. VII, 325.

Occasional in indaing forests (Po Zone 2145!, Kanbalu). The roots are sometimes used for flavouring Burmese cheroots.

Burmese-Myet-hmwe.
2. Eragrostiella collettii (Stapf) Bor, Ind. Forester 66, 270 et in Flora of Assam V, (1940) 107. Eragrostis collettii Stapf in F.B.I. VII, 326.

Fairly common in the dry zone (Collett 19!, Thein Lwin 266!).

4. DESMOSTACHYA Stapf

1. Desmostachya bipinnata Stapf, Flor. Cap. VII, 632. Eragrostis cynosuroides Bêauv. F.B.I. VII, 324.

Common in damp places, mainly in central Burma. Not liked by cattle.

5. MYRIOSTACHYA Hook.f.

1. Myriostachya wightiana Hook.f. in F.B.I. VII, 327.

A coastal grass of Lower Burma, generally growing in sea mud. Not common.

6. DIPLACHNE Beauv.

1. Diplachne fusca Beauv. Agrost. 163. F.B.I. VII, 329.

Occasional near water in the plains (Rhind 4177! Halingyi, Shwebo District).
Burmese-Myet-cho.

7. ELEUSINE Gaertn.

Key to the species of Eleusine.
Spikes digitate:-
Spikes slender, nearly glabrous at the base; seeds oblong, obtusely trigonous
Spikes stout, often incurved, pubescent at the base; seed
globose
E. indica
E. coracana

Spikes whorled
E. verticillata

1. Eleusine indica Gaertn. Fruct. I, 8. F.B.I. VII, 293.

Common everywhere, ascending to about 4,000 feet. Grazed by cattle when young.

Burmese-Sin-ngo-myet; Sin-ngo-let-kya.
Shan-Yö-hkum.
2. Eleusine coracana Gaertn., Fruct. I, 8. F.B.I. VII, 294.

Occasionally cultivated in the hills where it is of importance for making beer rather than for food.

Burmese-Sat-ni.
3. Eleasine verticillata Roxb., Flor. Ind. I, 346. F.B.I. VII, 295.

Fairly common on light soils in central Burma. Cattle eat it.

8. DACTYLOCTENIUM Willd.

1. Dactyloctenium aegyptium Beauv., Ess. Agrost. (1812) 72. Eleusine aegyptiaca Desf. F.B.I. VII, 295.

Common all over Burma up to about 4,000 feet. Eaten by cattle but the fodder value is not high. It contains cyanogenetic glucosides.

Burmese-Myet-Ie-gwa; Didok-chi.

9. LEPTOCHLOA Beauv.

Key to the species of Leptochloa.
Spikelets 2 -3-flowered, less than 2.5 mm . long; upper glume longer than the first floret

L. filiformis

Spikelets 4 -6-flowered, 2.5 mm . or more long; upper glume shorter than the first floret
L. chinensis

1. Leptochloa filiformis Roem. et Schult., Syst. II, 580. L. polystachya Benth. F.B.I. VII, 298. L. contracta Blatter et McCann.

A common weed of cultivated lands in central Burma. Eaten by cattle when young.

Burmese-Hman-pwa; Myet-kha.
2. Leptochloa chinensis Nees, Syll. Ratisb. I (1824) 4. F.B.I. VII, 299.

Very common in swampy places and along water-courses. Eaten by cattle.
Burmese-Myet-sat; Daung-myet; Myet-kha.

10. TRIPOGON Roth

Key to the species of Tripogon.
Lemmas bifid with an interposed awn, the lobes awned or not:-
Spikelets 1-4-flowered; awn many times longer than its glume. T. capillatus

Spikelets 4-10-flowered; awn twice as long as its glume or somewhat more
T. trifidus

Lemmas 4-fid, outer lobes awned or not, inner membranous ... T. filiformis

1. Tripogon capillatus J. et S., Illustr. Fl. Orient. IV, 47, t. 332. F.B.I. VII, 285.

Common in stony places, on trees, etc., in high rainfall areas.
2. Tripogon trifidus Munro ex Stapf, Kew Bull. 1892, 85. F.B.I. VII, 286.

South Pegu (Thein Lwin 3145!).
3. Tripogon filiformis Nees ex Steud., Syn. P1. Glum. (1854) 301. F.B.I. VII, 288.

Common in the hills.

11. NEYRAUDIA Hook.f.

Key to the species of Neyraudia.

Empty glume present ..ana

1. Neyraudia arundinacea (Linn.) Henrard, Blumea III (1940) 3. N. madagascariensis Hook.f. F.B.I. VII, 305. Arundo madagascariensis Kunth, Rev. Gram. I, 273. Aristida arundinacea Linn.

Frequent in Lower Burma.
2. Neyraudia reynaudiana (Kunth) Keng, Hitchc., Amer. Jr. Bot. (1934) 131. Arundo reynaudiana Kunth. Neyraudia madagascariensis Hook.f. var. zollingeri Hook.f. F.B.I. VII, 305.

Common in wet places, ascending to about 4,000 feet.
Burmese-Kyu; Kyuna-bin-kaing; Paung.

VIII. SPOROBOLEE.

1. SPOROBOLUS R.Br.

Key to the species of Sporobolus.
Lower glume distinctly shorter than the lemma:-
Upper glume distinctly shorter than the lemma; leaves
glabrous, flat, complicate or convolute-mixed:-
Panicles effuse:-
Lemma 1.5 mm . or more long:-
Lemma 1.5 mm . long; leaves up to 39 cm . long; lower glumes $\cdot \mathbf{2 5 - 5} \mathrm{mm}$. long; upper glumes $\cdot 5-1 \mathrm{~mm}$. long
S. diander

Lemma $1 \cdot 75-2 \mathrm{~mm}$. long; leaves up to 60 cm . long;
lower glume $\cdot 5-75 \mathrm{~mm}$. long; upper glume $1-1.5$
mm . long
S. wallichii

Panicles spiciform or narrow:-
Perennial:-
Leaves flaccid, not pungent; not stoloniferous S. indicus
Leaves rigid, pungent; stoloniferous S. tremulus
Annual:-
Small (rarely exceeding 23 cm .), generally prostrate.
Panicle pyramidal. Stamens 2
S. coramandelianus

Lower glume as long as the lemma or nearly so:-
Panicle contracted, very pale yellowish; glumes 1-nerved;
leaves narrow, glaucous
S. glaucifolius

1. Sporobolus diander Beauv., Agrost. (1812) 25. F.B.I. VII, 247.

Common in the dry zone. Readily eaten by cattle and horses.
2. Sporobolus wallichii Munro ex Hook.f., F.B.I. VII, 248.

Fairly common, especially in light, open jungle. Eaten by cattle but yields little fodder.
3. Sporobolus indicus R.Br., Prodr. 170. F.B.I. VII, 247.

Very common above about 3,000 feet. Not much liked by cattle except in the young stage.
4. Sporobolus tremulus Kunth, Rev. Gram. I, 67. F.B.I. VII, 250. Very common in the plains. A frequent weed of dried-up paddy fields. Burmese-The-padaw.
5. Sporobolus coramandelianus (Retz.) Kunth, Rev. Gram. I 68. F.B.I. VII, 252.

Very common in dry places in central Burma. Generally too small to be of any fodder value.

Burmese-Myet-hmon-hma.
Hooker (F.B.I. VII, 253) makes a variety, var. collettii, for a specimen of Collett's from the Shan Hills. It does not seem to have been collected subsequently and I have never seen it.
6. Sporobolus glaucifolius Hochst., Flora XXV (1842) 1. F.B.I. VII, 250.

Common on light soils. A very good fodder which can be substituted for dhoob (Cynodon dactylon). The analysis of this grass in Burma showed it to be in every way equal to dhoob and in fact slightly higher in average mineral content. Readily eaten by cattle and horses.

Burmese-The-myet; Myet-san.
Sporobolus pulchellus Br. (F.B.I. VII, 252) has been recorded from Cheingmai (Siam) and Malaya. It is likely to be found in Burma.

IX. CHLORIDE/E.

Key to the genera of Chloridea.

Spikelets awned	Chloris
Spikelets unawned:-	
Spikes solitary:-	Oropetium
Larger, $15-40 \mathrm{~cm}$. high	Microchloa
Spikes digitate	Cynodon

1. CHLORIS Swartz

Key to the species of Chloris.
Spikelets 1-flowered:-
Rhachilla produced beyond the flowering glume and bearing 1 or 2 awns:-
Rhachis of spike terete or angular:-
Annual ; spikes $3.75-5 \mathrm{~cm}$. long; stems up to 30 cm . long
C. delicatula

Perennial; spikes $10-20 \mathrm{~cm}$. long; stems up to 1 m . long
Rhachilla produced beyond the flowering glume and bearing
1-3 reduced empty glumes:-
Spikes 4-10; lemma bearded at the base:-
Stem up to 30 cm . long; empty lemmas above the floret

Stem up to 110 cm . long; empty lemmas above the floret 2-3
C. virgata

1. Chloris delicatula C. B. Clarke ex Hook.f., F.B.I. VII, 290.

Occasional in open ground in the dry zone. (Lace 5007!; Thein Lwin 2941!)
2. Chloris incompleta Roth., Nov. Sp. (1821) 60. F.B.I. VII, 290.

Common in shady, damp places all over Burma. Generally growing amongst under-shrubs.
3. Chloris virgata Sw., Flor. Ind. Occ. I, 203. F.B.I. VII, 291.

Common in the hills between about 2,500 and 4,000 feet. Good fodder.
4. Chloris barbata Sw., Flor. Ind. Occ. I, 200. F.B.I. VII, 292.

Very common in the dry zone. Relished by cattle when in the young state but disliked when in flower.

Burmese-Sin-ngo-myet; Myet-kaya; Lay-gwa.
Chloris gayana Kunth, Rhodes Grass, has been introduced in some Government farms for fodder but it has not spread and is unlikely to be able to compete with the fodder Sorghums.

2. CYNODON Pers.

Key to the species of Cynodon.
Culms $5-45 \mathrm{~cm}$. high; leaves $1-12 \mathrm{~cm}$. long by $\cdot 75-2 \cdot 75 \mathrm{~mm}$.
broad; lower glume 1-25-2 mm. long C. dactylon
Culms $17-100 \mathrm{~cm}$. high ; leaves $2 \cdot 5-11 \mathrm{~cm}$. long by $4 \cdot 5-6 \cdot 25 \mathrm{~mm}$.
broad; lower glume 1 mm . long \ldots. . dactylon var. intermedius

1. Cynodon dactylon Pers., Syn. I, 85. F.B.I. VII, 288.

Common all over Burma, generally on light soils, ascending to about 6,000 feet or more. It is an excellent fodder and makes good lawns when properly watered and tended but is very liable to be ousted by more vigorous species. Often a troublesome weed of cultivated land, particularly riverine land which is inundated in the monsoon. Dhoob, Bermuda or Wire Grass.

Burmese-Myin-sa-myet.
2. Cynodon dactylon Pers. var. intermedius C. E. C. Fischer, Flora of Madras X, 1835.

Similar to the above but larger. Not common. (Thein Lwin 201! Pyinnaung, Meiktila District.)

3. OROPETIUM Trin.

1. Oropetium thomaeum Trin., Fund. Agrost. 98, t. 3. F.B.I. VII, 366.

Common in very dry places in central Burma. A monsoon ephemeral of no grazing value.
4. MICROCHLOA R. Br.

1. Microchloa indica Beauv., Agrost. (1812). M. setacea R.Br. F.B.I. VII, 283.

Common in the hills above about 3,000 feet, in open ground. A short-lived monsoon species of practically no fodder value.

X. AVENEAE.

1. ERIACHNE Br.

Key to the species of Eriachne.
Spikelets 2.5 cm . long; lemmas and palea awned E. triseta
Spikelets 0.6 cm . long; lemmas awned; palea unawned E. pallescens

1. Eriachne triseta Nees ex Steud., Syn. Pl. Glum. (1812) 237. F.B.I. VII, 269.

Mergui (Helfer; Griffith) and in Malaya.
2. Eriachne pallescens \boldsymbol{R}. Br., Prod. 184. F.B.I. VII, 269.

Extends from Chittagong to the Nicobars, Malaya, Cochin-China and Australia. Though there appears to be no record of it from Burma its presence, at least on some of the islands off the Mergui coast, is very probable.

Avena sativa Linn., Oats, is occasionally cultivated in the hills, rarely in the plains, though at one time there was a little grown round Gangaw in Pakokku District.

An unmatched specimen of Avenastrum was collected by Su Koe (9962) on Hpimaw Pass, Myitkyina District, at 6,600 feet.

Helictotrichon asperum (Munro) Bor occurs in the hills of Assam bordering Burma and may be expected within Burma also.

XI. AGROSTEFE.

Key to the genera of Agrostea.
Spikelets disarticulating above the glumes, the latter per-sistent:-
Glumes equal or nearly so, longer than the lemma; lemma awned from the back or awnless:-
Lemma glabrous or with only a few short hairs at the base; glumes not long-acuminate:-
Lemma hyaline, shorter than the glumes:-
Rhachilla not produced (except in A. abnormis) Agrostis
Rhachilla produced, pectinate-ciliate
(Deyeuxia)
Lemma coriaceous, longer than the glumes
Lemma hairy or glabrous; awn basal or not; glumes long-
acuminate; callus long-bearded; rhachilla not produced
(Calamagrostis)
Glumes equal or unequal, as long as the lemma or shorter; lemma awned from the tip

Muehlenbergia
Spikelets disarticulating below the glumes and falling entire:-
Glumes awnless:-
Inflorescence a spike-like panicle
Alopecurus
Infiorescence a loose or contracted panicle Garnotia
Glumes awned
Polypogon

1. AGROSTIS Linn.
2. Agrostis stolonifera Linn., Sp. Pl. (1753) 62. A. verticillata Vill. F.B.I. VII, 254.

Below Tangtung, Myitkyina District, 5,000 feet (Kermode 17312 !).

2. MUEHLENBERGIA Schreb.

1. Muehlenbergia huegelli Trin., Mem. Acad. Peters. ser. VI, vi, II (1845) 293. M. viridissima Nees ex Steud. F.B.I. VII, 259.

Common above 5,000 feet in damp places. (Rhind 3918 ! near Kaya, Tawngpeng State, 6,700 feet.)

3. ALOPECURUS Linn.

1. Alopecurus aequalis Sobol., F1. Petrop. 16. A. fulvus $S m$. A. aristulatus Michx. F.B.I. VII, 238.

Below Tangtung, Myitkyina District, 5,000 feet (Kermode 17316 !).
4. GARNOTIA Brongn.

1. Garnotia stricta Brongn., Duperr. Voy. Bot. 132, t. 21. F.B.I. VII, 243.

Occasional in shady places, particularly in the hills (Thein Lwin 3170 !, Bamaleikchaung, Pegu District).

5. POLYPOGON Desf.

Key to the species of Polypogon.
Perennial; stems decumbent, creeping and rooting below P. littoralis
Annual; stems erect from a geniculate base
P. fugax

1. Polypogon littoralis Sm., Compend. Fl. Brit. 13. F.B.I. VII, 246.

Fairly common in the hills above 3,000 feet. (Rhind 1068 !, Maymyo.)
2. Polypogon fugax Nees ex Steud., Syn. Pl. Glum. I (1854) 184. P. littoralis Sm. var. higegaweri in F.B.I. VII, 246.

Maymyo (Mg. Kan 18361 !) and Tangtung, Myitkyina District (Kermode 17314 !).
The following species are recorded from the hills on the Assam side of the frontier with Burma and are therefore likely to be found within Burma also:-Agrostis inaequiglumis Griseb., A. filipes Hook. f., A. micrantha Steud., A. myriantha Hook, f., Deyeuxia scabrescens Munro ex Duthie, D. nagarum Bor, Aulacolepis treutleri Hack., Calamagrostts emodensis Griseb, and Alopecurus myosuroides Huds. The following, which occur in China, are likely to be found within the northern borders of Burma:-Agrostis micrantha Steud. (Yunnan), Alopecurus myosuroides Huds. and Calamagrostis sylvatica DC. (Yunnan).
XII. STIPEAE.

1. ARISTIDA Linn.

Key to the species of Aristida.
Awn sessile, setae always 3, subequal:-
Panicles contracted:-
Plants small, up to 25 cm . high; spikelets (excl. awn) up to 2.5 mm . long
A. cumingiana

Plants up to 1 m . high; spikelets (excl. awn) up to 8 mm . long; median seta of awn up to 2.5 cm . long; very variable
A. depressa

Panicles effuse, as broad as long:-
Setae $2 \cdot 5-5 \mathrm{~cm}$. long.
A. hystrix

Awn supported by a column; setae 3 , subequal; column of awn
2.5 cm . or less
A. funiculata

1. Aristida cumingiana Trin. et Rupr., Mem. Acad. Peters. Ser. VI, vii, (1849) 134. F.B.I. VII, 224.

Fairly widespread, generally on poor soils, ascending to about 4,000 feet.
2. Aristida depressa Retz., Obs. IV, 22. A. adscensionis Linn. F.B.I. VII, 224.

Very common on dry ground, old broken brickwork, old pagodas, etc. Very variable in colouring and size. Of very little value as fodder; cattle dislike it.

Burmese-Thamin-mwe; Myet-thamin.
3. Aristida hystrix Linn.f., Suppl. 113. F.B.I. VII, 225.

Frequent in indaing forests of central Burma and in dry, stony places. A xerophyte of no fodder value.
4. Aristida funiculata Trin. et Ripr., Mem. Acad. Peters. Ser. VI, vii, (1849) 159. F.B.I. VII, 226.

Uncommon; occurs on stony uplands in the plains (Collett 16 !, Meiktila; McKerral 85!, Allanmyo).

Stipa roylei (Nees) Mez occurs in the Naga hills of Assam and S. sibirica Lam. in Yunnan; both may be found in the northern hills of Burma.

XII. ZOYSIEAE.

Key to the genera of Zoysiea.

Spikes solitary:-	
Upper glume with hooked spines on the back	us
Glumes long-awned	Perotis
Glumes awnless	Zoysia
Spikes in pairs	Trachys

1. ZOYSIA Willd. (Zoisia Willd.)

1. Zoysia matrella (Linn.) Merr., Philipp. Jr. Sci. Bot. VII (1912) 230. Z. pungens Willd., F.B.I. VII, 99.

Frequent on the sea-coasts (Thein Lwin 3471! from the mouth of the Thadinchoung, Gulf of Martaban). It has also been introduced and cultivated as a lawn grass under the name of Korea Grass. It does well on laterite ridges in Lower Burma where the rainfall is high. Said to taint the flesh of sheep which eat it. A good sandbinder but of little fodder value.
2. TRAGUS Haller.

1. Tragus bifiorus Schult., Mant. II (1767) 205. T. racemosus Scop. F.B.I. VII, 97.

Very common in the drier parts of Burma, particularly along roadsides, ascending to about 5,000 feet. The herbage is rather harsh but sheep and goats eat it.

Burmese-Yon-gale; Yon-hle.

3. TRACHYS Pers.

1. Trachys muricata (Linn.) Steud., Syn. Pl. Gram. 112. T. mucronata Pers. F.B.I. VII, 96.

Common on light sandy soils in the Magwe-Taungdwingyi tract and a frequent weed of cultivated fields (Thet Su 2191 !).

4. PEROTIS Aiton.

1. Perotis indica (Linn.) O. Kuntze, Rev. Gen. Pl. 787 (1891) P. latifolia Ait. F.B.I. VII, 98.

Common in central Burma in the plains. A frequent weed of cultivated fields. Of little fodder value.

Burmese-Baing-daung; Khwe-amee.
XIV. PHALARIDEAE.

No members of the tribe Phalarideae have so far been recorded in Burma but the following species occur in the Naga Hills of Assam and are likely to be found in Burma:-Hierochloa gracillima Hk.f., H. khasiana C. B. Clarke, H. clarkei Hk.f.

XV. ORYZEA.

Key to the genera of Oryzece.
Spikelets unisexual, the pistillate above and the staminate below
in the same inflorescence; tall, reed-like grasses
Zizania
Spikelets bisexual:
Leaf-blades linear:-
Glumes absent; fertile lemma awnless
Leersia
Glumes present but usually much reduced; fertile iemma awned or not.

Oryza
Leaf-blades ovate-lanceolate to linear-oblong; glumes absent; lemma long-awned

Hygroryza

1. ZIZANIA Linn.
2. Zizania latifolia Turcz., Bull. Soc. Nat. Mosc. (1838) 105. Z. aquatica Linn. Fl. Assam V, 175.

Inle Lake, Yawnghwe State, Southern Shan States. (D'Souza 2415!)
2. LEERSIA Sw.

1. Leersia hexandra Sw., Prodr. Veg. Ind. Occ. (1788) 21. F.B.I. VII, 94.

Very cormmon in swampy places all over Burma ascending to about 5,000 feet. Frequently forms a thick cover in paddy fields after the harvest in areas where moisture remains, as in the northern wet zone. Relished by cattle and buffaloes.

Burmese-Thaman-myet.

> 3. ORYZA Linn.

Key to the species of Oryza.
Root rhizomatous; stems erect from a stout creeping rhizome, smooth, hard, polished; spikelets laxly imbricate, rigidly chartaceous; panicle spiciform; lemma dorsally winged..
O. coarctata Root not rhizomatous:-

Ligule elongated, at length splitting; spikelets 6.12 .5 mm . long; generally annual:-
Spikelets persistent, awned or not O. sativa
Spikelets deciduous, always awned O. sativa var. fatua
Ligule short, truncate; spikelets 4-6 mm. long:-
Lemma hispid, awned
O. officinalis

Lemma smooth, awnless
O. meyeriana

1. Oryza coarctata Roxb., Hort. Beng. (1814) 87. F.B.I. VII, 93.

Frequent in Lower Burma near the sea-coasts.
Burmese-Saba-yaing.
2. Oryza sativa Linn., Sp. Pl. (1753) 333.

Paddy. Cultivated all over Burma in many varieties, ascending to about 6,000 feet.

Burmese-Saba.
3. Oryza sativa Linn. var. fatua Prain, Beng. Pl. (1903) 1184.

Fairly common throughout Burma in marshy places and in the Shan States (Thein Lwin 15 !).

Burmese-Saba-yaing.
4. Oryza officinalis Wall. apud Prodoehl, Mez, Bot. Archiv. I (1922) 224. O. latifolia Desv. of the F.B.I. VII, 92.

Common all over Burma in wet places, drains, ditches, swamps, etc. Cattle eat it. As Bor has pointed out (Flora of Assam V) the O. latifolia of the F.B.I. is an American plant.

Burmese-Nat-saba.
5. Oryza meyeriana Baill., Hist. Pl. XII (1894) 166. O. granulata Nees et Arn. F.B.I. VII, 93.

Frequent in wet places.
Burmese-Daung-saba.

4. HYGRORYZA Nees

1. Hygroryza aristata Nees, Edin. New Phil. Jr. XV (1833) 380. F.B.I. VII, 95.

Recorded from Lower Burma (Pegu) but apparently uncommon.

XVI. THYSANOLAEN/E.

1. THYSANOLAENA Nees
2. Thysanolaena maxima O. Ktze., Rev. Gen. Pl. (1891) 784. T. agrostis Nees. F.B.I. VII, 61. T. procera Mez.

Common in the hills from about 2,500 to 5,000 feet. Panicles used for making brooms. Buffaloes eat it when young but not cattle.

Burmese-Pyaung-sa; Tama-zaing; Thabyet-si-bin.

XVII. ARUNDINELLEAE.

Key to the genera of Arundinellea.
Lemmas of the upper floret scabrid or scaberulous, entire or minutely 2-lobed at the apex, lobes awned or awnless
Lemma of the upper floret bearded below the two lateral prominent lobes

Arundinella

Danthoniopsis

1. ARUNDINELLA Raddi

Key to the species of Arundinella.
Upper lemma awned:-
Upper lemma bearing 2 apical setae
A. setosa

Upper lemma devoid of setae:-
Spikelets small; upper lemma less than 2 mm . long:-
Both glumes less than 1.75 mm . long, smooth; panicles effuse
A. pumila

Glumes usually, upper always, more than 1.75 mm . long, ribs scabrid; panicles compact
A. holcoides

Spikelets large; upper lemma over 2 mm . long, scaberulous; perennials:-
Panicles effuse, branches long; leaves glabrous; spikelets in distant pairs:-
Lower glume 3-nerved A. nepalensis
Lower glume 5-nerved A. birmanica
Panicle branches close; spikelets crowded A. fuscata
Upper lemma not awned
A. bengalensis

1. Arundinella setosa Trin., Diss. II, 63. F.B.I. VII, 70.

Common above 3,000 feet in light open jungle and on hill sides, ascending to about 5,000 feet. Not eaten by cattle except when young. Burmese-Myet-pauk; Yaman.
2. Arundinella pumila Steud., Syn. Pl. Gram. 115. A. tenella Nees et Wight ex Steud. F.B.I. VII, 71.

Pegu Yoma tops (Thein Lwin 11!). Said to be disliked by cattle.
3. Arundinella holcoides Trin., Bull. Sc. Acad. Peters. I (1836) 71. A. agrostoides Trin. F.B.I. VII, 71.

Tenasserim (Wallich, Helfer).
4. Arundinella holcoides Trin. var. ciliata Hook. f. ex Nees in F.B.I. VII, 71.

Moulmein (Griffith).
5. Arundinella nepalensis Trin., Diss. II, 62. A. brasiliensis of the F.B.I. VII, 71. (non Raddi.)

Very common in the hills between about 2,500 and 5,000 feet.
6. Arundinella birmanica Hook. f., F.B.I. VII, 73.

Frequent in the moister parts all over the plains.
Burmese-Padat-myet.
7. Arundinella fuscata Nees ex Bïse, Miq. P1. Jungh. 359. F.B.I. VII, 74.

Rangoon (Kurz).
8. Arundinella bengalensis Druce, Rep. Bot. Exch. Club Brit. Isles, 1916, 605. A. wallichii Nees ex Steud. F.B.I. VII, 75.

Frequent in the hills between about 3,000 and 5,000 feet.
Burmese-Yaman-myet.

2. DANTHONIOPSIS Stapf

1. Danthoniopsis griffithiana Bor, Flora of Assam V (1940) 187. Arundinella griffithiana (C. Muell.) Bor, Ind. For. Rec. (Bot.) I (1938), 73. Danthonia griffithiana C. Muell., Bot. Zeit. XIV (1856) 348. Arundinella avenacea Munro ex Thw., Enum. P1. Zeyl. (1864) 362. F.B.I. VII, 69.

Fairly frequent in places of high rainfall, particularly in the hills.

XVIII. PANICEAE.

Key to the genera of the Panicea (after Bor.).
Spikelets falling singly, not subtended by bristles, or if so, then
the bristles persisting after the spikelets have fallen (Setaria):-
Both florets fertile, or the lower male and then with the lemma hardened and similar to the upper:-
Upper lemma and palea membranous, gaping at maturity
Upper lemma and palea indurated, closed at maturity
Upper floret alone fertile; lemma of lower floret usually resembling the upper glume and not hardened:-
Spikelets arranged in more or less open panicles, or with the panicles contracted and spike-like:-
Spikelets not subtended by bristle-like branchlets:-
Spikelets arranged in open or contracted panicles:-
Spikelets not or only slightly gibbous:-
Fertile floret without lateral basal appendages or scars:
Upper glume as long as the spikelet
Upper glume much shorter than the spikelet. .
Fertile floret with lateral appendages or scars.
Coelachne
Isachne

Spikelets distinctly gibbous and laterally much compressed

Panicum
Ottochloa
Ichnanthus
Spikelets arranged in cylindrical spike-like panicles; upper glume inflated:-
Upper lemma and palea indurated and closed atapex; upper glume not inflated, spikelets lanceolate ..
Upper lemma and palea membranous, gaping at apex
Spikelets subtended by one to many bristle-like branchlets
Spikelets arranged in one-sided spikes or spike-like racemes;
spikes or racemes digitate or scattered, rarely solitary:-
Lemma of the upper floret more or less crustaceous, usually
with narrow inrolled margins, exposing much of the palea:-
Spikelets dorsally compressed or almost terete, the glumes and lower lemma rounded on the back or only keeled at the tip:-
Lower glume and lowest internode of the rhachilla not forming a swollen callus at the base of the spikelet:-
Glumes and Iemmas with lateral compressed and thickened apices

Acroceras

Glumes and lemmas not as above:-
Lower glume (when present) turned away fromthe rhachis of the racemes or spike, the backof the upper lemma facing it, i.e. the spikeletsadaxial:-
Lower glume developed, although sometimessmall:-Spikeletì not sunken in hollows in a thickenedcorky rhachis:-Glumes acuminate or awned, rarely onlyacute; upper lemma not mucronate:-Leaf-blades linear; racemes dense; culmserect or sub-erectEchinochloaLeaf-blades lanceolate to ovate; racemesloose to moderately dense; culmscreeping and ascendingOplismenus
Glumes awnless; if acuminate, then withthe upper lemma mucronate:-Upper lemma acute, not mucronate
Paspalidium
Upper lemma obtuse, mucronate orvery short-awnedSpikelets sunken in hollows in a thickenedrhachis, the latter disarticulating atmaturity
Urochloa
Stenotaphrum
Lower glume usually absent; spikelets plano-convexPaspalum
Lower glume turned towards the rhachis, theback of the upper lemma turned away fromit, i.e. spikelets abaxial:-
Lower glume presentLower glume absentBrachiariaAxonopus
Lower glume and lowest internode of the rhachillaforming a swollen callus at the base of the spikelet;upper lemma mucronate or short-awned
Eriochloa
Lemma of the upper floret thinly cartilaginous, usually
with flat hyaline margins:-Spikelets awnlessSpikelets awnedDigitariaAlloteropsis
Spikelets with an involucre of bristles or sub-tended by asolitary bristle and falling with the bristles or bristle atmaturity, solitary or in clusters:-
Bristle solitary, formed by prolongation of the branchbeyond the terminal spikelet
Pseudoraphis
Bristles usually numerous Pennisetum
Dioecious. Female spikelets in heads with spiny subtendingbracts, male in spikes which are united into dense, large,globose heads; sea-coast species.
Spinifex

1. COELACHNE R.Br.
Key to the species of Coelachne.
Spikelets pedicelledC. pulchella.Spikelets sessile:-
Panicle branches spreading, distant C. brachiata.
Panicle branches short, stiff C. simpliciuscula.1. Coelachne pulchella R.Br., in Prodr. 187. F.B.I. VII (1897)270. Wall. Cat. n. 8909.
Source of the Cheppadaung river (Wallich).
2. Coelachne brachiata Munro ex Benth., in F1. Austral. VII, 626
(partim) C. pulchella R. Br. var. brachiata Munro. F.B.I. VII (1897)271.Tenasserim (Griffith; Kew Distribution No. 6675).
3. Coelachne simpliciuscula Munro ex Benth., in Jour. Linn. Soc. XIX (1881) 93. C. pulchella Br. var. simpliciuscula Hook.f. F.B.I. VII (1897) 271.

Salu Reserve, South Pegu Forest Division; Thein Lwin 79 I 'In marshy ground'.

2. ISACHNE R.Br.

Key to the species of Isachne.
Lemma and palea equal and similar, both hemispheric and coriaceous:-
Panicles glandular:-
Panicles small, pyramidal I. rigida.
Panicles not glandular:-
Panicles large, pyramidal, effuse, $8-35 \mathrm{~cm}$. long I. albens.
Panicles sub-sessile, contracted, branches erect; stems densely tufted
I. elegans.

Panicles lax, branches and pedicels very long and slender, tips obconic
I. javana.

Lemma usually flatter and thinner than the palea and often longer:-
Panicles ovoid or pyramidal:-
Spikelets $1 \cdot 8-2 \mathrm{~mm}$. long:-
Leaves lanceolate to linear-lanceolate, margins not or very slightly thickened ….......................
Leaves ovate-cordate to lanceolate-acuminate, scaberulous, margins thickened I. australis.

Panicles small, contracted or spreading:-
Spikelets $1 \cdot 2-1 \cdot 5 \mathrm{~mm}$. long
I. dispar.

1. Isachne rigida Nees ex Steud., in Syn. Pl. Gram. 95. F.B.I. VII (1897) 24.

Tenasserim (Helfer) and the Nicobar Islands (Kurz).
2. Isachne albens Trin., in Sp. Gram. Ic. t. 25. F.B.I. VII (1897) 22.

Common in Lower Burma. Cattle eat it readily; a good fodder.
3. Isachne elegans Dalzell ex Hook. f. in F.B.I. VII (1897) 23.

Yawnghwe, Southern Shan States (McKerral 633 !).
4. Isachne javana Nees ex Miq., in PI. Jungh. 376. F.B.I. VII (1897) 24.

Common in water channels, drains, etc., mainly in the high rainfall areas of southern Burma, in the plains.
5. Isachne australis R.Br., in Prodr. 196. I. globosa Kuntze. F.B.I. VII (1897) 24.

A common weed in paddy fields and on the kazins (bunds). Good fodder for cattle.

Burmese-Let-the-zaung.
6. Isachne dispar Trin., in Sp. Gram. Ic. t. 86 (1828). F.B.I. VII (1897) 26.

In swampy ground between about 2,000 and 3,500 feet. (Rhind 3182 ! Anisakan.)
7. Isachne miliacea Roth., in Nov. Pl. Sp. 58. F.B.I. VII (1897) 25.

Very common in moist places throughout the plains of Burma. Cattle and horses eat it; though the yield is small it is much esteemed in parts of the Shan States as a fodder.

Burmese-Myet-wine.
Isachne clarkei Hook.f., I. scabrosa Hook.f. and I. himalaica Hook.f. are likely to be found in Burma near the Assam frontier.

3. ACROCERAS Stapf

Key to the species of Acroceras.
Spikelets close on the panicle branches:-
Spikelets over 5 mm. long . A. zizanioides

Spikelets widely spaced .. A. tonkinensis

1. Acroceras zizanioides (H.B. \& K.) Dandy, Jr. Bot. LXIX (1931) 54. A. oryzoides Stapf. Panicum latifolium Hook.f. non Linn. F.B.I. VII, 39 (in part).

Recorded in the F.B.I. from Burma but no specimen seen by me.
2. Acroceras crassiapiculatum (Merr.) Alston, Trimen, Handb. Fl. Ceylon VI Suppl. (1931) 324. A. ridleyi Stapf ex Ridley; F1. Malay Pen. V (1925) 229. Panicum latifolium Hook.f. non Linn. in F.B.I. VII, 39 (in part).

Frequent in the wet forests of northern and southern Burma. A good fodder but never very plentiful.
3. Acroceras tonkinensis (Balansa) C. E. Hubbard ex Bor, Ind. For. Rec. Bot. n.s. I (1938) 78. Panicum tonkinense Bal. P. latifolium Linn. var. majus Hook.f. in F.B.I. VII, 39. Neohousnotia tonkinensis A. Camus.

Common on the edges of evergreen forests of northern and southern Burma. Eaten by cattle.

4. DIGITARIA Haller

Key to the species of Digitaria (after Bor).
Base of the culms clothed with matted, brown fibres
Base of the culm not as above:-
Spikelets 2-3.5 mm. long, glabrous or fringed with fine, acute hairs, lanceolate to lanceolate-oblong:-
Spikelets $\mathbf{3 - 3 . 5 \mathrm { mm } \text { . long; nerves in lower lemma evenly }}$ spaced; racemes $10-15 \mathrm{~cm}$. long and finely pubescent at the base; rhachis broad, $0.7-1 \mathrm{~mm}$.

D. fibrosa kelets $2-2.5 \mathrm{~mm}$. long; lateral nerves of lower lemma near the margin; racemes $6-10 \mathrm{~cm}$. long; rhachis slender $\ldots \ldots .$.

Spikelets less than 2 mm . long or if slightly longer then with very short curled or matted hairs:-
Pedicles prominent, spreading, 3 mm . long; spikelets spreading, rather loose; rhachis very slender; tri-quetrous:-
Spikelets minutely pubescent; panicle $15-25 \mathrm{~cm}$. long; racemes 15 cm . long
D. adscendens
D. pruriens

Spikelets glabrous or almost so; panicle 4-8 cm. long; racemes $4-8 \mathrm{~cm}$. long
D. jubata

Pedicles very short, 1 mm . long; spikelets appressed close together; rhachis flattened:-
Lemma and palea of upper floret brown or black; annual:Spikelets $1.5-2.3 \mathrm{~mm}$. long; upper glume as long as or nearly as long as the spikelet:-
Spikelets $1.5-1.7 \mathrm{~mm}$. long $\ldots \ldots$. Spikelets $\mathbf{2 - 2 . 3} \mathrm{mm}$. long; peduncle hairy; hairs clavate-tipped
D. violascens
D. ternata -

> Spikelets about 1 mm . long; upper glume very short; hairs clavate-tipped
> D. royleana
> Lemma and palea of upper fioret pale; spikelets $1 \cdot 3-1 \cdot 5 \mathrm{~mm}$. long; upper glume as long as the spikelet; creeping perennials
> D. longiflora

1. Digitaria fibrosa Stapf, Kew Bull. 1912, 428. Panicum fibrosum Hack.

Fairly common in indaing forests. (Thein Lwin 2947 !)
Burmese-Myet-pya.
2. Digitaria adscendens (H.B. \& K.) Henr., Blumea I (1934) 92. Panicum adscendens H.B. \& K. in Nov. Gen. et Sp. (1815) 97.

Very common all over Burma, ascending to about 5,000 feet. A good fodder for cattle.
3. Digitaria adscendens (H.B. \& K.) Henr. var. fimbriata Stapf.

Fairly common. (Thein Lwin 74 !)
4. Digitaria pruriens Büse, Miq. Pl. Jungh. (1854) 379, syn. Paspalum sanguinale Hook.f. cum omnium varietat. F.B.I. VII, 16.

Very common everywhere up to about 6,000 feet except in the driest places. There are a number of more or less distinct varieties of this and D. adscendens which need to be studied in culture before they can be satisfactorily separated. A culture of D. adscendens in-Burma showed unmistakable Mendelian segregation. I have made no attempt to separate the large herbarium collections of this and the proceeding species from Burma into varieties.
5. Digitaria jubata (Griseb.) Henr., Blumea I (1934) 100. Paspalum jubatum Griseb. F.B.I. VII, 19.

Fairly common in shady places, ascending to about 3,000 feet. (Rhind 2625 !, Mt. Popa.) Eaten by cattle.
6. Digitaria pedicellaris Prain, Beng. Pl. (1903) 1182. Paspalum pedicellare Trin. ex Steud. F.B.I. VII, 19.

Common in the drier parts of Burma, particularly on stony ground. Cattle seem to avoid this grass.
7. Digitaria violascens Link, Hort. Berol. I (1827) 229. Panicum violascens Kunth.

Fairly common between about 2,000 and 4,000 feet. (Thein Lwin 74!)
8. Digitaria ternata Stapf, Dyer, Fl. Cap. VII, 376. Paspalum ternatum Hook.f. F.B.I. VII, 17.

Common in shady places, ascending to about 3,000 feet.
9. Digitaria royleana Prain, Beng. Pl. (1903) 1182. Paspalum royleanum Nees ex Thw. Enum. Pl. Zeyl. (1864) 358. F.B.I. VII, 17.

Meiktila and the Shan Hills (Collett; Manders).
10. Digitaria longifiora Pers., Syn. I (1805) 85. Paspalum longiflorum Retz. F.B.I. VII, 17.

Frequent in the hills up to about 5,000 feet. Cattle eat it.
Digitaria pertenuis Büse has been recorded by Craib from Chiengmai (Siam) and also from Malaya. It is likely to be found in Burma.
5. ALLOTEROPSIS Presl. emend. Hitch.

Key to the species of Alloteropsis.
False spikes sub-digitate, 2-5; spikelets 6 mm . long; lemma
of the upper floret long-aristate
A. semialata.

False spikes sub-verticillate, 3-8; spikelets $3-4 \mathrm{~mm}$. long; lemma of the upper floret abruptly and shortly aristate .. A. cimicina.

1. Alloteropsis semialata Hitch., in Contrib. U.S. Nat. Herb. XII, 210. Axonopus semialatus Hook.f. F.B.I. VII, 64.

Common in shady places all over Burma up to about 4,000 feet. McKerral states that it is indicative of wet, undrained ground.
2. Alloteropsis cimicina Stapf, in Fl. Trop. Afr. IX, 487. Axonopus cimicinus Beauv. F.B.I. VII, 64.

Common in the drier parts of Burma, ascending to about $3,000 \mathrm{ft}$. Often found near cultivation. Cattle do not eat it, Burkill says because of the presence of coumarin in it.

6. SACCOLEPIS Nash

Key to the species of Saccolepis.
Spikelets acute:-
Spikelets $4-5 \mathrm{~mm}$. long S. interrupta.
Spikelets $2 \cdot 5-3 \cdot 5 \mathrm{~mm}$. long S. indica.
Spikelets obtuse, $1 \cdot 5-2 \mathrm{~mm}$. long S. myosuroides.

1. Saccolepis interrupta Stapf, in Fl. Trop. Afr. IX, 757. Panicum interruptum Willd. F.B.I. VII, 40.

Common in wet places in southern and northern Burma (not in the Dry Zone). Good fodder.
2. Saccolepis indica A. Chase, in Proc. Biol. Soc. Wash. 1908, 8. Panicum indicum Linn. F.B.I. VII, 41.

Common in moist places all over Burma up to about $\mathbf{2 , 5 0 0}$ feet, particularly in light forest. Not liked by cattle.
3. Saccolepis myosuroides A. Camus, in Flor. Gen. Indo-Chine VII 460. Panicum myosuroides \boldsymbol{R}. Br. F.B.I. VII, 42.

Common in paddy fields in northern Burma and in swampy ground. Eaten by cattle and buffaloes.

7. HYMENACHNE Beauv.

1. Hymenachne pseudo-interrupta C. Muell., in Bot. Zeit. XIX (1861) 333. H. myuros Beauy. Panicum myuros H.B.K. F.B.I. VII, 39.

Fairly common in wet places. Cattle eat it (Ba Thein 2099 !).

8. ICHNANTHUS Swartz

Key to the species of Ichnanthus.
Stems $30-60 \mathrm{~cm}$. long, decumbent; leaves broadly lanceolate,
amplexicaul I. vicinus.
Stems tufted, dwarf, $15-20 \mathrm{~cm}$. long, hispid; leaves short, almost
subulate I. foliosus.

1. Ichnanthus vicinus (Baily) Merr., Enum. Philipp. Fl. P1. I (1923)
2. I. pallens Munro. F.B.I. VII, 60.

Rather uncommon. In damp places (Thein Lwin 55! near Kalasale-an, Pegu District). Cattle eat it.
2. Ichnanthus foliosus Munro ex Hook.f., F.B.I. VII, 61.

Occasional in the plains.
9. PANICUM Linn.

Key to the species of Panicum (after Bor).
Leaf-blades linear to narrowly lanceolate; spikelets symmetrical:-
Lemma of the upper floret finely transversely rugose P. maximum

[^0]1. Panicum humile Nees ex Steud., Syn. Gram. (1854) 84. F.B.I. VII, 48.

Uncommon. Pidaung Game Reserve, Myitkyina District (Maung Te 5 !) and from Arakan (F.B.I.). Eaten by cattle.

Burmese-Pyaung-sa-myet.
2. Panicum humidorum Ham., Wall. Cat. n. 8721. F.B.I. VII, 53.

Zamagyi Forest Reserve, South Pegu Forest Division (Thein Lwin 4 !).
3. Panicum trypheron Schult., Mant. II (1824) 244. F.B.I. VII, 47.

Fairly common, particularly in shady places and indaing forest.
4. Panicum paludosum Roxb., Hort. Beng. (1814) 8. F.B.I. VII, 50. P. proliferum Lam.

Fairly frequent in swamps in the plains (McKerral 656 I). Eaten by cattle and buffaloes.
5. Panicum repens Linn., Sp. Pl. ed. ii (1762) 87. F.B.I. VII, 49. Very common everywhere, ascending to about 4,000 feet. A good fodder. Burmese-Myet-kha.
6. Panicum auritum Presl. ex Nees, Agrost. Bras. (1829) 176. F.B.I. VII, 40.

Common in swampy places in the plains. Readily eaten by cattle and buffaloes.
7. Panicum cruciabile A. Chase, Jr. Arn. Arbor. XX (1939) 309. P. caesium Nees. F.B.I. VII, 48.

Uncommon. (Thein Lwin 94 !.)
8. Panicum miliare Lamk. var. hirtum Hook. f. ex Wall. in F.B.I. VII, 46. Wall. Cat. n. 8718 (in part).

Common in central Burma in open ground, often on road-sides. Eaten by cattle. Burmese-Myet-lu.
9. Panicum psilopodium Trin., Gram. Panic. (1826) 217. F.B.I. VII, 46.

Apparently not a common grass; I have only collected it once (1609).
A variety coloratum was made by Hooker f. for a plant collected by Collett in the Shan Hills (F.B.I. I.c.).
10. Panicum sarmentosum Roxb., Fl. Ind. (1820) 308. F.B.I. VII, 54.

Common in light forest, generally on hill-sides. A tall, scandent grass. Eaten by cattle.
11. Panicum montanum Roxb., F. Ind. (1820) 313. F.B.I. VII, 53.

Very common in the hills, generally in shady places between about 2,000 and 5,000 feet. Cattle do not eat it readily.
12. Panicum brevifolium Linn., Sp. P1. (1753) 59, non Roxb. P. ovalifolium Poir. F.B.I. VII, 44.

Rather uncommon; occurs in northern Burma on forest margins. Eaten by cattle.
Panicum miliaceum Linn. (Sp. Pl. 56) is occasionally cultivated in the drier parts of centrat Burma. Burmese-Lu.

Ridley (FI. Malay Pen. V, 226) gives the distribution of Panicum elegantissimum Hook.f. as extending into Burma but I have seen no Burmese specimen nor any other record.

Panicum maximum Jacq., Guinea Grass, has been introduced as a fodder on some Government farms and elsewhere but it is not extensively grown.

Panicum khasianum Munro ex Hk.f. recorded from the Khasi and Naga Hills and P. acroanthum Steud. from the Mishmi Hills are likely to occur in northern Burma while P. tuberculatum Presl., which occurs in Malaya, may be found in southern Burma.

10. CYRTOCOCCUM Stapf

Key to the species of Cyrtococcum.
Pedicels short, rarely as long as the spikelets
C. trigonum Pedicels longer than the spikelets:-
Lower lemma obtuse:-
Spikelets over 1.5 mm . long C. patens.
Spikelets under 1.5 mm . long:-

Lower lemma and glumes acute or cuspidate C. longipes

1. Cyrtococcum trigonum A. Camus, Bull. Mus. Hist. Nat. Paris (1921) 118. Panicum trigonum Retz. F.B.I. VII, 56.

Fairly common in shady places and on the margins of evergreen forest. Eaten by cattle.
2. Cyrtococcum patens A. Camus, Bull. Mus. Hist. Nat. Paris (1921) 118. Panicum patens Linn. (in part). F.B.I. VII, 57.

Common in shady places in the hills up to about 4,000 feet.
3. Cyrtococcum accrescens Stapf, Hook. Ic. Pl. sub tab. 3096 (1922). Panicum accrescens Trin., Sp. Gram. Ic. (1828) t. 88 et corrigend. vol. iii. P. patens Linn. Sp. Pl. 86. F.B.I. VII, 57.

Infrequent. In damp, shady places (Thein Lwin 15A!).
4. Cyrtococcum radicans Stapf, Hook. Ic. Pl. sub. tab. 3096 (1922). Panicum radicans Retz. F.B.I. VII, 57.

Frequent in shady places. (Thein Lwin 15!, South Pegu Forest Division.)
5. Cyrtococcum longipes A. Camus, Bull. Mus. Hist. Nat. Paris (1921) 118. Panicum longipes W. \& A. F.B.I. VII, 58.

Fairly common in evergreen forests (Thein Lwin 3070 !).

11. ECHINOCHLOA Beauv.

Key to the species of Echinochloa.
Ligule a fringe of stiff hairs, at least in the lower leaves E. stagnina
Ligule absent :-
Lower glume and upper lemma equally acute or cuspidate; racemes rather distant
E. colona

Lower glume and upper lemma cuspidate or produced into an awn:-
Spikelets silkily hairy
E. notabile

Spikelets not silkily hairy:-
Spikelets $3-8 \mathrm{~mm}$. long, generally in simple false spikes, cuspidate or more or less awned from the lower floret.
E. crus-galli

Spikelets $3-3.7 \mathrm{~mm}$. long, very densely clustered in often compound false spikes, abruptly caudate-acuminate or rostrate or (from the lower floret) aristulate. ...
E. crus-pavonis

1. Echinochloa stagnina Beauv., Ess. Agrost. (1812) 161. Panicum stagninum Retz. F.B.I. VII, 31.

Common in wet places all over the plains. Considered a very good fodder.
Burmese-Myet-kya; Myet-thi.
2. Echinochloa colona Link, Hort. Berol. (1827) 209. Panicum colonum Linn. F.B.I. VII, 32.

Commpn all over the plains except in the driest parts. A very good fodder much relished by cattle but it does not yield much. Grain used for human food in times of scarcity.

Burmese-Be-sa-myet; Wunbe-sa-myet; Pazun-sa.
3. Echinochloa notabile (Hook.f.) comb. nov. Panicum notabile Hook.f. F.B.I. VII, 32.

Common in areas of $40-50$ inches rainfall in the central plains of Burma. Wallich (n. 8723) from the Petroleum Wells area (Yenangyaung), Rhind 2611 ! from Taungdwingyi, McKerral (s.n.!) from Ava. A frequent grass of hedge-rows. A good fodder when young; when old the culms tend to become hard; drought-resistant.

Burmese-Wa-yon-myet; Mwe-zok.
Hooker (l.c.) placed this plant in the section Echinochloa of the genus Panicum with the observation that it had affinities with Brachiaria but it is clear from the general appearance of the plant and its intimate structure that it has much more alliance with Echinochloa. At the same time its somewhat xerophytic character is in striking contrast to the other species of Echinochloa found in Burma. It would, however, be most unsatisfactory in Brachiaria and I have therefore placed it in Echinochloa.
4. Echinochloa crus-galli Beauv., Ess. Agrost. (1812) 161. Panicum crus-galli Linn. F.B.I. VII, 31.

Very common in wet places, edges of paddy fields, drains, etc. Readily eaten by cattle and buffaloes. Grain edible. Barnyard Grass.

Burmese-Myet-cho; Myet-thi; Bawt-nyo-myet.
5. Echinochloa crus-pavonis (H.B. \& K.) Schult., Mant. II (1824) 269.

Meiktila (Collett 24 !).
12. OTTOCHLOA Dandy

1. Ottochloa nodosa Dandy, Jour. Bot. LXIX (1931) 54. Panicum nodosum Kunth. F.B.I. VII, 43.

Common in wet places. Much liked by cattle.
Burmese-Wa-yon-myet.

13. PASPALU'M Linn.

Key to the species of Paspalum.
Spikelets small, up to 1.25 mm . long P. compactum
Spikelets larger, over 1.25 mm . long:-
Spikelets in four rows; rhachis wide; upper glume pubescent P. longifolium
Spikelets in two rows; rhachis narrow:-
Spikelets glabrous:-
Spikelets broadly elliptic or orbicular:-
Spikelets $2 \cdot 5-3 \mathrm{~mm}$. long; lower lemma 5 -nerved, often pitted
Spikelets less than 3 mm . long; lower lemma 5 -nerved
Spikelets elliptic-oblong, minutely pubescent on the
P. scorbiculatum upper glume; lower glume minute; mid-nerve of lower lemma prominent
P. distichum

Spikelets ciliate:-
Spikelets small, up to 2 mm . long:-
Spikelets $1.4-1.5 \mathrm{~mm}$. long. \quad P. conjugatum
Spikelets about 2 mm. long P. ambiguum
Spikelets $2 \cdot 2-3 \mathrm{~mm}$. long, purple
P. dilatatum

1. Paspalum compactum Roth., Nov. Pl. Sp. (1821) 36. F.B.I. VII, 12.

Uncommon; usually in stony places between about 2,000 and 3,000 feet (Thein Lwin 3313, Thandaung Road; Lace, Amherst).
2. Paspalum longifolium Roxb., Hort. Beng. (1810) 7. P. scorbiculatum Linn. (in part). F.B.I. VII, 10.

Theindaw, Mergui District (Su Koe 7637 !) and Upper Chindwin (Lace 4209 !).
3. Paspalum scorbiculatum Linn. (sensu strictu), Mant. I (1767) 29. F.B.I. VII, 10.

Very common in open grasslands in the Shan hills between about 3,000 and 5,000 feet (Pwela, D'Souza 2368 !). Good fodder.
4. Paspalum zollingeri Steud., Syn. Pl. Gram. 21. P. scorbiculatum Linn. (in part) F.B.I. VII, 11.

Fairly common in damp, evergreen forests (Pegu, Thein Lwin 3071 !).
5. Paspalum distichum Linn., Syst. Nat. ed. 10, II (1759) 855. F.B.I. VII, 12.

Common in damp situations in Lower Burma. This grass has been cultivated on several military farms in Burma under the name of 'Kikuyu Grass' which it superficially resembles in habit. It appears to have been introduced from the Northwest Frontier Province (India) under that name or else, after introduction, the true

Kikuyu grass was later ousted by the local P. distichum, the change passing unnoticed. At any rate in 1941 all crops of so-called Kikuyu grass proved to be only P. distichum. The latter makes a good fodder if given some attention and watered in the dry season. It is much hardier under Burma conditions than Kikuyu which has not thrived there even at high levels.
6. Paspalum conjugatum Berg., Act. Helvet. VII (1772) 129, t. 8. F.B.I. VII, 11.

Victoria Point, Mergui District (Su. Koe 11001 !) and the Andamans. Buffalo Grass ; Sour Grass.
7. Paspalum ambiguum $D C$., F1. Franc. III, 16. F.B.I. VII, 17.

Not uncommon, generally amongst rocks on hill-sides above about 2,000 feet. (Maymyo road, mile 23, Rhind 2315 !.)
8. Paspalum dilatatum Poir., Lamk. Encycl. V (1804) 35. F.B.I. VII, 17.

Maymyo (Maung Kan 17743 !).
Paspalum vaginatum $S w$. occurs throughout the tropics as a coastal grass of saline mud and will probably be found on the Burma coasts.

14. PASPALIDIUM Stapf

Key to the species of Paspalidium.

Racemes shorter than the internodes	P. flavidum
Racemes longer than the internodes.	P.punctatum

1. Paspalidium flavidum A. Camus, in Flor. Gen. Indo-Chine VII, 419. Panicum flavidum Retz. F.B.I. VII (1897) 28.

Very common everywhere in Burma up to about 5,000 feet. A good fodder. Burmese-Sin-ngo-myet.
2. Paspalidium punctatum A. Camus, in Flor. Gen. Indo-Chine VII, 419. Panicum punctatum Burm. F.B.I. VII (1897) 29.

Common in marsh lands in the plains. (Rhind 2092 !, Mandalay).

15. BRACHIARIA Griseb.

Key to the species of Brachiaria.
Culms slender; sheath-nodes glabrous or pubescent; spikelets generally loosely arranged or if crowded less than 2.5 mm . long:-

Lower glume at least $2 / 3$ the length of the spikelet
B. paspaloides.

Lower glume up to $1 / 3$ the length of the spikelet:-
Spikelets $1-8.2 .5 \mathrm{~mm}$. long; rhachis triquetrous:-
Panicle linear with erect racemes; rhachis pubescent
Panicle lanceolate to oblong with spreading racemes; rhachis with scattered hairs:-
Spikelets solitary, $1.8-2.5 \mathrm{~mm}$. long, often densely hairy as well as the rhachis and pedicels; upper lemma ovate-oblong
B. villosa.

Spikelets paired or upwards solitary, 1-25-1.8 mm. long, hairs on the spikelets longer than the spikelet; upper lemma obovate to elliptic
B. eruciformis. rhachis …….........
Spikelets $2 \cdot 5-4 \mathrm{~mm}$. long; rhachis triquetrous or flattened:-
Spikelets turgid, broadly elliptic or broadly obovateelliptic, apiculate
B. reptans.

Spikelets not turgid:-
Spikelets ovate to lanceolate, paired in the lower part of the racemes; rhachis hairy
B. setigera.

Spikelets obovate to obovate-elliptic, acute or subacute, $2.5-3 \mathrm{~mm}$. long; racemes $2-3$, rarely 4; peduncle below the inflorescence hairy; leaves up to 16 cm . long
B. distachya.

1. Brachiaria paspaloides (Presl.) C. E. Hubb., in Hook. Ic. Pl. IV, iii, sub tab. 3363 (1938). B. ambigua A. Camus. Panicum ambiguum Trin. F.B.I. VII (1897) 33.

Mergui (Griffith). Apparently scarce.
2. Brachiaria eruciformis Griseb., in Ledeb. Fl. Ross. IV (1833) 469. B. isachne Stapf, in Fl. Trop. Afr. IX, 552. Panicum isachne Roth. F.B.I. VII (1897) 28.

Very common in the plains especially on dried-up ground such as paddy fields where it is sometimes the dominant weed.

Burmese-Du-cho-myet; Kyauk-padaw.
3. Brachiaria villosa A. Camus, in Flor. Gen. Indo-Chine VII, 433. Panicum villosum Lamk. F.B.I. VII (1897) 34.

Apparently scarce; Maymyo (Lace).
4. Brachiaria reptans (Linn.) Gard. et Hubb., in Hook. Ic. Pl. IV, iii, sub tab. 3363 (1938). Urochloa reptans Stapf, in Fl. Trop. Afr. IX (1920) 601. Panicum prostratum Lam. F.B.I. VII (1897) 33.

Very common in the plains. An excellent and very nutritious fodder relished by cattle.

Burmese-Be-sa.
Two varieties are recorded from Burma; they are: (1) Var. rigida Hk.f. which corresponds in part with Wall. Cat. n. 8723; no precise locality is given. (2) Var. birmanica Hk.f. which is recorded as having been collected by Collett, again without precise locality. They do not appear to have been collected subsequently.
5. Brachiaria ramosa Stapf, in Fl. Trop. Afr. IX, 542. Panicum ramosum Linn. F.B.I. VII, 36.

Common in central Burma. A frequent weed of cultivated land.
Burmese-Myet-pasit.
6. Brachiaria setigera (Retz.) C. E. Hubb., in Hook. Ic. Pl. IV, iii, sub tab. 3363 (1938). Urochloa setigera Stapf in Fl. Trop. Afr. IX, 598. Panicum setigerum Retz. F.B.I. VII, 36.

Fairly common in shady places (Rhind 2444 !, Kanbalu). Cattle and buffaloes readily eat i t.
7. Brachiaria distachya Stapf, in Fl. Trop. Afr. IX, 565. Panicum distachyum Linn. F.B.I. VII, 37.

Common in wet places in the plains, chiefly Lower Burma. A good fodder; withstands inundation.

16. UROCHLOA Beauv.

1. Urochloa panicoides Beauv., in Ess. Agrost. (1812) 52. Panicum javanicum of Hook.f. F.B.I. VII, 35, non Poir.

Sawyer 662 !, without precise locality.

17. OPLISMENUS P. Beauv.

Key to the species of Oplismenus.
Awns smooth, vicid, filiform. O. compositus. Awns barbellate, capillary; long white hairs on the rhachis .. O. burmannii.

1. Oplismenus compositus P. Beauv., in Ess. Agrost. (1812) 54. F.B.I. VII, 66.

A shade species, common in damp places. Readily eaten by cattle. Burmese-Myet-let-the.
2. Oplismenus burmannii P. Beauv., l.c. F.B.I. l.c. 68.

Frequent in moist shady places in the plains. Eaten by cattle.

18. ERIOCHLOA H.B.K.

1. Eriochloa procera C. E. Hubb, in Kew Bull. 1930, 256. E. polystachya H.B.K. F.B.I. VII, 20.

A common wayside grass of central Burma. A good fodder.
Burmese-Myet-kyein; Myet-dat-tha.

19. AXONOPUS Beauv.

Key to the species of Axonopus.
Leaves broad, hairy; nodes very hairy; spikelets long, acute .. A. compressus Leaves narrow, more or less glabrous; nodes scarcely hairy; spikelets obtuse

1. Axonopus compressus (Sw.) Beauv., Ess. Agrost. (1812) 154.

The common lawn grass of Lower Burma; forms mats close-pressed to the ground. It stands grazing well. Known as Carpet Grass, Blanket Grass or Louisiana Grass.

Burmese-Hgnet-daw-mi.
2. Axonopus affinis A. Chase, Jour. Wash. Science XXVIII (1938) 4.

Less common than the above; occurs in similar places.

20. SETARIA Beauv.

Key to the species of Setaria.
Leaf-blades folded fan-fashion between the primary nerves; inflorescence a loosely-spiculate panicle; spikelets solitary, each subtended by a single bristle
S. palmifolia

Leaf-blades flat when expanded; inflorescence a false spike or narrow panicle; spikelets usually clustered and subtended by more than one bristle:-
Bristles retrorsely barbed
Bristles antrorsely barbed:-
Upper glume as long as the upper lemma; the latter quite smooth; spikelets persistent; lower floret epaleate...
Upper glume shorter than the upper lemma; the latter rugose:-
Inflorescence a narrow panicle, lobed, especially in the
lower part, tapering upwards:-
Annual; spikelets up to 2 mm. long. S. intermedia
Perennial; spikelets $2.5-3 \mathrm{~mm}$. long
S. forbesiana

Inflorescence a cylindric false spike:-
Spikelets 3 mm . long; upper lemma coarsely rugose, boat-shaped and slightly keeled upwards, broad and dorsally strongly curved on the back in profile
S. verticillata
S. italica
kelets up to $\mathbf{2 . 2 5} \mathrm{mm}$. long; upper lemma usually finely rugose, narrow and dorsally gently curved, not at all keeled
S. pallide-fusca

1. Setaria palmifolia Stapf, Jr. Linn. Soc. XLII (1914) 186. S. plicata (Lam.) T. Cooke. Panicum plicatum Lam. F.B.I. VII, 55.

Frequent in cool, shady places, ascending to about 4,000 feet.
Burmese-Kaing-sat-ni; Sat-sha.
2. Setaria verticillata Beauv., Ess. Agrost. (1812) 51. F.B.I. VII, 80.

A shade grass, common round villages, particularly on rubbish heaps, in central Burma. Cattle eat it when young but not when it has flowered.

Burmese-Naya-myet.
3. Setaria intermedia Roem. et Schult, Syst. II (1817) 489. F.B.I. VII, 79.

A shade grass common around villages and in hedge-rows in central Burma. Often mistaken for S. verticillata which it closely resembles except for the attitude of the barbes on the bristles.
4. Setaria forbesiana Hook. f., F.B.I. VII, 81.

Fairly frequent in central Burma.
Burmese-Kat-si-hne.
5. Setaria lutescens $H u b b$., Rhodora XVIII (1916) 232. S. glauca Beauv. F.B.I. VII, 78. Panicum lutescens Weig.

One of the commonest grasses all over the plains and up to about 6,000 feet. Very variable in size and colour of the inflorescence. A good grazing grass.

Burmese-Khwe-mi-apyu; Khwe-mi-ni; Khwe-mi-pok; Kyaung-mi.
6. Setaria pallide-fusca Stapf ex C. E. Hubbard, Kew Bull. 1930, 259. S. glauca Beauv. in part. F.B.I. VII, 78.

Annual; Culms tufted, slender, usually geniculate at the base, up to 75 cm. high. Leaf-blades narrow, $5-30 \mathrm{~cm}$. long, $2-6 \mathrm{~mm}$. wide, glabrous except for a few long hairs near the base. Spikelets alike, awnless, each supported by about 8 persistent bristles, falling entire from their very short stalks, on the axis of a dense, cylindrical, goldenbrown spike up to 7.5 cm . long by $6-13 \mathrm{~mm}$. wide; bristles $6-13 \mathrm{~mm}$. long; spikelets $2-2.5 \mathrm{~mm}$. long, 2 -flowered, upper floret alone perfect.

Fairly common in the northern wet zone but scarce elsewhere. (Pidaung Game Reserve, Myitkyina District, Maung Te 4 !.)

Setaria italica Beauv., Italian Millet, is sometimes cultivated for food, particularly in the driest parts of central Burma round Mt. Popa. It is an important food crop in parts of the Chin Hills.

Burmese-Sat.
Setaria viridis Beauv., which occurs in the hills of Assam and in China, may be found in Burma also.

21. PSEUDORAPHIS Griffith

Key to the species of Pseudoraphis.
Spikelets $8-10 \mathrm{~mm}$. long . P. brunoniana
Spikelets $3.5-4 \mathrm{~mm}$. long
P. minuta

1. Pseudoraphis brumoniana Griff., Notul. ad Pl. Asiat. III (1851) 29. Chamaeraphis spinescens Poir. var. brunoniana Griff. F.B.I. VII, 62.

Near Pinlonchoung, Salu Forest Reserve, Pegu District. (Thein Lwin 3074 !.) Aquatic.
2. Pseudoraphis minuta (Mez) Pilger, Notizbl. Bot. Gart. Berlin X (1928) 210. Chamaeraphis minuta Mez; C. gracilis Hack. F.B.I. VII, 62.

Bonatgyi Lake, Salu Forest Reserve, Pegu District. (Thein Lwin 3302 !.) Aquatic.

22. PENNISETUM Rich

1. Pennisetum hordeiforme Spreng., Syst. I, 302. P. compressum R.Br. F.B.I. VII, 85.

Very common in swamps in the hills between about $\mathbf{3 , 0 0 0}$ and 5,000 feet.
P. typhoides Stapf et Hubb. (P. typhoideum Rich), Peail or Bulrush Millet, Bajra, is occasionally cultivated in central Burma in dry places around Mt. Popa. Burmese-Kala-sat.
P. purpureum Roem. et Schult, Napier or Merker Grass, is sometimes grown as a fodder.
P. villosum R.Br. (P. clandestinum Hochst. ex Chiov.), Kikuyu Grass, has been introduced as a fodder but without success. See note under Paspalum distichum.

23. STENOTAPHRUM Trin.

1. Stenotaphrum helferi Munro, Cat. Pl. Griff. Falc. etc. 1865. F.B.I. VII, 91.

Tenasserim (Helfer), extending into Malaya and Cochin-China. It seems to be rare, with no collection since Helfer's.

24. SPINIFEX Linn.

1. Spinifex littoreus (Burm.) Merr., Fl. of Manilla (1912) 97. S. squarrosus Linn., Mant. 300. F.B.I. VII, 68.

Sea-coasts of Arakan. (Parkinson 8810 !, Sandoway.) Useless as a fodder but has some value as a sand-binder.

XIX. ANDROPOGONE/E.

Key to the genera of the Andropogoneae.
Joints and pedicels slender, filiform, linear, sub-cuneate or subclavate, very rarely inflated; fertile spikelet usually 1 flowered, awned:-
Spikelets all alike, or if different in sex then the female pedicelled:-
Axis of racemes continuous or tardily disarticulating; all spikelets pedicelled:-
Spikelets solitary:-
Spikelets laterally compressed on very short pedicels disposed in one to several slender unilateral racemes

Dimeria.
Spikelets not solitary:-
Racemes in compact or spike-like solitary panicles:-
Spikelets muticous
Imperata.
Spikelets in pairs at each joint; stamens $2 \ldots .$. . Pogonatherum.
Racemes not solitary:-
Racemes digitate:-
Spikelets 1-flowered
Spikelets 2-flowered
Pseudopogonatheruan Eulaliopsis.
Racemes (usually short) in branched panicles with an elongated main axis, the lateral racemes stalked

Spodiopogon.
Racemes in a much-branched panicle, the lateral racemes sessile:-
Spikelets paired, one sessile the other pedicelled or if both pedicelled, the glumes coriaceous:Spikelets all pedicelled; rhachis of racemes tough; spikelets awned

Sclerostachya.
Spikelets with one sessile and the other pedicelled; rhachis of racemes fragile:Spikelets awned; glumes coriaceous Erianthus.

sometimes the lowest barren but still resembling the upper fertile spikelets
Andropogon.
Racemes always 2-nate with a spathe supporting each pair, gathered into often much decompound spatheate panicles, the lowest pair of one of the racemes homogamous, male or neuter, all pairs of the other heterogamous; (all oil-bearing grasses in Burma)

Cymbopogon.

Margins of the lower glume of the fertile spikelet not involute, inflexed or 2 -keeled or, if so, only close to the tips; spikelets with rounded sides or quite terete; callus elongate, acute or pungent; rarely the lower glume inflexed and 2 -keeled from the middle point upwards and the callus short and obtuse (Hyparrhenia); awn more or less hirsute; fertile lemma 2-fid, awned from the sinus:-
Racemes paired; awns hirsute:-
Lower glume without an herbaceous beak; pairs of racemes usually in a very distinctly compound spatheate panicle
Racemes not paired:-
Racemes terminating the culms and their upper branches; pedicelled spikelets male or neuter Racemes few-noded, much contracted, the lowest pair or pairs of spikelets forming an involucre at the base of each:-
Involucre suppressed (habit of Themeda) . : . .
Involucre present:-
Involucre composed of 6-9 male 2-flowered spikelets
Involucre composed of 4 male 1 -flowered or empty spikelets:-
Perfect spikelets with a pointed callus, readily separating from the involucre.
Perfect spikelets without a callus, falling with the involucre
Hyparrhenia.
Heteropogon.
Pseudanthistiria.
Germainia.
Themeda.
Isellema.
Apluda.
Racemes several to many-noded:-
Pedicelled spikelets developed:-
Racemes in pairs or digitate
Racemes solitary on the culms and branches:-
Glumes not winged; upper glume of sessile spikelet awned
Ischaemum.
Sehima.
Pedicelled spikelets rudimentary or reduced to the pedicel:-
Racemes solitary; spikelets awnless
Racemes in pairs; spikelets usually awned
Eremochloa.
Racemes digitate; spikelets awned; lower glume with transverse ridges often broken up into teeth or warts
Apocopis.
Thelepogon.
Fertile spikelets 1-2-flowered; fertile floret awnless:-Racemes in espatheate solitary inflorescences; lower glumeof both spikelets muticous; spikelets 1 -flowered; tallgrassesThrysia.
Racemes solitary at the ends of the culms:-Joints of the rhachis and pedicel complanate, not pressingagainst each other but opposite; lower glume reti-culately ribbedRatzeburgia.
Joints of the rhachis not as above:-
Spikelets solitary, sessile, the pedicelled suppressed;pedicels fused with the internodes of the rhachisOphiuros.
Spikelets not solitary:-
Spikelets all alike; racemes much compressed,toughHemarthria.
Spikelets of each pair unlike, the pedicelled male,neuter or 0:-
Sessile spikelets small, globose, pittedHackelochloa.Sessile spikelets not globose:-Racemes cylindrical, glabrous:-Pedicels and joints fused:-
Spikelets 2-nate Rottboellia
Pedicels and joints free Coelorhachis.

1. IMPERATA CyrillKey to the species of Imperata.Panicle very narrow, spiciform; stamens 2:-Nodes glabrous1. cylindricakoenigii
Panicle thrysiform; stamen 1 I. exaltata1. Imperata cylindrica (Linn.) Beauv., Ess. Agrost. (1812) 165.
I. arundinacea Cyr. F.B.I. VII, 106.Very common up to about 6,000 feet. A variable grass according to the habitat.On open grazed areas, lawns, etc., it is small and depauperate; the savannah form isoften 3-4 feet high while in swamps it may be almost double this height. It is notusually eaten by cattle except in the very young stages. Much used for thatch. Anextremely troublesome weed in plantations. The Lalang of Malaya.
Burmese-Thekke.
2. Imperata cylindrica (Linn.) Beauv. var. koenigii Durand et Schinz. F.B.I. VII, 106.

Similar to the last but generally larger. Usually found in. high rainfall areas or near permanent swamps. (Thein Lwin 2918 ! from near the Indawgyi Lake). Used for thatch.

Burmese-Thekke.
3. Imperata exaltata Brongn., Voy. Coq. Bot. 101. F.B.I. II, 107. I. contracta Hitchc.

Mergui (Griffith) and Sawyer without precise locality.
Burmese-Thekke; Thekke-gyi.
Miscanthus nepalensis Hack., which is common in the Khasi and Naga Hills of Assam, M. nudipes Hack., which is known from the Mishmi country, and M. sinensis Anderss., which occurs in Yunnan, are likely to be found within the northern or northwestern borders of Burma.

2. SCLEROSTACHYA Anders.

1. Sclerostachya fusca A. Camus, Flor. Gen. Indo-Chine VII (1922)
2. Saccharum fuscum Roxb. F.B.I. VII, 120.

Frequent in swampy areas where the rainfall is high.
Burmese-Yin; Thingyan-kaing.

3. NARENGA Bor

Spikelets all alike, 2 -nate, one sessile the other pedicelled on the articulated fragile rhachis of panicled racemes, the pedicelled falling from their pedicels, the sessile falling together with the continuous joint of the rhachis and pedicel. Florets 2; the lower reduced to an empty glume; the upper hermaphrodite. Glumes equal in length, coriaceous, brown, shining; lower flat on the back, margins laxly inflexed, short-haired on the margins; upper keeled, membranous at the top. Lemmas hyaline; upper truncate, awnless, paleate. Lodicules 2. Stamens 3. Stigma lateraily exserted.

Tall, perennial grasses with long, flat, scabrid leaves. Culms densely bearded at the nodes. Panicle narrow, dense; hairs shorter than the spikelets.

1. Narenga porphyrocoma (Hance) Bor, Ind. Forester LXVI (1940) 267. Saccharum porphyrocomum (Hance) Hack. in DC. Monog. Androp. VI (1889) 120. S. narenga Wall. Cat. n. 8856. F.B.I. VII, 120.

An occasional grass of wet forests between about 2,000 and 4,000 feet. (Maung Kan 18183 !, Maymyo.)

4. SACCHARUM Linn.

Key to the species of Saccharum (after Bor). Stems silky below the panicle
S. spontaneum

Stems glabrous below the panicle:-
Lower glume dorsally villous:-
Joints $\mathbf{3 . 5 - 4} \mathrm{mm}$. long; pedicels $\mathbf{2 - 2 . 5} \mathrm{mm}$. long; sessile spikelets $2 \cdot 5-2.7 \mathrm{~mm}$. long
S. arundinaceum

Joints $6-7 \mathrm{~mm}$. long; pedicels $2.5-3.5 \mathrm{~mm}$. long; sessile spikelets $3-4 \mathrm{~mm}$. long.
S. procerum

Lower glume glabrous.
S. officinarum

1. Saccharum spontaneum Linn., Mant. II (1771) 183. F.B.I. VII, 118 cum omnium varietat.

A very common and very variable grass. There are xerophytic forms occurring where they are subject to periodic droughts and hygrophyllous forms near permanent water. Forms with thick, erect culms and others with almost scandent culms occur. Buffaloes and elephants eat it but not cattle. It has considerable soil-binding properties. Sometimes used for thatch.

Burmese-Kaing ; Sit-kaing.
Shan-Hka-long.
2. Saccharum arundinaceum Retz., Obs. IV (1786) 14.

Occasional in swampy places in Lower Burma. Apparently wild. Burmese-Kaing; Pyaung-kaing ; Pyaung-ga.
3. Saccharum procerum Roxb., F1. Ind. I (1832) 243. F.B.I. VII, 119 in part.

Fairly frequent in swampy places where the rainfall is moderately high. (Thet Su 2749 !, Pyinmana.) Eaten by elephants and sometimes by buffaloes.

Burmese-Paung-kaing.
Saccharum officinarum Linn., sugarcane, (Sp. Pl. (1753) 54.), is cultivated nearly all over Burma but mainly in the Pyinmana and Mogaung areas.

Burmese-Kyan.

5. SPODIOPOGON Trin.

1. Spodiopogon lacei Hole, Ind. For. Rec. V (1915) 185.

Perennial; loosely tufted. Culms erect, slender, up to 3 m . high and 4 mm . thick, sometimes with weak axillary shoots which may bear depauperate panicles, more or less sulcate, glabrous, shining, solid. Leaf-sheath of lower leaves usually longer than the internodes, of the upper leaves usually shorter, sulcate, glabrous or hirtellous towards the apex; lamina linear, acute, narrowed to the base, lower leaves 38 cm . long, 2.25 cm . wide, strongly sagittate at the base with 2 linear-deltoid lobes up to 3.25 cm . long, petiolate, petiole up to 19 cm . long, flat or channelled above and villous at the junction with the sheath, dorsally convex, sulcate, glabrous or hirsute
with bulbous-based hairs, lamina with scattered bulbous-based hairs on both upper and lower surfaces; margins scabrid; upper leaves 17.5 cm . long, 1.5 cm . wide, subsessile, not as a rule sagittate, lamina decurrent and crisped along the short petiole; ligule membranous, 2.5 mm . long, denticulate, white-hairy. Inflorescence of terminal panicles of long capillary racemes bearing $3-9$ spikelets each; panicle $17.5-27.5 \mathrm{~cm}$. long, ovate to lanceolate, rhachis glabrous or scabrid, branches verticillate, rhachis of racemes fragile, sessile spikelets falling with the joint and the pedicelled spikelets disarticulating from their-pedicels; pedicels $2 \cdot 5-3.5 \mathrm{~mm}$. long, strongly compressed, spathulate, translucent above, 1 -nerved, ciliate on the margins with brown or pale purple hairs. Spikelets paired, one sessile and the other pedicelled, both similar and awned, $4-5.5 \mathrm{~mm}$. long, 2 -flowered, rarely 1 -flowered, awn $10-15 \mathrm{~mm}$. long; callus short, obtuse, bearded; sessile spikelet with the lower glumes lanceolate, membranous, 3-9-nerved, dorsally hirsute, apex obtuse or emarginate; lemma thin-chartaceous, 3-nerved, apex produced into 2 subulate-lanceolate segments $1 \cdot 5-2 \cdot 5 \mathrm{~mm}$. long, awned from the sinus; awn geniculate, basal column yellowish-brown. Palea ovate-lanceolate, $3-3 \cdot 75 \mathrm{~mm}$. long, hyaline, $0-2$-nerved, minutely pubescent dorsally above, apex acute, obtuse or emarginate. Lodicules 2, cuneate, glabrous. Anthers 3. Styles 2; stigmas 2. Pedicelled spikelets with lower glume 6-10-nerved, membranous, dorsally hirsute, margin hyaline, broad, apex usually mucronate; otherwise like the sessile spikelets.

A forest grass, apparently rather uncommon, occurring in open spaces and amongst bushes. (Lace, Maymyo, 3,500 feet; Ba Pe 12979 !, Thaungyin.)

6. ERIANTHUS Michx.

Key to the species of Erianthus.
Upper lemma entire, narrowed into the awn E. ravennae
Upper lemma 2-toothed or 2-lobed:-
Lower glume dorsally glabrous . E. longisetosus
Lower glume dorsally villous:-
Spikelets 4-5 mm. long; lower glume dorsally villous all

Spikelets $5-6 \mathrm{~mm}$. long; lower glume villous below the middle
E. chrysothrix
mida .. E. hookeri

1. Erianthus ravennae Beauv., Agrost. 14. F.B.I. VII, 121. Saccharum ravennae (Linn.) Murr.

Indaung Forest Reserve, Katha District. In dense masses in In forest.
Burmese-Thekke.
2. Erianthus longisetosus Anders., Ofvers. Vet. Akad. Stockh. (1855) 163. F.B.I. VII, 124.

Recorded by Gage from the Arakan Yomas (Rec. Bot. Surv. Ind. III, 1).
3. Erianthus chrysothrix Hack., Oestr. Bot. Zeit. XLI (L891) 6.
F.B.I. VII, 125. Saccharum longifolium Munro ex Benth.

Frequent in the hills above about 2,500 feet.
4. Erianthus hookeri Hack., Mon. Androp. (1889) 142. F.B.I. VII, 125.

Frequent in the hills between about 3,000 and 4,500 feet. (Maung Kan 18320 !, Maymyo.)

7. MICROSTEGIUM Nees

Key to the species of Microstegium.
Stems decumbent below; leaves contracted or petioled on the sheath; basal sheaths naked:-
Upper lemma very small, shortly 2-lobed:Anthers 3:-
Anthers long, up to $1.5-3 \mathrm{~mm}$. long:Lower floret absent:Spikes pale:-

Lower glume dorsally channelled:Spikes $4-6 \mathrm{~cm}$. long; upper glume truncate; awn $5-6 \mathrm{~mm}$. long
M. monanthum

1. Microstegium monanthum A. Camus, Flor. Gen. Indo-Chine VII (1922) 257. Pollinia monantha Nees. F.B.I. VII, 116.

Frequent in Lower Burma and on the islands off the coast. Burmese-Pyaung-sa.
2. Microstegium brandisii (Hook.f.) comb. nov. Pollinia brandisii Stapf. Coelarthron brandisii Hook.f. Ic. Pl. t. 3262. F.B.I. VII, 164.

Without precise locality: 'on high ground, generally with teak' (Brandis).
Stapf reduced Hooker's species to Pollinia which can no longer stand. The plant has distinct affinities with Microstegium particularly the leaves and the deeplychannelled lower glume.
3. Microstegium delicatulum (Hook.f.) Henrard, Blumea III (1940) 455. Pollinia delicatula Hook.f. F.B.I. VII, 117.

Pegu (Kurz; M'Clelland).
4. Microstegium eucnemis (Nees) Henrard, Blumea III (1940) 455. Pollinia eucnemis Nees ex Steud. F.B.I. VII, 114.

Frequent in Lower Burma.
5. Microstegium stapfii (Hook.f.) Henrard, Blumea III (1940) 455. Pollinia stapfii Hook.f. F.B.I. VII, 115.

Akyab, on low sandstone hills (Kurz) and Katha (Haines 2501 !).
6. Microstegium gratum A. Camus, Flor Gen. Indo-Chine VII, (1922) 258. Pollinia grata Hack. F.B.I. VII, 115.

Very common in damp, shady places, particularly on banks; ascending to about 5,000 feet. Hooker makes a variety, hirsuta, for a specimen collected by Kurz from Pegu.

Burmese-Pyaung-sa-gyi; Pyaung-sa-gale.
7. Microstegium ciliatum A. Camus, Flor Gen. Indo-Chine VII (1922) 259. Pollinia ciliata Trin. F.B.I. VII, 116.

Common in damp, shady places in the hills up to about 5,000 feet.
Burmese-Pyaung-sa.
8. Microstegium nudum A. Camus, Flor Gen. Indo-Chine VII, (1922) 261. Pollinia nuda Trin. F.B.I. VII, 117.

Frequent in open grasslands and amongst bracken in the hills between about 3,000 and 7,000 feet. (Rhind 3717 !, near Mogok.)
M. vimineum A. Camus (Pollinia imberbis Nees) occurs in the Naga Hills of Assam and is likely to be found in Burma.

Key to the species of Eulalia.

Joints of the rhachis and spikelets with whitish, greyish or mauve hairs; basal sheaths of the stem naked:-
Upper glume awnless:-
Lower glume 4-nerved, at least in the pedicelled spikelets (2 marginal and 2 intramarginal); spikelets $3-6 \mathrm{~mm}$. long:-
Spikes and pedicels with silvery hairs E. quadrinervis
Spikes and pedicels with mauve hairs E. . hirtifolia
Lower glume nerveless or sometimes with carinal nerves only ; spikelets $\mathbf{2 \cdot 5 - 3} \mathrm{mm}$. long:-
Spikes 2-4, white-hairy
E. fimbriata

Spikes many, silvery-hairy
E. trispicata

Upper glume awned
E. pallens

Joints of the rhachis and spikelets golden, yellow or fulvous hairy:
Basal sheaths of the stem rusty-tormentose:-
Spikes $7 \cdot 5-15 \mathrm{~cm}$. long, closely appressed to the rhachis; stem 120-150 cm., stout
E. burmanica

Spikes $2.5-7.5 \mathrm{~cm}$, long, rather distant; stem $45-60 \mathrm{~cm}$., slender
E. phaeothrix

Basal sheaths clothed with pale yellow-brown wool ; spikelets with parti-coloured hairs.
E. speciosa

1. Eulalia quadrinervis (Hack.) O. Ktze., Rev. Gen. Pl. (1891)
2. Pollinia quadrinervis Hack. F.B.I. VII, 110.

Hills of Lower Burma, 4,000 to 6,000 feet, and in poor indaing forest.
2. Eulalia hirtifolia (Hack.) O. Ktze., l.c. Pollinia hirtifolia Hack. F.B.I. VII, 111.

Maymyo plateau, 3,500 feet (Lace M7!).
3. Eulalia fimbriata O. Kıze., l.c. Pollinia fimbriata Hack. F.B.I. VII, 112.

Fairly frequent in open places, paddy field bunds, etc., in Lower Burma.
4. Eulalia trispicata (Schultes) Henrard, Blumea III (1940) 453. E. tristachya O. Ktze. Pollinia argentea Trin. F.B.I. VII, 111. Andropogon trispicata Schultes in Mant. II (1824) 452.

Common in Lower Burma, ascending to about 3,000 feet.
5. Eulalia pallens (Hack.) O. Ktze. 1.c. Pollinia pallens Hack. Myitkyina District (Lace 6051 !).
6. Eulalia burmanica (Hook.f.) comb. nov. Pollinia burmanica Hook.f. F.B.I. VII, 113.

Wallich gives the locality as the 'Yomahs'; he probably meant the Pegu Yomas. I have seen no specimen of this grass.
7. Eulalia phaeothrix (Hack.) O. Ktze., Rev. Gen. Pl. (1891) 775. Pollinia phaeothrix Hack. F.B.I. VII, 112.

Fairly common in indaing jungle and ascending to about 3,500 feet.
8. Eulalia speciosa (Hack.) Ktze., Rev. Gen. Pl. (1891) 776. Pollinia speciosa Hack. F.B.I. VII, 113.

Fairly frequent in the hills in open scrub jungle.
Eulalia cumingii A. Camus (Pollinia cumingii Nees, F.B.I. VII, 114) has been reported from Indo-China, Siam (Cheingmai) and the hills of Assam and is therefore likely to be found in Burma. Similarly Eulalia velutina (Hack.) O. Ktze., which occurs in Assam near the Burma border, is to be expected in Burma.

9. EULALIOPSIS Honda

1. Eulaliopsis binata (Retz.) Hubbard, Hook. Ic. Pl. sub tab. 3262 (1935). Pollinidium binatum C. E. Hubbard; P. angustifolium Haines; Ischaemum angustifolium Hack. F.B.I. VII, 129.

Common on hill-sides between about 2,000 and 4,000 feet, often amongst rocks.
Burmese-Thaman-myet.

10. PSEUDOPOGONATHERUM A. Camus

1. Pseudopogonatherum contortum A. Camus, Flor, Gen. IndoChine VII (1922) 255. Pollinia articulata Trin. F.B.I. VII, 109.

Common in the dry forests in central Burma, ascending to about 3,000 feet.

11. POGONATHERUM Hack.

Key to the species of Pogonatherum.
Lower floret present; sessile spikelets $\mathbf{2 . 5 - 3} \mathbf{~ m m}$. long; callus hairs $1-1.5 \mathrm{~mm}$. long; glumes sub-equal; awn $15-18 \mathrm{~mm}$. long; hermaphrodite fiowers with 2 stamens, rarely $1 \ldots$.

P. paniceum

Lower floret absent; sessile spikelets 2 mm . long; callus hairs
2 mm . long; upper glume longer than the lower; awn 18-22 mm . long; hermaphrodite flowers with 1 stamen, rarely 2.. P. crinitum

1. Pogonatherum paniceum (Lam.) Hack., All. Bot. Zeit. XII (1906) 178. P. saccharoideum P. Beauv. F.B.I. VII, 141.

Common in the hills, often on banks along roads. Frequently grown as a pot plant, the so-called 'Bamboo Grass'. Not eaten by cattle. Burmese-Kyauk-wa.
2. Pogonatherum crinitum Kunth, Enum. I (1833) 478. F.B.I. VII, 141.

Recorded by Gage from the Nwamadaung hills, Minbu District, and by Lace from Anisakan ($2,700 \mathrm{ft}$., Mandalay Dist.) and Prome. Probably often mistaken for P. paniceum.

12. APOCOPIS Nees

Key to the species of Apocopis.
Awn not twice the length of the spikelet A. paleacea
Awn 2-6 times the length of the spikelet:-
Spikes exserted from the spathiform upper leaf-sheaths...... A. wightii
Spikes more or less included in the spathiform upper leafsheaths
A. vaginatus

1. Apocopis paleacea (Trin.) Hochr., Bull. N.Y. Bot. Gard. 6, (1910) 262. A. royleana Nees. F.B.I. VII, 142.

Fairly common in central and Upper Burma but sporadic; when found there is generally a lot in the vicinity.
2. Apocopis wightii Nees ex Steud., Syn. Gram. 377. F.B.I. VII, 142.

Fairly common in forest clearings and in open ground.
3. Apocopis vaginatus Hack., Oestr. Bot. Zeit. XLI (1891) 8. A. wightii Nees var. vaginatus Hook.f. in F.B.I. VII, 143.

In open grasslands and forest clearings; not very common.

13. SORGHUM Moench.

Key to the species of Sorghum.
Primary branches of the panicle undivided, up to 10 cm . long. . S. nitidum Primary branches of the panicle branched:-
Panicle $15-30 \mathrm{~cm}$. long; lemma of upper floret not exceeding
3 mm . long
S. halepense

Panicle $40-50 \mathrm{~cm}$. long and very lax; lemma of upper fioret $3.5-4 \mathrm{~mm}$. long
S. mekongense (Cultivated species not in the key.)

1. Sorghum nitidum Pers., Syn. Pl. I (1805) 101. Andropogon serratus Thunb. F.B.I. VII, 185.

A common grass all over the plains. A good fodder up to the time of flowering. Burmese-Naya-myet; Naya-nge; Kadaw-myet.
2. Sorghum halepense (Linn.) Pers., Syn. Pl. I (1805) 101. Andropogon halepense Brot. F.B.I. VII, 182.

Common in Lower Burma and in the northern wet zone. A good fodder.
Burmese-Pyaung.
3. Sorghum mekongense A. Camus, Flor. Gen. Indo-Chine VII (1922) 323.

Robust, erect. Leaves $30-40 \times 3-4 \mathrm{~cm}$., tip acuminate, base slightly rounded, glabrous, edges scabrid, mid-rib prominent; leaf-sheaths glabrous; ligule short, membranous. Inflorescence a large, lax panicle, pendulous, branches $40-50 \mathrm{~cm}$. long, covered with spikelets often to the base; rhachis angular, scabrid-ciliate, joints equal to or exceeding the sessile spikelets; spikelets disarticulating tardily. Sessile spikelets 5 mm . long, narrow-lanceolate, muticous; callus glabrous; lower glume 5 mm . long, lanceolate, 7 -nerved, nerves obscure below the tip, shortly appressed-pubescent on the back at first, becoming glabrous, keel ciliate-scabrid; upper glume 5 mm . long, lanceolate-acuminate, hairy to the base, keel scabrid to the tip. Lower floret barren; lemma 3-5 mm. long, hyaline, lanceolate, acuminate. Upper floret: lemma $3 \cdot 5-4 \mathrm{~mm}$. long, hyaline, lanceolate-acuminate, ciliate. Pedicelled spikelets neuter, muticous, much reduced, linear, very narrow, $1 \cdot 5-2 \mathrm{~mm}$. long, edges of glumes scaberulous; pedicel 4 mm . long, ciliate-scabrid.

Mergui (Su Koe 17674 !).
The Cultivated Sorghums.
Several species of Sorghum are cultivated, some for fodder and some for grain. The following list of cultivated species is based on Snowden's 'The Cultivated Races of Sorghum' but it is certain that it is not exhaustive.
(a) Sorghum roxburghii Stapf var. parvum Snowden.

Monywa and Mahlaing.
Burmese-Way-thali.
(b) Sorghum roxburghii Stapf var. fulvum (Hack.) Snowden.

Rangoon and Mawhan (Katha District).
(c) Sorghum roxburghii Stapf var. hians Stapf.

Lower Chindwin.
Burmese-Way-thali; Thigye; Kala-lettok; Thidok; Letsok.
S. roxburghii with its varieties and forms is the principal grain sorghum of Burma and is distinguished by the generic Burmese name of San-pyaung. The Burmese names given under the varieties are varietal. The most important types belong to the variety hians.
(d) Sorghum nervosum Bees. ex Schult.

Some types from the Kachin Hills belong to this species.
(e) Sorghum splendidum (Hack.) Snowden vair. splendidum (Hack.) Snowden.

Sagaing. Grain said to be glutinous.
Burmese-Pyaung-kaukhnyin; Pyaung-si.
(f) Sorghum dochna (Forsk.) var. pulchrum (Burkill) Snowden.

Lower Chindwin, Sagaing, Myingyan and Mandalay Districts.
Burmese-Kun-pyaung (generic).
(g) Sorghum dochna (Forsk.) var. atrum Snowden.

Lower Chindwin, Sagaing and Myingyan Districts.
Burmese-Kun-pyaung-net.
(h) Sorghum dochna (Forsk.) var. burmanicum (Burkill) Snowden.

Sagaing and Lower Chindwin Districts.
Burmese-Kun-pyaung-pyu.
(i) Sorghum dochna (Forsk.) var. wightii (Hack.) Snowden.

Lower Chindwin.
Burmese-Pyaung-wa; Gokto.
(j) Sorghum dochna (Forsk.) var. melliferum Snowden.

Lower Chindwin.
Burmese-Pyaung-net.
S. dochna with its varieties and forms embraces the bulk of the fodder sorghums of Burma, generically called Kun-pyaung in Burmese. The variety pulchrum is the most abundant.
(k) Sorghum bicolor (Linn.) Moench. var. picigutta Snowden.

Rangoon and Minbu District.
(l) Sorghum bicolor (Linn.) Moench. var. subglobosa (Hack.) Snowden.

Katha and Minbu Districts.
Burmese-San-pyaung.
(m) Sorghum cernuum Host. var. yemense (Koern.) Snowden.

Minbu District.
(n) Sorghum cernuum Host. var. cernuum (Koern.) Snowden.

Rangoon.
Burmese-San-pyaung.
(o) Sorghum nigricans (Ruiz et Pavon) Snowden.

A variety of this species, probably var. angolense, (Rendle) Snowden, was introduced by the Agricultural Department about 1920 and is now widely grown as a fodder under the name of 'Saccoline-pyaung'.
(p) Sorghum subglabrescens Schweinf. et Aschers.

This species occurs in parts of the Dry Zone, particularly Myingyan District, where it is distinguished by the generic name of Kala-pyaung indicating that it is probably an introduction. Some varieties are resistant to the attacks of Striga lutea but not to S. densiflora which does not seem to occur in Burma.
(q) Sorghum sudanense Stapf.

Introduced and occasionally grown as a fodder but is much inferior to the S. dochna types for this purpose in Burma.

14. PSEUDOSORGHUM A. Camus

1. Pseudosorghum fasciculare A. Camus, in Bull. Mus. Hist. Nat. Paris (1920) 662. And ropogon fascicularis Roxb. F.B.I. VII, 177.

Common in areas of moderate rainfall.
Burmese-Padaw-ni; Naya-shwe; Myet-gyin.
15. VETIVERIA Thouars ex Virey.

1. Vetiveria zizanioides (Linn.) Nash, in Small, Flor. South-east U.S. (1903) 67. Andropogon squarrosus Hook. f. non Linn. f. A. muricatus Retz. F.B.I. VII, 186.

Common in swampy areas. The Khas-khas grass of India.
Burmese-Myet-myit-hmwe; Myet-hmwe.

16. CHRYSOPOGON Trin.

Key to the species of Chrysopogon.
Pedicels of the pedicelled spikelets half as long as the sessile spikelets or longer:-
Pedicels of the pedicelled spikelets glabrous C. aciculatus.
Pedicels of the pedicelled, spikelets villous:-
Lower and upper glumes of the pedicelled spikelets both awned:-
Peduncle very long, 30 cm . or more \ldots. C. distichophyllus.
Peduncle short ... C. orientalis.
Pedicels of the upper spikelets not half as long as the sessile spikelets:-
Upper glume of sessile spikelets villous with long, rigid bristles
C. montanus

Upper glume of sessile spikelets glabrous or slightly ciliate
C. montanus var. trinii

1. Chrysopogon aciculatus Trin., Fund. Agrost. (1820) 188. Andropogon aciculatus Retz. F.B.I. VII, 188.

Very common in places of about 50 inches rainfall and over, ascending to about 6,000 feet. The tough, prostrate stems choke out other grasses but afford little fodder. A troublesome weed of grasslands but a good soil-binder. Known as Love Grass, Lesser Spear Grass.

Burmese-Ngon-myet; Naukpo-myet; Myauk-mya; Maung-yin-ngo.
2. Chrysopogon distichophyllus (Hook. f.) comb. nov. Andropogon distichophyllus Hook.f. in F.B.I. VII, 191.

South coast of Burma at Kobok (Kurz).
With the division of the genus Andropogon into its separate sections it is necessary to remove this species to the genus Chrysopogon.
3. Chrysopogon orientalis A. Camus, Flor. Gen. Indo-Chine VII (1922) 332. Andropogon wightianus Steud. F.B.I. VII, 191.

Occasional in Lower Burma. A variable grass.

4. Chrysopogon montanus Trin., Spreng., N. Entdeck. ii, 93. Andropogon monticola Schult. var. monticola proper, Hook. f. in F.B.I. VII, 193.

Fairly frequent in indaing forests. A variable grass. Xerophytic, found usually on dry, stony ground; ascending to about 4,000 feet. Of doubtful fodder value except the most succulent types growing in favourable situations.
5. Chrysopogon montanus Trin. var. trinii Hook. f. in F.B.I. VII, 193. Andropogon monticola Schult. var. trinii Hook. f. Chrysopogon serratus Trin.

Meiktila (Collett).

17. CAPILLIPEDIUM Stapf

Key to the species of Capillipedium.
Lower glume of sessile spikelet flat; leaf-blades much narrowed
and tapering; spikelets lanceolate
C. glaucopsis

Lower glume of sessile spikelet dorsally channelled; base of leaf-blades hardly narrowed; spikelets oblong, obtuse C. parvifiorum

1. Capillipedium glaucopsis Stapf ex Steud., Hook. Ic. Pl. sub tab. 3085. C. assimile A. Camus; Andropogon assimilis Steud. F.B.I. VII, 179.

A common grass of moist, shady places, ascending to about $4,500 \mathrm{ft}$.
Burmese-Kyauk-wa (?).
2. Capillipedium parviflorum Stapf in Dyer, Flor. Trop. Afr. IX (1917) 169. Andropogon miscanthus Kunth. F.B.I. VII, 178.

Not common; usually in dry forests in the plains but ascending to about 4,000 feet (Lace 4365 !, Maymyo; Thein Lwin 246 !).

18. BOTHRIOCHLOA O. Kuntze

Key to the species of Bothriochloa.
Primary axis elongated, much longer than the lower racemes, lower branches or at least the stronger sparingly divided but not beyond the second degree:-
Lower glume of sessile spikelet not pitted
B. intermedia

Lower glume of sessile spikelet pitted . B. intermedia forma
Primary axis short, much over-topped by the racemes:-
Lower glumes of the sessile spikelets pitted or not; hairy
below punctata

1. Bothriochloa intermedia (R.Br.) A. Camus, in Ann. Soc. Linn. Lyons VII (1930) 1621. Amphilophis glabra Stapf. Andropogon intermedius R.Br. F.B.I. VII, 175.

A very common grass in areas of about 50 inches rainfall, ascending to about 3,000 feet. A good fodder.

Burmese-Myet-hmwe.
2. Bothriochloa intermedia ($R . B r$.) A. Camus, forma punctata A. Camus l.c. Andropogon intermedius R. Br. var. punctatus Hook.f. ex Trin. F.B.I. VII, 176.

A fairly common grass which makes good fodder (Rhind 2056!, Maymyo).
3. Bothriochloa pertusa (Willd.) A. Camus, in Ann. Soc. Linn. Lyons n.s. LXXVI (1931) 164. Amphilophis pertusa Stapf in Fl. Trop. Afr. XI, 175. Andropogon pertusus Willd. F.B.I. VII, 173.

One of the commonest Dry Zone grasses and one of the best fodders, both fresh and dry. It can withstand drought.

It is a very variable grass. I have not attempted to separate the varieties which need to be studied in culture.

Burmese-Padaw-byu.

19. DICHANTHIUM Willemet.

Key to the species of Dichanthium.
Lower glume of the sessile spikelet oblong, obtuse or truncate,
keel not winged, with a median nerve; sheaths terete; ligule
membranous, large
D. annulatum.

Lower glume of the sessile spikelet obovate or oblong-truncate,
truncate, winged, no median nerve; sheaths compressed;
ligule a short ciliate membrane
D. caricosum.

1. Dichanthium annulatum Stapf, in Fl. Trop. Afr. IX, 178. Andropogon annulatus Forsk. F.B.I. VII, 196.

One of the commonest grasses of the plains and ascending to about 5,000 feet. An excellent fodder both fresh and dried. It makes rough lawns (e.g. football pitches) if watered and rolled.

Burmese-Padaw-ni.
2. Dichanthium caricosum A. Camus, in Bull. Mus. Hist. Nat. Paris 27, (1921) 549. Andropogon caricosus Linn. F.B.I. VII, 196.

Common in the plains. Rather variable and often difficult to separate from D. annulatum. A good fodder.

Burmese-Padaw-ni; Padaw-nyo.
20. ARTHRAXON P. Beauv.

Key to the species of Arthraxon.
Stamens 3:-
Pedicelled spikelets absent but pedicels present:-
Anthers as long as the spikelet
A. breviaristatus

Anthers minute:-
Racemes many; rhachis sparsely hairy A. nudus
Racemes few; rhachis quite glabrous A. submuticus
Stamens 2:-
Pedicelled spikelets absent; pedicels reduced or suppressed. .
A. hispidus

Pedicelled spikelets usually present in the upper nodes of the racemes, sometimes in the lower, neuter usually much reduced; pedicels distinctly developed, conspicuously ciliate; lower glume 2-dentate
A. lancifolius

1. Arthraxon breviaristatus Hack., Mon. Androp. (1889) 350. F.B.I. VII, 144.

Dwechaung forest, Minbu District. (Parkinson 15653 !.)
2. Arthraxon nudus Hochst., Flora (1856) 159. A. ciliaris Beauv. subsp. nudus Hack. F.B.I. VII, 145.

Very common in moist places, ascending to about 5,000 feet.
3. Arthraxon submuticus Hochst., Flora (1856) 188. F.B.I. VII, 144.

Tavoy (Gomez).
4. Arthraxon hispidus (Thunb.) Makino, Bot. Mag. Tokyo XXVI (1912) 214. A. ciliaris Beauv. in part. F.B.I. VII, 145.

Common in the moister parts of Burma, ascending to 5,000 feet or more. (Maung Kan 18305 !, Maymyo.)
5. Arthraxon lancifolius Hochst., Flora (1856) 188. A. microphyllus Hochst. F.B.I. VII, 147.

Fairly common in high grasslands between about 4,000 and 8,000 feet. Often forms large patches to the exclusion of most other plants.
A. lanceolatus Hochst. has been reported from Assam and China and is to be expected in the northern parts of Burma at least.

21. ANDROPOGON Linn.

Key to the species of Andropogon.
Upper glume of the sessile spikelet awned A. ascinodis
Upper glume of the sessile spikelet awnless A. pumilus

1. Andropogon ascinodis C. B. Clarke, Jr. Linn. Soc. XXV (1889)
2. A. apricus Hook.f. non Trin. F.B.I. VII, 169.

Fairly common in light forests of Lower and central Burma. Eaten by cattle when young.

Burmese-Tagu-myet.
2. Andropogon pumilus Roxb., Fl. Ind. i, 273. F.B.I. VII, 170.

Uncommon. (McKerral 733!, Hanza, Henzada District.)

22. HYPARRHENIA Anderss.

1. Hyparrhenia filipendula Stapf, Fl. Trop. Afr. IX 325 . Andropogon filipendulus Hochst. F.B.I. VII, 210.

Common in the hills from about 3,000 to 5,000 feet.
Burmese-Myet-nyo.

23. CYMBOPOGON Spreng.

Key to the species of Cymbopogon.
Burmese species all oil-bearing and scented; panicles often large and very compound; raceme joints glabrous or pubescent on the back, bearded along the sides, hairs increasing in length upwards but not concealing the sessile spikelets, awns (usually absent in nardus) distinctly geniculate with the knee exserted:-
Sessile spikelets lanceolate or ovate or obovate-lanceolate, back flat:-
Lowest pedicel of raceme scarcely stouter than the upper:-
All spikelets awnless
Sessile spikelets awned
C. nardus

Lowest pedicel of raceme much swollen; panicles erect, narrow, often interrupted, the divisions short, dense; spathes and racemes short, the white hairs of the joints and pedicels often very conspicuous contrasting with the pale brown spikelets
C. coloratus

Sessile spikelets linear to lanceolate-linear, awnless, back distinctly concave in the lower part; panicle usually loose, branches slender, the ultimate branchlets more or less nodding; spathes long and narrow; hairs of joints and pedicels rather spreading:-
Lower glume of sessile spikelet with a narrow groove from the middle downwards corresponding to a keel in-side:-
Lower glume of sessile spikelet wingless
C. citratus

Lower glume of sessile spikelet winged:-
Cuims in loose, scanty fascicles, erect and simple or nearly so, tall and robust; leaf-blades $1-3 \mathrm{~cm}$. wide; panicles $10-30 \mathrm{~cm}$. long, rather loose, becoming reddish when mature
C. flexuosus

Culms in compact fascicles; panicle stiff, $6-10 \mathrm{~cm}$. long or more; spathes narrowly herbaceous, sometimes with rudimentary blades

C. martini

C. polyneuros

Lower glume of sessile spikelet flat or concave between the keels:-
Pedicelled spikelets minutely pubescent:-
Panicle elongate, $10-30 \mathrm{~cm}$. long; lower glume of sessile spikelet narrowly winged above the middle Panicle $30-90 \mathrm{~cm}$. long; lower glume of sessile spikelet broadly winged above the middle
C. clandestinus
C. khasianus

Pedicelled spikelets quite glabrous
C. virgatus

1. Cymbopogon nardus Rendle, Cat. Welw. Afr. PI. It (1899) 155. Andropogon nardus Linn. F.B.I. VII, 205.

Cultivated for its oil in the Tenasserim Division. Not known outside cultivation. Citronella Grass.

Burmese-Sabalin-hmwe; Myet-hmwe.
2. Cymbopogon flexuosus Watson, Atkins., Gazet. N.W. Prov. Ind. (1882) 392. Andropogon nardus Linn. var. flexuosus Hack. F.B.I. VII, 207.

Maymyo, 3,400 feet. (Maung Kan 18185 !, which seems to be the only record of this grass from Burma.)
3. Cŷ̀mbopogon coloratus Stapf, Kew Bull. 1906, 357. Andropogon nardus Linn. var. coloratus Hook.f. F.B.I. VII, 206.

Thapangaing, Mandalay District. (Ba Thein s.n. !.) Not common; in clearings in dry teak forest.
4. Cymbopogon citratus Stapf, Kew Bull. 1906, 357.

Common as a pot herb all over Burma. Cultivated for its leaves which are used by the Burmese for flavouring curries. Not known out of cultivation. It rarely flowers but was found in flower in Mandalay in 1940 (Rhind 3929 !). Lemon Grass.

Burmese-Sabalin.
5. Cymbopogon martini Watson, Atkins., Gazet. N.W. Prov. Ind. (1882) 392. Andropogon martini Roxb. A. schoenanthus (L.) var. martini in F.B.I. VII, 204.

Amherst District. (Parkinson 5076 1.)
6. Cymbopogon polyneuros Stapf, Kew Bull: 1906, 357. Andropogon schoenanthus (L.) var. versicolor Hack. F.B.I. VII, 205.

Mt. Popa, Myingyan District, 4,000 feet. (Rhind 2619 !.)
Burmese-Myet-kyet-thun.
7. Cymbopogon clandestinus Stapf, Bull. Imp. Inst. Lond. XXVII (1929) 458. Andropogon schoenanthus (L.) var. clandestinus Hack. F.B.I. VII, 205. A. clandestinus Nees.

Very common on hill-sides from about 1,000 to 3,000 feet.
Burmese-Myet-sat.
8. Cymbopogon khasianus Stapf MS ex Bor, Ind. For. Rec. (Bot.) (1938) 92. Andropogon nardus (L.) var. khasianus Hack. F.B.I. VII, 206.

Pegu. (Thein Lwin 243 !, which seems to be the only record of this grass from Burma.)
9. Cymbopogon virgatus Stapf ex Rhind, Agric. Jr. Ind. XXV (1930) 328. (C. n.sp. of the Bull. Imp. Inst. Lond. XXVII (1929) 459.)

Fairly common on uplands in the drier parts of central Burma. It is used for fodder for cattle in times of scarcity but cattle dislike it and will only eat it when nothing else is available. It must be fed dry.

Burmese-Myet-sat; Myet-nan.
The oils of this grass and of C. clandestinus were analysed at the Imperial Institute, London, and were found not to differ very much except that the optical rotation of the clandestinus oil was $+45.96^{\circ}$ and that of virgatus was -48.67°. The Cymbopogon $n . s p$. referred to in the Imp. Inst. reference is that species which Stapf later named C. virgatus. The type is in Herb. Kew.

24. SCHIZACHYRIUM Nees

Key to the species of Schizachyrium.
Annual:-
Fastigiately branched; racemes silky villous; joints appendaged
S. exile.

Divaricately branched; racemes sparsely hairy; joints
2-toothed
S. brevifolium.

Perennials:-
Joints of the racemes $5-7 \mathrm{~mm}$. long, glabrous or ciliate; upper lemma of sessile spikelet deeply bifid
S. semiberbe.

1. Schizachyrium exile Stapf, in Fl. Trop. Afr. IX, 191. Andropogon exilis Hochst. F.B.I. VII, 166.

Apparently scarce. (McKerral 726 !, without precise locality.)
2. Schizachyrium brevifolium Nees, in Agrost. Bras. (1829) 332. Andropogon brevifolius Sw. F.B.I. VII, 165.

Fairly common in the drier parts. Cattle eat it but the yield is small. Burmese-Yaso-myet; Indaing-myet-kha.
3. Schizachyrium semiberbe Nees, in Agrost. Bras. (1829) 336. Andropogon hirtifolius Kunth. F.B.I. VII, 167.

A common grass of the uplands of central Burma and in forest clearings. Apparently not liked by cattle in Burma.

25. DIECTOMIS Kunth.

1. Diectomis fastigiata H.B.K., in Nov. Gen. et Sp. i, t. 64. Andropogon fastigiatus $S w$. F.B.I. VII, 167.

Frequent in central Burma.
Burmese-Myauk-mya.

26. HETEROPOGON Pers.

Key to the species of Heteropogon.
Spikes up to 7.5 cm . long, sessile; female spikelets 6 mm . long \boldsymbol{H}. contortus. Spikes $7 \cdot 5-15 \mathrm{~cm}$. long, very stout, female spikelets $12-14 \mathrm{~mm}$. long
H. insignis.

1. Heteropogon contortus (Linn.) Beauv. ex Roem. et Schult., in Syst. Veg. II (1817) 835. Andropogon contortus Linn. F.B.I. VII, 199.

Very common in dry places in the plains and ascending to about 4,500 feet. There is a number of varieties of which the annual and perennial forms are the most important. It makes a good fodder when young and before the 'spears' have hardened. Spear Grass.

Burmese-Myet-hlan; Myauk-mya; Mwe-lein-myet.
2. Heteropogon insignis Thw., in Enum. PI. Zeyl. 437. Andropogon triticeus Br. F.B.I. VII, 200.

A grass of the Dry Zone, particularly in scrub jungle (Thein Lwin 2921 !, near Chauk).

Burmese-Indaing-myauk-myi.

27. THEMEDA Forsk.

Key to the species of Themeda.
Pairs of involucral spikelets inserted at the same level, $5-10 \mathrm{~cm}$.
long:-
Racemes in lax heads:-
Awns very long and stout, up to 7.5 cm . long T. arguens
Racemes in compact heads:-
Racemes in globose or fan-shaped heads; sessile spikelets
3-4 mm. long.
Racemes in densely congested heads; awns $3-6 \mathrm{~cm}$. long; involucral spikelets $6-10 \mathrm{~mm}$. long
T. quadrivalvis
T. triandra

Pairs of involucral spikelets inserted at different levels:-
Involucral spikelets glabrous or nearly so; fertile spikelets
with an imperfect awn or none
Involucral spikelets bearing fulvous, tubercle-based hairs:-
Fertile spikelets long-awned
T. villosa
T. arundinacea

1. Themeda arguens (Willd.) Hack., Monog. Androp. 657. Anthistiria arguens Willd. F.B.I. VII, 211.

Andaman Islands. (Prain.) Cattle eat it when young.
2. Themeda quadrivalvis O. Ktze., Rev. Gen. PI. II, 794. Anthistiria ciliata Linn.f. F.B.I. VII, 213 (incl. var. helferi Hk.f.).

Common throughout the hills up to about 4,000 feet, extending from Tenasserim in the south to the Kachin Hills in the north.
3. Themeda triandra Forsk., Flor. Aegyp-Arab. (1775) 178. Anthistiria imberbis Retz. F.B.I. VII, 211.

Very common in places of moderate to high rainfall, ascending to about 4,000 feet. An extremely variable grass. A good fodder up to the time of flowering after which cattle will only eat it if nothing better is available.

Burmese-Myet-swe-le; Myauk-me.
4. Themeda villösa Dur. et Jack., Index Kew. Suppl. I, 424. Anthistiria gigantea Cav. subsp. villosa Hack. F.B.I. VII, 217. A. villosa Poir.

Fairly common in the foothills of central Burma. Too coarse to be of much fodder value.

Burmese-Thekke-min ; Saing-lon.
5. Themeda arundinacea Ridley, Fl. Malay Pen. V (1925) 212. Anthistiria gigantea Cav. subsp. arundinacea Hack. F.B.I. VII, 216.

Fairly common where the rainfall is about 60 inches and over but mainly in northern Burma. Too coarse to be of much fodder value.

Burmese-Kaing-de-o-bok.
6. Themeda intermedia Dur. et Jack., Index Kew. Suppl. I, 424. Anthistiria gigantea Cav. subsp. intermedia Hack. F.B.I. VII, 217.

Fairly common in the hills.
Burmese-Kaing-de-o-bok; Kaing-swe-le.

28. PSEUDANTHISTIRIA Hook.f.

1. Pseudanthistiria burmanica Hook.f., F.B.I. VII, 220.

Collected by Kurz from Pegu and by Manders from the Shan hills, 4,000 feet. Apparently scarce; I have never collected it.

29. EREMOPOGON Stapf

1. Eremopogon foveolatus Stapf, Fl. Trop. Afr. IX, 183. Andropogon foveolatus Del. F.B.I. VII, 168.

Very common in the Dry Zone where it is one of the most valuable fodder grasses.

Burmese-Padaw-ni; Kyauk-padaw.

30. ISEILEMA Anderss.

Key to the species of Iseilema.
Keel and submarginal nerves of the spathes tubercled I. argutum
Keel and submarginal nerves of the spathes not tubercled or
granulate
I. laxum

1. Iseilema argutum Anderss., Nov. Act. Soc. Sc. Upsal. ser. 3, ii, 25. F.B.I. VII, 218.

Fairly common in Lower Burma forests (Thein Lwin 26 !).
2. Iseilema laxum Hack., Monog. Androp. 682. F.B.I. VII, 218.

Widely distributed throughout central Burma but nowhere abundant. Makes a good fodder when grown under favourable moisture conditions.

31. DIMERIA R.Br.

Key to the species of Dimeria.
Rhachis of spikes broader than the sessile spikelets, margins ciliate; spikelets conniving

Spikes 2-3:-
Rhachis trigonous or linear, flexuous, glabrous, 0.5 mm . wide; upper glume 2.5 mm . long or more
Rhachis undulate, compressed, margins smooth or scaberulous
D. tenera pikes 4-10:-
Rhachis straight or flexuous, internodes $\mathbf{4 8} \mathbf{~ m m}$. long; nodes ciliate
D. fuscescens

1. Dimeria kurzii Hook.f., F.B.I. VII, 103.

Throughout the plains except the driest parts but nowhere very abundant; from Mergui to Myitkyina.

Burmese-Daye-hmwe.
2. Dimeria tenera Trin., Mem. Acad. Peters. ser. VI, ii (1833) 335. D. ornithopoda Trin. F.B.I. VII, 104 (in part).

Very widely distributed in the plains except the driest and wettest parts. Very variable. Of little value for fodder.
3. Dimeria fuscescens Trin., Mem. Acad. Peters. ser. VI, ii, (1833) 335. F.B.I. VII, 105.

Tenasserim (Helfer).
4. Dimeria leptorhachis Hack., Monog. Androp. 89. F.B.I. VII, 105.

Tenasserim (Helfer; Griffith).
McKerral (Bull. No. 20, 1924, of the Burma Agric. Dept.) mentions Dimeria pusilla as occurring in Lower Burma but there appears to be no other record and no specimen has been seen by me. There was no sheet of it in Herb. Coll. Agric. Mandalay.

32. ISCHAEMUM Linn.

Key to the species of Ischaemum.
Sessile spikelets at least awned:-
Margins of lower glume of sessile spikelets expanded below the middle, incurved at the base, apex 2 -toothed; upper
lemmas of both spikelets 2 -lobed to about the middle, awned from the sinus:-
Lower glume of sessile spikelet distinctly winged at the apex
I. aristatum

Lower glume of sessile spikelet not winged; leaves distinctly petioled, petiole 5 mm . long or more

1. timorense

Margins of glumes narrowly inflexed, not expanded below:-
Lower glume of sessile spikelet deeply channelled along the middle
I. petiolare

Lower glume of sessile spikelet not channelled:-
Lower glume of sessile spikelet smooth or nearly so, 1-keeled; lower glume of pedicelled spikelet smooth or faintly noduled, one keel with a wide crescentshaped wing
Lower glume of sessile spikelet ribbed or noduled:-
Lower glume of sessile spikelet with 5 horny, deep, usually regular transverse ridges on the lower part; keels unequally winged above; one keel of lower glume of pedicelled spikelet with a wide crescent-shaped wing
I. rugosum

Lower glume of sessile spikelet with marginal nodules (not transyerse):-
Lower glume of pedicelled spikelet very broadly winged on one margin only; lemma muticous or mucronulate, rarely with an imperfect awn
Lower glume of pedicelled spikelet narrowly winged; awn up to 1.3 cm . long
I. imbricatum
I. mangaluricum

Both spikelets awnless
I. muticum

1. Ischaemum aristatum Linn. (non Willd.), Sp. Pl. (1753) 1049. I. ciliare Retz. F.B.I. VII, 134.

Common in Lower Burma and occasional in the northern wet zone. Eaten by cattle.

Burmese-Thon-tin-gwa; Pyaung-sa-myet.
2. Ischaemum timorense Kunth, Rev. Gram. I (1829) 369. F.B.I. VII, 136.

Throughout Lower Burma; very common on the edges of paddy fields. A useful fodder.
3. Ischaemum petiolare Hack., Monog. Androp. (1889) 238. F.B.I. VII, 138.

Karen Hills (Kurz).
4. Ischaemum molle Hook.f., F.B.I. VII, 128.

Frequent in Lower Burma and occasional in the northern wet zone.
Burmese-Thon-tin-gwa.
5. Ischaemum rugosum Salisb., Ic. Stirp. Rar. (1791) i, t. 1. F.B.I. VII, 127.

Very common in moist places all over the plains and ascending to about 3,000 feet. A good fodder.

Burmese-Tet-kwet; Nga-tha-yaung; Kagyi-the-myet.
6. Ischaemum imbricatum Stapf ex Ridley, Fl. Malay Pen. V (1925) 200. I. aristatum var. imbricatum Hack. F.B.I. VII, 127 (non Linn.).

Anisakan, Mandalay District, 3,000 feet (Po Khant 18175 !).
7. Ischaemum mangaluricum (Hack.) Stapf ex C. E. C. Fischer, Fl. Madras (1934) 1723. I. aristatum Hk.f. (non Linn.) var. mangaluricum in F.B.I. VII, 126.

Zigon Forest Division (Thein Lwin 34 !).
8. Ischaemum muticum Linn., Sp. P1. (1753) 1049. F.B.I. VII, 132.

Karathuri, Mergui District. (Su Koe 7658 !, 'Gregarious on moist bank of stream'.) Extends into Malaya and Australia where it is said to be a good sandbinder and a valuable fodder.

33. SEHIMA Forsk.

Key to the species of Sehima.
Joints and pedicels ciliate on both edges S. nervosum
Joints and pedicels ciliate on one margin only S. sulcatum

1. Sehima nervosum (Thw.) Stapf, Fl. Trop. Afr. IX, 36. I. laxum R.Br. F.B.I. VII, 136 (in part).

Common in central Burma except in the driest parts, often in light indaing forest. A good fodder both fresh and dry.
2. Sehima sulcatum A. Camus, Bull. Mus. Nat. Hist. Paris XXVII (1921) 373. Ischaemum sulcatum Hack. F.B.I. VII, 137.

In indaing forest. (Thein Lwin 252 !.)

34. APLUDA Linn.

Key to the species of Apluda.
Sessile spikelets awned ... A. aristata.
Sessile spikelets awnless .. A. mutica.

1. 'Apluda aristata Linn., in Cent. II, 7. A. varia Hack. subsp. aristata Hack. F.B.I. VII, 150.

Common in the plains except in the very dry parts. Though often considered a good fodder it is usually too small a plant to yield any worthwhile amount of herbage.
2. Apluda mutica Linn., in Sp. Pl. 82. A. varia Hack. subsp. mutica Hack. F.B.I. VII, 150.

Common in the plains. Closely resembles A. aristata.
Burmese-Myet-wa.

35. THYRSIA Stapf

1. Thyrsia zea (Clarke) Stapf, in Hook. Ic: Pl. XXXI sub tab. 3078, 1922. Rottboellia zea Clarke. F.B.I. VII, 152.

An uncommon grass, usually solitary, occurring where the rainfall is over about 70 inches, ascending to about 3,000 feet. (Rhind 3259 !, Goteik Gorge; McKerral s.n. 1, Hopin.)

Burmese-Kaing-pyaung; Kaing-pabya.

36. HEMARTHRIA R.Br.

Key to the species of Hemarthria.
Spikelets less than 6 mm . long; weak trailing grasses with very
narrow false spikes $6-10 \mathrm{~cm}$. long
H. compressa.

Spikelets over 8 mm . long; erect from a decumbent base; false spikes sheathed below, $10-15 \mathrm{~cm}$. long
H. longiffora.

1. Hemarthria compressa (Linn.f.) R.Br., in Prod. 207 (1810). Rottboellia compressa Linn.f. F.B.I. VII, 153 (incl. var. genuina Hack.). Common in wet places, swamps, etc., ascending to about 4,000 feet. Burmese-Myet-kyein.
2. Hemarthria longiflora (Hook.f.) A. Camus, in Flor. Gen. IndoChine VII, 379. Rottboellia longiflora Hook.f. in F.B.I. VII, 154.

Occasional where the rainfall is above about 60 inches (Griffith, Mergui; Ba Te 3215!, Mohnyin). Said to favour rich land and its presence as a weed in paddy fields to indicate high fertility.

Burmese-Myet-min.

37. THELEPOGON Roth.

1. Thelepogon elegans Roth. ex Roem. et Schult., in Syst. ii, 788. F.B.I. VII, 148.

Fairly common on hill-sides up to about 3,000 feet (Chatteriee 4102 !, Mt. Popa; Rhind, Goteik Gorge). Eaten by cattle but never sufficiently abundant to count much in the fodder supply.

38. RATZEBURGIA Kunth.

1. Ratzeburgia pulcherrima Kunth., in Revis. Gram. ii, 487. F.B.I. VII, 161.

A common grass of the Dry Zone occurring in open grasslands. It yields little fodder and cattle seem to avoid it though sheep will graze it. Though typically a grass of dry areas it sometimes extends into wetter places where it becomes more robust. (McKerral 771 !, Hopin, rainfall about 65 inches.) Not in the hills.

39. MNESITHEA Kunth.

Key to the species of Mnesithea.
Leaves narrow; peduncle short:-
Lower glume of sessile spikelet foveolate on the back M. Laevis
Lower glume of sessile spikelet smooth on the back rupicola

1. Mnesithea laevis (Retz.) Kunth, Rev. Gram. I (1830) 154. Rottboellia perforata Roxb. F.B.I. VII, 158.

Common in moist places up to about $\mathbf{3 , 0 0 0}$ feet. A very good fodder.
2. Mnesithea rupicola Ridley, Jr. Roy. As. Soc. S. Br. 57, 116.

Rottboellia helferi Hook.f. in F.B.I. VII, 158.
Tenasserim (Helfer), extending into Malaya.
3. Mnesithea merguensis (Hook.f.) A. Camus, Bull. Mus. Hist. Nat. Paris XXV (1919) 57. Rottboellia merguensis Hook.f. F.B.I. VII, 158.

Mergui (Helfer and Griffith).

40. HACKELOCHLOA O. Kuntze.

Key to the species of Hackelochloa.
Sessile spikelets globose; upper glume of sessile spikelets 3-
 sessile spikelets 1 -nerved
H. porifera

1. Hackelochloa granularis O. Ktze., Rev. Gen. Pl. (1891) 776. Manisuris granularis Linn.f. F.B.I. VII, 159.

Common on uplands and on stony ground. A frequent weed of taungyas.
Burmese-Waso-myet; Kon-thaman-myet.
2. Hackelochloa porifera (Hack.) comb. nov. Manisuris porifera Hack. in Oestr. Bot. Zeit. XLI (1891) 48. F.B.I. VII, 160.

Tenasserim and the Andaman Islands.

41. EREMOCHLOA Büse

Key to the species of Eremochloa.
Spines of lower glume of fertile spikelet shorter than the glume is broad:-
Lower glume of fertile spikelet elliptic, subacute, with 2 small,
rounded, terminal wings
E. bimaculata

Spines of lower glume of fertile spikelet longer than the glume is broad:-
Lower glume of fertile spikelet narrowly oblong, acute...... E. ciliaris
Lower glume of fertile spikelet broadly ovate, subacute E. helferi

1. Eremochloa bimaculata Hack., Monog. Androp. 265. F.B.I. VII, 140.

Common in moist, shady forests all over the plains.
2. Eremochloa ciliaris (Linn.) Merr., Philipp. Jr. Sci. I Suppl. (1906) 441. E. leersioides Hack. F.B.I. VII, 140.

Frequent in Lower Burma. A shade species. Burmese-Sat-loo.
3. Eremochloa helferi Munro ex Hack., Monog. Androp. 266. F.B.I. VII, 140.

Tenasserim (Helfer and Griffith).
Eremochloa malayana Ridl. (Fl. Malay Pen. V, 196) occurs in Malaya and Siam and is to be expected in Burma.
42. ROTTBOELLIA Linn.f. in part.

1. Rottboellia exaltata Linn.f., Suppl. (1781) 114. F.B.I. VII, 156.

Throughout the plains from the Andaman Islands to the Myitkyina District and in the hills up to about 4,000 feet. A good fodder but does not yield much herbage.

Burmese-Myet-ya-nge; Myet-ya.

43. COELORHACHIS Brong.

Key to the species of Coelorhachis.
Lower glume of sessile spikelets scaberulous on the back. C. glandulosa Lower glume of sessile spikelets smooth on the back:-

Joints of racemes over 3 mm . long C. striata
Joints of racemes 2 mm . long
C. khasiana

1. Coelorhachis glandulosa Stapf ex Ridley; Fl. Malay Pen. V (1925) 204. Rottboellia glandulosa Trin. F.B.I. VII, 157.

Wallich records this grass from Burma without precise locality. As it is widely distributed in Malaya it is to be expected in the south of Burma.
2. Coelorhachis striata A. Camus, Ann. Soc. Linn. Lyons (1921)
197. Rottboellia striata Nees ex Steud. F.B.I. VII, 157.

Common in the plains, generally near water.
Burmese-Taung-kaing.
3. Coelorhachis khasiana Stapf ex Bor, Ind. For. Rec. (Bot.) I (1938) 101. Rottboellia striata Nees ex Steud. sub-sp. khasiana Hack. F.B.I. VII, 157.

Mohnyin, Myitkyina District (Parkinson 288 !).

44. OPHIUROS Gaertn.

1. Ophiuros corymbosus Gaertn., Fruct. III, 4, t. 181. F.B.I. VII, 160.

Shan hills (Manders). Probably commoner than the herbarium materials suggest.
45. GERMAINIA Balans. et Poitrass.

Key to the species of Germainia.
Hase of the stem glabrous; leaves short, $3-8 \mathrm{~cm}$. long; male spikelets sessile on the contracted tip of the peduncle
Base of the stout root-stock covered with snowy wool; radicle leaves up to 30 cm . long; male spikelets on a very short rhachis

> G. khasiana
G. lanipes

1. Germainia khasiana Hack., Oestr. Bot. Zeit. XLI (1891) 50. F.B.I. VII, 163.

Kaukkwe valley, Bhamo District (Lace 6054 !). This seems to be the only record from Burma.
2. Germainia lanipes Hook.f., F.B.I. VII, 163.

Tenasserim (Helfer). It does not appear to have been collected since Helfer's time.

XX. MAYDEAE.

Key to the genera of Maydeae.
Male and female spikelets in the same inflorescence:-
Female spikelets enclosed in hard bead-like bodies
Female spikelets not enclosed in bead-like bodies:-
The covering of the false fruit formed chiefly by the lower
glume which is appressed to the narrow joint of the
axis to which it is attached on the inner side:-
Terminal spikes male, the lateral male and female or
female only
Spikes monoecious, several male spikes above the female, the latter without membranous appendages

Polytoca
Chionachne
Male spikelets in spikes arranged in a terminal panicle, female
spikes in the axils of subtending leaves:-
Female spikes of each leaf-axil free, articulated
Euchlaena
Female spikes grown together into a compound and much
thickened axis (the 'cob')
Zea

1. COIX Linn.

Key to the species of Coix.
Texture of involucres chartaceous or crustaceous C. ma-yuen
Texture of involucres stony:-
Involucres globose:-
Lower glume of male spikelets broadly winged C. gigantea
Lower glume of male spikelets narrowly winged C. lachryma-jobi
Involucres cylindrical C. lachryma-jobi var. stenocarpa

1. Coix ma-yuen Rom., Bull. Soc. Acclim. Paris ser. 3, viii, (1881) 442. C. lachryma-jobi Linn. var. mayuen Stapf ex Hook.f. F.B.I. VII, 100.

The cultivated thin-shelled form found in high-level swampy areas where it provides a valuable food for some of the hill tribes. A six to eight months crop.
2. Coix gigantea Roxb., Flor. Ind. III (1832) 569. C. lachrymajobi Linn. var. gigantea Stapf, F.B.I. VII, 100.

Fairly common in swamps.
Burmese-Kyeik.
3. Coix lachryma-jobi Linn., Sp. Pl. (1753) 972. F.B.I. VII, 100.

Common in cool, swampy places, ascending to about 6,000 feet or more. There are numerous varieties differing in the size, shape and colouring of the involucres. Cattle do not eat it readily unless chopped up and mixed with other food. Job's Tears.

Burmese-Kyeik; Kalein; Kaleik.
4. Coix lachryma-jobi Linn. var. stenocarpa Stapf, Hook. Ic. Pl. t. 1764 et Kew Bull. 1888, 144. F.B.I. VII, 100.

Frequent from Mergui to the Kachin Hills. The involucres are used for decorating Shan and Kachin bags and by some Karens as clothes ornaments.

2. POLYTOCA R.Br.

Key to the species of Polytoca.
Male racemes stiff, slender; pedicelled spikelets often rudimentary and pedicels adnate to the rhachis.......... . P. digitata Male racemes flexuous; pedicelled spikelets free P. wallichiana

1. Polytoca digitata (Linn.f.) Druce, Rept. Bot. Exch. Club Brit. Isles 1916, 641. P. bracteata Br. F.B.I. VII, 101.

Common in the hills between about 2,000 and 4,500 feet. A frequent weed of taungyas.
2. Polytoca wallichiana Benth., Jr. Linn. Soc. XIX (1881) 52. F.B.I. VII, 101:

Common in Lower Burma.
Burmese-Myet-ya.
3. CHIONACHNE R.Br.

Key to the species of Chionachne.
Culms up to 60 cm . long; spathes always closed; racemes solitary $\because \ldots .$.
Culms up to 2.4 m . long; spathes at length opening; racemes
C. semiteres
umbelled
C. koenigii

1. Chionachne semiteres C. E. C. Fischer, Fl. Madras X (1935) 1706. Polytoca semiteres Bth. ex Hook.f. F.B.I. VII, 101.

Frequent in wet places. Makes a good fodder and improves under cultivation. Burmese-Badaik-myet.
2. Chionachne koenigii (Spreng.) Thw., Enum. Pl. Zey1. (1864) 357. Polytoca barbata Stapf ex Hook.f. F.B.I. VII, 102.

Frequent in the hills. Useless as a fodder because of the irritating hairs. Burmese-Myet-ya-gyi.

4. EUCHLAENA Schrad.

Euchlaena mexicana Schrad. (Ind. Sem. Hort. Götting. 1832) is cultivated occasionally for fodder but it has found little favour with Burmese farmers. Teosinte.

5. ZEA Linn.

Zea mays Linn. (Sp. Pl. (1753) 971) is cultivated all over Burma and the surrounding hills up to about 6,000 feet. Maize.

Burmese-Pyaung-bu.

FUNGI RECORDED ON GRASSES IN BURMA.

(List compiled by Dr. L. N. Seth and Dr. B. B. Mundkur.)

Host.	Fungus.
Arundinella sp.	Puccinia arundinelliae Barclay.
Avena sativa Ustilago kolleri Wille
Bamboos	Aschersonia badia Patouill.
	Coniosporum bambuseae (Thumb. \& Bolle) Sacc.
	Diplozythiella bambusina Died.
	Endodothella bambuseae (Rabenh.) Thiess. \& Syd.
	Scirrnodothis seriata Syd.
Bothriochloa pertusa	Sphacelia sp. ${ }^{\text {Cerebella }}$ cynodontis Syd.
Brachiaria reptans ..	Cerebella cynodontis $S y d$. Sphacelia sp.
Brachiaria setigera	Cerebella burmanensis Subram.
Capillipedium parviforum	Sphacelia sp.
	Puccinia kozukensis Died.
Centotheca lappacea Chrysopogon aciculatus	Phyllachora assimilis Syd.
	Phyllachora centothecae Syd.
	Balansia andropogonis Syd.
Cynodon dactylon ..	Cerebella cynodontis Syd.
	Helminthosporium cynodontis Marignoni.
	Phyllachora cynodontis (Sacc.) Niessl.
	Ustilago cynodontis P. Henn.
Dichanthium annulatum	.. Curvularia lunata (Wakker) Boedijn.
	Sphacolia sp.
	Sphacelotheca andropogonis-annulati (Bref.)
Dichanthium caricosum	.. Sphacelia sp.
	.. Piricularia grisea (Cke.) Sacc.
Heteropogon contortus	.. Cerebella andropogonis-contorti Subram.
	Puccinia versicolor Diet. \& Holw.
Hordeum vulgare	Helminthosporium gramineum Rabh.
	teres Sacc.
	Puccinia graminis Pers.
Imperata cylindrica ..	Puccinia rufipes Diet.
Ischaemum aristatum.	.. Sorosporium furcatum Syd. \& Butl.
Ischaemum sp.	.. Ustilago burmanica Syd. \& Butl.
Microstegium gratum	Phyllachora graminis (Pers.) Fckl.
Oryza sativa ..	. Cercospora oryzae Miyake
	Entyloma oryzae Syd.
	Helminthosporium oryzae Breda de Haan
	Metasphaeria albescens Thuem.
	Nectria bulbophylli P. Henn.

Panicum auritum	Ustilaginoidea ochracea P. Henn.
Panicum repens	Uromyces linearis Berk. \& Broome
Paspalum scorbiculatum	Cerebella inquinans (Berk. \& Broome) Petch Sphacelia sp.
Saccharum officinarum	Apiospora compactospora Penzig \& Sacc.
	Bothriodiplodia theobromae Patouill.
	Capnodium sp.
	Collespora kopkei Krug
	Colletotrichum falcatum Went.
	Leptosphaeria sacchari Breda de Hoan
	Marasmius sacchari Wakker
	Melanconium sacchari Mass.
	Phoma saccharina Syd.
	Phyllachora sacchari P. Henn.
	Ustilago scitaminea Syd.
Saccharum spontaneum	.. Phyllachora sacchari-spontanei Syd.
	Puccinia kuehnii (Krug.) Butl.
Sehima nervosum Sorghum dochna varieties	.. Phyllachora ischaemi Syd.
	.. Cerebella volkensii (P. Henn.) Mundkur
	Cerecospora sorghi Ell. \& Ev.
	Claviceps sp.
	Colletotrichum graminicolum (Ces.) Wil.
	Phyllachora sorghi v. Hoehn.
	Puccinia purpurea Cke.
	Sorosporium reilianum (Kuehn.) McAlp.
	Sphacelia sorghi McRae
	Sphacelotheca sorghi (Link.) Clint.
Sorghum halepense .. Sorghum roxburghii varieties	Puccinia purpurea Cke.
	Cercospora sorghi Ell. \& Ev.
	Colletotrichum graminicolum (Ces.) Wil.
	Phyllachora sorghi v. Hoehn.
	Puccinia purpurea Cke.
	Sorosporium reilianum (Kuehn.) McAlp.
	Sphacelotheca sorghi (Link.) Clint.
Themeda sp.	. . Colletotrichum sp.
Themeda triandra ...	Puccinia burmanica Syd \& Butl.
Thysanolaena maxima Triticum aestivum ..	Rosellinia sublimbata (Durien \& Mont.) Pass.
	. Cladosporium herbarum (Pers.) Link
Triticum aestivum ..	Helminthosporium sativum Pam. King \& Bakke
	Puccinia glumarum (Schm.) Erikss. \& Henn.
	", graminis Pers.
	", triticina Erikss.
	Sclerotium rolfsii Sacc.
	Ustilago tritici (Pers.) Rostr.
Zea mays	.. Diplodia sp. Helminthosporium turcicum Pass.
	Puccinia sorghi Schw.

Nigrospora sphaerica (Sacc.) Mason
Phoma glumarum Ell. \& Tracy
Piricularia oryzae Cavara
Pyrenochaeta oryzae Shirai
Sclerotium oryzae Catt.
Ustilaginoidea virens (Cke.) Tak.
.. Ustilaginoidea ochracea P. Henn.
.. Cerebella inquinans (Berk. \& Broome) Petch
Sphacelia sp.
-. Apiospora compactospora Penzig \& Sacc. Bothriodiplodia theobromae Patouill. Capsion

Colletotrichum falcatum Went.

Fusarium moniliforme Sheld.
eeptosphaeria sacchari breda de Haan
Marasmius sacchari Wakker
Melanconium sacchari Mass.
Phoma saccharina Syd.
Phyllachora sacchari P. Henn.
Phyllachora sacchari-spontanei Syd.
Puccinia kuehnii (Krug.) Butl.
.. Phyllachora ischaemi Syd.
Cereberfa volkensi(P. Henn.) Mundkur
Cerecospora sorghi $\mathrm{Ell} . \& \mathrm{Ev}$.
Colletotrichum graminicolum (Ces.) Wil.
Phyllachora sorghi v. Hoehn.
Puccinia purpurea Cke.
Sorosporium reilianum (Kuehn.) McAIp.
Sphacelia sorghi McRae
Sphacelotheca sorghi (Link.) Clint.
.. Puccinia purpurea Cke.
.. Cercospora sorghi Ell. \& Ev.
Colletotrichum graminicolum (Ces.) Wil.
Phyllachora sorghi v. Hoehn.
Sorosporium reilianum (Kuehn.) McAlp.
Sphacelotheca sorghi (Link.) Clint.

- Colletotrichum sp.
.. Rosellinia sublimbata (Durien \& Mont.) Pass.
. Cladosporium herbarum (Pers.) Link
Helminthosporium sativum Pam. King \& Bakke
") graminis Pers.
granis
Sclerotium rolfsii Sacc.
Ustilago tritici (Pers.) Rostr.
Helminthosporium turcicum Pass.
Puccinia sorghi Schw.

GLOSSARY.

Aggregate, collected together.
Amplexicaul, clasping the stem.
Apiculate, short-pointed.
Aristate, awned.
Articulate, jointed.
Caespitose, growing in tufts.
Callus, a thickening.
Cartilaginous, hardened.
Caudate, tailed.
Chartaceous, papery.
Clavate, club-shaped.
Connate, united.
Convolute, rolled around.
Coriaceous, leathery.
Crustaceous, brittle.
Cuneate, wedge-shaped.
Cuspidate, tipped with a rigid point.
Dioecious, having the stamens and pistils on different individuals.
Distichous, arranged in two vertical ranks.
Effuse, expanded.
Fimbriate, margins bordered with long hairs.
Fugacious, soon disappearing or perishing.
Geniculate, kneed.
Gibbous, pouch-like enlargement of the base of the glume.
Hispid, beset with rough hairs.
Imbricate, overlapping.
Indurate, hardened.
Involute, margins inrolled.

Monodelphous, with stamens in one group.
Monoecious, stamens and pistils in separate flowers but borne on the same plant.
Mucronate, having a short or straight point.
Muticous, pointless, awnless.
Orbicular, disc-shaped.
Posticous, on the posterior side next the axis.
Puberulous, downy.
Pubescent, softly downy.
Pungent, ending in a sharp point.
Pyriform, pear-shaped.
Rostrate, beaked.
Rugose, wrinkled.
Spathe, bract-like envelope below the spikelets.
Spatheate, having a spathe.
Spicate, spike-like.
Spiciform, in the shape of a spike.
Striate, marked with fine parallel longitudinal lines.
Strigose, covered with sharp-pointed appressed straight stiff, bristles.
Subulate, awl-shaped.
Terete, cylindrical.
Tessellate, divided into small squares or rectangles.
Triquetrous, three-edged.
Truncate, as though cut off at the end.
Verticel, whorl.
Villous, coated with long, weak hairs.

BIBLIOGRAPHY.

Beauvois, Palisot de, Essai nouvelle agrostographie, Paris, 1812.
Bews, J. W., The World's Grasses, 1929.
Blatter, E., and McCann, C., The Bombay Grasses, 1935.
Bor, N. L., Flora of Assam V, 1940.
Bor, N. L., Three New Genera of Indian Grasses, Ind. Forester (1940) 267.
Bor, N. L., Recent Changes in the Names of Indian Grasses, Curr. Sci. IX (1940) 431.
Brandis, Sir D., Indian Trees, 1906.
Butler, E. J., and Bisby, G. R., Fungi of India, 1931.
Butler, E. J., and Mundkur, B. B., Fungi of India, 1938.
Camus, A., Gramineae in Lecomte, Flor. gen. de l'Indo-Chine VII, 1922.
Camus, E.-G., Les Bambusées, Paris, 1913.
Chiao, C. Y., Kiangsu Grasses, Chengtu, 1943.
Collett, H., and Hemsley, W. B., On a Collection of plants from Upper Burma and the Shan Hills, Jr. Linn. Soc. Bot. XXVIII (1891).
Fischer, C. E. C., Flora of Madras X, 1935.
Gage, A. T., A Botanical Tour in the South Lushai Hills, Rec. Bot. Sur. Ind. I; 1901.
Gage, A. T., The Vegetation of the Minbu District of Upper Burma, Rec. Bot. Sur. Ind. III, 1906.
Gamble, J. S., The Bambuseae of British India, Ann. Roy. Bot. Gard. Calc. VII, 1896.

Hackel, E., Monographia Andropogonearum, 1889.
Henrard, J. Th., Blumea III (1940) 3.

Hooker, Sir J. D., Flora of British India VII, 1897.
Hubbard, C. E., Gramineae in Hutchinson's Families of Flowering Plants, Monocotyledons, 1934.
Kunth, C. S., Enumeratio Plantarum, 1833-50.
Kunth, C. S., Revision des graminées, 1829.
Kunth, C. S., Agrostographia sive Enumeratio Graminum, 1833.
Kuatze, O., Revisio Generum Plantarum III, 1898.
Kurz, S., Preliminary Report on the Forests and Vegetation generally of Pegu, Calcutta, 1873.

Kurz, S., Forest Flora of British Burma, II, 1878.
Lace, J. H., List of Trees, Shrubs and Climbers of Burma, 1924.
Linneus, Species Plantarum, 1753.
McKerral, A., The Commoner Grasses of Burma, Agric. Dept. Bull. No. 20, 1924.
Munro, Col., Monograph of the Bambuseae, Trans. Linn. Soc. XXVI, 1868.
Parkinson, C. E., A Forest Flora of the Andaman Islands, Simla, 1923.
Rhind, D., A Note on Three Oil-bearing Grasses from Burma, Agric. Jr. Ind. XXV (1930), 328.

Ridley, Flora of the Malay Peninsula, V, 1925.
Rodger, A., Handbook of Forest Products of Burma, 1935.
Sawyer, A. M., Flora of the Mandalay Agricultural College Station, 1925.
Sawyer, A. M., and Daw Nyun: A Classified List of the Plants of Burma, 1927.
Snowden, J. D., The Cultivated Races of Sorghum.
Stamp, L. D., and Lord, L., The Ecology of Part of the Riverine Tract of Burma, Jr. Ecol. XI (1923), 129.
Stamp, L. D., The Vegetation of Burma, Calcutta, 1925.
Stapf, O., Gramineae in Dyer's Flora Capensis, VII, 1897-1900.
Stapf, O., Gramineae in Prain's Flora of Tropical Africa IX, 1917-1930.
Stapf, O., The Oil Grasses of India, Kew Bull. 1906, 297.
Steudel, Synopsis Plantarum Glumacearum, 1855.
Trinius, Species Graminium Iconibus et Descriptionibus Illustratae, 1828-36.
Trinius, Fundamenta Agrostographiae, 1820.
Trinius, De Graminibus Dissertationes, 1824-26.

GLOSSARY OF VERNACULAR NAMES.

Names are Burmese or English unless otherwise stated.

Thekke-gyi		Saccharum spontaneum
Thekke-min ..		Imperata exaltata
The-myet		Sporobolus glaucifolius
The-padaw		Sporobolus tremulus
Thidok		Sorghum roxburghii var. hians
Thigye		Sorghum roxburghii var. hians
Thingyan-kaing		Sclerostachya fusca
Thishe		Bambusa affinis
Thon-tin-gwa ..	.	Ischaemum aristatum
		Ischaemum molle
Tin-wa	..	Cephalostachyum pergracile
Ti-wa	..	Thrysostachys siamensis
		Cephalostachyum pergracile Cephalostachyum flavescens
Tiyo-wa		Thrysostachys siamensis
Uga-kawa (Kachin)	\cdots	Dendrocalamus hamiltonii
Ugat (Kachin)		Dendrocalamus membranaceus
Uhpaw (Kachin)		Dendrocalamus hamiltonii
U-ra ($=$ Wa-ra) (Kachin)		Dendrocalamus calostachyus Dendrocalamus latiflorus
		Thrysostachys oliveri
Usawi (Kachin)		Dinochloa compactiflora
Wa-ba		Oxytenanthera nigrociliata
		Cephalostachyum virgatum
Wabalaw (Karen)		Cephalostachyum pergracile
Wabgai (Karen)		Bambusa tulda
Wablo (Karen)		Cephalostachyum pergracile
Wa-bo		Dendrocalamus giganteus
		Dendrocalamus calostachyus
		Dendrocalamus brandisii
		Dendrocalamus latiflorus
		Dendrocalamus wabo
Wa-bo-e		Cephalostachyum virgatum Dendrocalamus membranaceus
		Dendrocalamus messerii
		Dendrocalamus hookeri
Wabo-myet-sange	.	Dendrocalamus hamiltonii
Wabo-nwe	\ldots	Denrdocalamus giganteus
Wabuk (Karen)		Bambusa affinis
Wabuthu (Karen)	\cdots	Bambusa tulda
Wa-bwe		Bambusa affinis
Wa-byauk		Oxytenanthera nigrociliata
		Neohouzeaua dullooa
		Cephalostachyum virgatum
		Bambusa affinis
Wa-byaw (Tavoy)		Gigantochloa macrostachya
Wa-chat (Tavor)		Gigantochloa macrostachya
Wade		Bambusa arundinacea
Wa-do		Gigantochloa apus
Wăgat (Kachin)		Dendrocalamus membranaceus
Wa-gauk		Oxytenanthera albociliata
Wa-gok ..	\because	Oxytenanthera albociliata
		Oxytenanthera nigrociliata
Wa-gyi	..	Bambusa copelandi
Włhpaw (Kachin)		Dendrocalamus calostachyus
Wa-hpit (Kackin)	..	Dendrocalamus hamiltonii
Wa-hput		Dendrocalamus membranaceus
Wa-ka		Cephalostachyum virgatum
Wa-keur (Karen)	\cdots	Bambusa burmanica

Wakha		Pseudostachyum wakha
Wa-kle (Karen) Wa-kle-ma (Karen)		Cephalostachyum virgatum
		Oxytenanthera albociliata
	\ldots	Oxytenanthera nigrociliata
Wa-klu (Karen)		Gigantochloa macrostachya Dendrocalamus brandisii
Wa-kyu (Karen)	\ldots	Bambusa arundinacea
Wa-ma (Karen)		Gigantochloa macrostachya
Wa-maing (Karen)	\cdots	Gigantochloa macrostachya
Wa-may (Karen)		Oxytenanthera nigrociliata
Wa-me (Karen)	.	Bambusa marginata
		Oxytenanthera nigrociliata
Wa-mee		Gigantochloa macrostachya
		Dendrocalamus membranace
Wa-me-pree (Karen)	..	Dendrocalamus strictus
Wa-mi (Katen)		Bambusa villosula
Wamilur (Karen)	\cdots	Dendrocalamus strictus
Wamin		Bambusa wamin
Wa-mu (Karen)		Dendrocalamus membranaceus
Wa-myin ..		Dendrocalamus longifimbriatus
Wa-net		Bambusa griffithiana
	.	Bambusa vulgaris
		Gigantochloa macrostachya
		Gigantochloa wanet
		Dendrocalamus longispathus Dendrocalamus brandisii
Wa-ni		. Thrysostachys oliveri
		Dendrocalamus latiflorus
Wa-nwe		Oxytenanthera albociliata
		Oxytenanthera nigrociliata
		Dinochioa andamanica
		Dinochloa compactifiora
		Dinochloa m'clellandi
Wa-nwe-kok		Neohouzeaua helferi
Wa-pa-do (Karen)	\ldots	Gigantochloa apus
Wapayaung		.. ${ }^{\text {Dendrocalamus brandisii }}$
Wa-pa-do (Karen)	.	Gigantochloa apus
Wa-ponwe (Karen)		Bambusa tulda
Wa-pyaw ..		Dendrocalamus longifimbriatus
Wa-pyin	..	Dendrocalamus membranaceus
Wa-pyu	-	Dendrocalamus brandisii
		Bambusa tulda
		Dendrocalamus membranaceus Dendrocalamus brandisii
		Gigantochloa macrostachya
		Gigantochloa verticillata
		Oxytenanthera albociliata
Wa-pyu-gale	.	Dendrocalamus membranaceus
Wa-pyu-gyi		Oxytenanthera albociliata
	.	Gigantochloa macrostachya Oxytenanthera albociliata
		Oxytenanthera nigrociliata
$\begin{aligned} & \text { Wa-pyu-san } \\ & \text { Wa-ra (Karen) } \end{aligned}$	\cdots	Bambusa oliveriana
	.	Bambusa griffithiana
		Dendrocalamus calostachyus
		Dendrocalamus latiflorus
Wa-se		Neohouzeaua helferi
Waso-myet Wa-thabut		Hackelochloa granularis
Wa-thabut	\cdots	Bambusa marginata
		Dinochloa m'clellandi
Wa-thaik		Neohouzeaua helferi

Wa-ther (Karen) Wa-tho (Karen)		.. Bambusa burmanica	
	.		Bambusa polymorpha
			Gigantochloa apus
Wa-thon-dyan (Karen)	\cdots		Chimonobambusa gallatlyi
Wa-ya	-		Bambusa burmanica.
			Dendrocalamus longispathus
			Oxytenanthera albociliata
Wa-yon-myet			Oxytenanthera nigrociliata
	\cdots		Echinochloa notabile
			Ottochloa nodosa
Wa-yon-saung	-		Ottochloa nodosa
Way-thali	.		Sorghum roxburghii var. parvum
			Sorghum roxburghii var. hians
Wa-zun	-		Neohouzeaua dullooa
Wire Grass			Cynodon dactylon
Wunbe-sa-myet	.	.	Echinochloa colona
Yaman (myet)	.		Arundinella setosa
			Arundinella bengalensis
Yaman-nge	.		Arundinella bengalensis
Yaso-myet	.		Schizachyrium brevifolium
Yin	.		Scleroctachya fusca
Yo-hkum (Shan)			Eleusine indica
Yon-gale ..	\cdots		Eragrostis tenella
			Tragus bifiorus
Yon-hle	.		Tragus biflorus
Yon-hmwe	\cdots		Pseudopogonatherum contortum

INDEX TO BOTANICAL NAMES.

schoenanthus Linn. var. martini Page 71	brasiliensis of F.B.I. (non Raddi) Page 41
schoenanthus Linn. var. versicolor	fuscata Nees ex Buise 41, 42
Hack. 71	griffithiana (C. Muell.) Bor . . 42
serratus Thunb. . . . 65	holcoides Trin. 41
squarrosus Hook.f. non Linn. . . 66	holcoides Trin. var. ciliata Hk. f.
trispicata Schultes 63	ex Nees 41
triticeus Br. . . . 72	nepalensis Trin. 41
wightianus Steud. 67	pumila Steud. 41
ANDROPOGONE/E . 7,56	setosa Trin. $\quad . \cdot 41$
ANTHISTIRIA	tenella Nees et Wight ex Steud. 41
arguens Willd. 72	wallichii Nees ex Steud. .. 42
ciliata Linn.f. 72	ARUNDINELLEAE . . 7,41
gigantea Cav. subsp. arundinacea	ARUNDO Linn. 28
Hack. 73	donax Linn. ... 28
gigantea Cav. subsp. intermedia	madagascariensis Kunth .. 34
Hack. 73	reynaudiana Kunth 34
gigantea Cav. subsp. villosa Hack. 73	AULACOLEPIS Hack. .. 37
imberbis Retz. 73	treutleri Hack. . . . 38
villosa Poir. 73	AVENA Linn.
APLUDA Linn. .. . 58,75	sativa Linn. 37
aristata Linn. . . 75, 76	AVENEA $\quad \cdots \quad 6,36$
mutica Linn. . . 75,76	AXONOPUS Beauv. . . 4, 43, 54
varia Hack. subsp. aristata Hack. 75	affinis A. Chase 54
varia Hack. subsp. mutica Hack. 76	cimicinus Beauv. 47
APOCOPIS Nees . ${ }^{\text {a }}$, 64	compressus (Sw.) Beauv. .. 54
paleacea (Trin.) Hochr. .. 64	semialatus Hook.f. 47
royleana Nees 64	
vaginatus Hack. .- .. 64	B
wightii Nees ex Steud. .. 64	BAMBUSA Schreber 3, 8,9,11
wightii Nees var. vaginatus	affinis Munro . . 12,13
Hook.f. . . . 64	arundinacea Willd. 11, 12
ARISTIDA Linn. . . 4,38	auriculata Kurz 18
adscensionis Linn. 38	baccifera Roxb. .. .i, 26
arundinacea Linn. . . . 34	binghami Gamble .. 12, 14
cumingiana Trin. et Rupr. .. 38	brandisii Munro .. $\quad .22$
depressa Retz. $\quad . \quad 4,38$	burmanica Gamble - 11, 13
funiculata Trin. et Rupr. .. 38	calostachya Kurz .. 21
hystrix Linn. f. .. 38	copelandi Gamble apud Brandis 12, 13
ARTHRAXON P. Beauv. 4, 57, 69	critica Kurz 13
breviaristatus Hack. . . 69	griffithiana Munro .. 12, 14
ciliaris Beauv. . . . 69	helferi Munro 24
ciliaris Beauv. subsp. nudus Hack. 69	kingiana Gamble .. 12, 14
hispidus (Thunb.) Makino . 69 .	kyathaungtu E.-G. Camus 12,15
lanceolatus Hochst.	latiflora Kurz 22
lancifolius Hochst. . . 5,69	lineata Munro .. . 12,14
microphyllus Hochst. .- 69	longispiculata Gamble 11,12
nudus Hochst. . . . 69	marginata Munro .. 12, 14
submuticus Hochst. \quad. 69	M'Clellandl Munro .. 23
ARUNDINARIA Micheaux 3, 8,9, 10	monogyna Griffith 21
armata Gamble 11	nana Roxb. . . 12, 13
elegans Kurz .. .- 9	oliveriana Gamble :. 12,13
gallatlyi Gamble .. 2, 10	pallida Munro . . . 12, 13
intermedia Munro 10	polymorpha Munro . 12, 13
khasiana Munro 10	pseudarundinacea Steud. . . 16
kurzii Gamble . \quad 10, 11	regia Thomson ex Munro (non
prainii Gamble 10	Kurz) 16
ARUNDINEAE $\quad . .6,28$	rumphiana Kurz - 14
ARUNDINELLA Raddi 4,41	schizostachyoides Kurz ex
agrostoides Trin. . . . 41	Gamble \quad. 12,14
avenacea Munro ex Thw. . 42	siamensis Kurz MS . . 12
bengalensis Druce .. 41, 42	sinthana E.-G. Camus 12, 15
birmanica Hook.f. 41	spinosa Roxb. (non Bl.) . .. 12

thalaw-wa E.-G. Camus $\begin{array}{r}\text { Page } \\ 12,15\end{array}$	griffithiana Nakai .. Page
tulda Roxb.. . 3,11, 12	intermedia Nakai 10
verticillata Benth. 22	khasiana (Munro) Nakai .. 10
verticillata Willd. 16	polystachya Nakai .. -i. 10
villosula Kurz $\quad .$.	CHIONACHNE R. Br. 78, 79
vulgaris Schrad. . . 12, 13	koenigii (Spreng.) Thw. 79,80
wamin E.-G. Camus 12, 15	semiteres C.E.C. Fischer .. 79
BAMBUSEA $\quad . . \quad$.-6,8	CHLORIDEAE \quad. 7,35
BOTHRIOCHLOA O. Ktze. 57,68	CHLORIS Swartz . . $\quad 35$
intermedia (R. Br.) A. Camus 4,68	barbata Sw. \quad. . 4, 35, 36
intermedia forma punctata A.	delicatula C. B. Clarke ex Hook.f. 35
Camus .- .. 68	gayana Kunth .. 36
pertusa (Willd.) A. Camus 4, 68	incompleta Roth. .. 35, 36
BRACHIARIA Griseb. 43, 50, 52	virgata Sw. \quad : ${ }^{\text {a }}$, 36
ambigua A. Camus 53	CHRYSOPOGON Trin. 57, 67
distachya Stapf . . 52, 53	aciculatus Trin. .. 4, 67
eruciformis Griseb. 52, 53	distichophyllus (Hook.f.) Rhind 2, 67
isachne Stapf 53	montanus Trin. .. 67
paspaloides (Presl.) C. E. Hub-	montanus Trin. var. trinii 67
bard 52, 53	Hook.f. . . . 67
ramosa Stapf $\quad . \quad 505$	orientalis A. Camus .. 67
reptans (Linn.) Gard. et Hubb. 52, 53	serratus Trin. .. .- 67
reptans (Linn.) Gard. et Hubb.	COELACHNE R. Br. 42, 43
var. birmanica Hook.f. .. 53	brachiata Munro ex Benth. .. 43
reptans (Linn.) Gard. et Hubb.	puichella R. Br. 43
var. rigida Hook.f. ${ }^{\text {d }} 53$	pulchella R. Br. var. brachiata
setigera (Retz.) C. E. Hubbard 52, 53	Munro . . . 43
villosa A. Camus .. 52, 53	pulchella R. Br. var. simplicius-
BRACHYPODIUM Beauv. .. 27	cula Hk.f. $\mathrm{fl}^{\text {a }}$. 44
sylvaticum Beauv. 27	simpliciuscula Munro ex Benth. 43, 44
BROMUS Linn. . . . 27	COELARTHRON Hook.f.
asper Murr. $\quad .0$	brandisii Hook.f. 62
himalaicus Stapf ex Hook.f. . . 27	COELORHACHIS Brong. 59, 78
tectorum Linn. 27	glandulosa Stapf ex Ridley . 78
	khasiana Stapf ex Bor . . 78
C	striata A. Camus .. 78
CALAMAGROSTIS Adans. .. 37	COIX Linn. $\quad . \quad 4,5,78,79$
emodensis Griseb. 38	gigantea Roxb. 79
sylvatica DC. 38	lachryma-jobi Linn. .. 79
CAPILLIPEDIUM Stapf 57,67	lachryma-jobi Linn. var. gigantea
assimile A. Camus 67	Stapf .- . . . 79
glaucopsis Stapf ex Steud. - 67	lachryma-jobi Linn. var. mayuen
parvifiorum Stapf . . 67,68	Stapf ex Hk.f. . . . 79
CENTOTHECA Desv. 4, 26, 27	lachryma-jobi Linn. var. steno-
lappacea Desv. 27	carpa Stapf 79
CENTOTHECEAE .. 6, 26	ma-yuen Rom. . . \quad.
CEPHALOSTACHYUM Munro 8,9,25	CYMBOPOGON Spreng. 4, 58,70
burmanicum Parker et Parkinson 25	$\begin{array}{ll}\text { citratus Stapf } & \text {. } \\ \end{array}$
flavescens Kurz . . 25, 26	clandestinus Stapf . . 70, 71
fuchsianum Gamble .. 25	coloratus Stapf . . . 70
griffithii Kurz .. . 25, 26	flexuosus Watson .. - 70
pallidum Munro 26	khasianus Stapf ex Bor 70, 71
pergracile Munro .. 3, 25, 26	martini Watson . . 70, 71
schizostachyoides Kurz	nardus Rend. . . -7, 70
virgatum Kurz . . 25, 26	polyneuros Stapf : 70, 71
CHAMAERAPHIS	virgatus Stapf ex Rhind 70,71
gracilis Hack. 55	CYNODON Pers. .. 4, 35, 36
minuta Mez 55	dactylon Pers. . . 35, 36
spinescens Poir. var. brunoniana	dactylon Pers var. intermedius
Griff. . $\quad . \quad 15$	C. E. C. Fischer . . 36
CHIMONOBAMBUSA Makino $8,9,10$	CYRTOCOCCUM Stapf 42,49
gallatlyi (Gamble) Rhind 2,10,11	accrescens Stapf .. 49,50

fuscescens Trin. 74	$\begin{array}{r} \text { Page } \\ \hline \end{array}$
	73, 74
leptorhachis Hack.	
ornithopoda Trin.	
pusilla Thw.	
tenera Trin.	74
DINOCHLOA Büse .. 8, 9, 14, 22	
compactiflora (Kurz) McClure 22, 23	
maclellandi Kurz m'clellandi Gamble 22, 23	
tjangkorreh Büse var. andamanica	
Gamble	.. 23
DIPLACHNE Beauv.	
fusca Beauv.	
E	
ECHINOCHLOA Beauv.	43, 50
colona Link	
notabile (Hook.f.) Rhind 2,50	
stagnina Beauv.	4,50
ELEUSINE Gaertn. . . 28, 33	
aegyptiaca Desf.	
coracana Gaertn.	
indica Gaertn.	
verticillata Roxb.	33
ELYTROPHORUS Beauv. 4, 28	
aciculatus Beauv. . .	
spicatus A. Camus	
ENNEAPOGON Desv.	
elegans T. Cooke	
ERAGROSTEAE .. 6,28	
ERAGROSTIELLA Bor 28, 32	
bifaria (Wight) Bor. 32	
collettii (Stapf) Bor . .	32.
ERAGROSTIS Beauv. 4,28, 29	
amabilis W. et A.	
barbulata Stapf	29, 31
bifaria (Wight) Steud.	
cilianensis (All.) Link ex Lutati 29,31	
coarctata Stapf ex Hook.f. 29, 30	
collettii Stapf	
coramandeliana Trin. .. 32	
cynosuroides Beauv... .- 32	
diarrhena Steud. . .	29, 31
diarrhena Steud. var. koenigii	
(Stapf) C. E. C. Fischer 29, 31	
elegantula Stapf 31	
elongata of the F.B.I.	
ferruginea Beauv. .. 30, 32	
gangetica Steud. . . 29, 31	
interrupta Beauv. var. diarrhena Stapf 31	
interrupta Beauv. var. koenigii	
Stapf . - . .	
interrupta Beauv. var. tennuissima	
Stapf . .	
japonica Trin. .. 29, 31	
major Hochst. .. -	
malayana Stapf	29, 31

cylindrica (Linn.) Beauv. var. Page	bambusoides Trin. .. Page
koenigii Durand \& Schinz. .. 59	humilis Kurz 26
exaltata Brongn. .. .-. 59	kurzii Munro . . . 14
ISACHNE R. Br. . . 42, 44	lutescens Kurz MS 26
albens Trin. . . 4,44	virgata Munro . . . 26
australis R. Br. . . 4,44	MICROCHLOA R. Br. 35, 36
clarkei Hook.f. 45	indica Beauv. .. 4,36
dispar Trin. .. . 44	setacea R. Br. .. 36
elegans Dalzell ex Hook.f. .. 44	MICROSTEGIUM Nees 4, 57, 61
globosa Kuntze 44	brandisii (Hook.f.) Rhind 2,62
himalaica Hook.f. 45	ciliatum A. Camus . 62
javana Nees ex Miq. .. 44	delicatulum (Hook.f.) Henr. . . 62
miliacea Roth. 44	eucnemis (Nees) Henr. . . 62
rigida Nees ex Steud. . . 44	gratum A. Camus 62
scabrosa Hook.f. . . . 45	monanthum A. Camus $\quad .01$
ISCHAEMUM Linn. 4, 58, 74	nudum A. Camus . . 4, 5, 62
angustifolium Hack. $\quad .64$	stapfii (Hook.f.) Henr. .. 62
aristatum Linn. non Willd. 74, 75	vimineum A. Camus .. 62
aristatum Linn. var. imbricatum	MISCANTHUS
Hack. 75	nepalensis Hack. 59
aristatum Hook. f. non Linn. var.	nudipes Hack. 59
mangaluricum 75	sinensis Anderss. 59
ciliare Retz. $\quad . \quad . \quad 75$	MNESITHEA Kunth 59,76
imbricatum Stapf ex Ridley 74,75	laevis (Retz.) Kunth $\quad . \quad 76$
laxum R. Br. 75	merguensis (Hook.f.) A. Camus 76, 77
mangaluricum (Hack.) Stapf ex	rupicola Ridley . ${ }^{\text {a }}$ (76,77
C. E. C. Fischer . . 74, 75	MUEHLENBERGIA Schreb. .. 37
molle Hook.f. .. 74,75	huegelii Trin. .. 5, 37
muticum Linn. .. 74, 75	viridissima Nees ex Steud. .. 37
petiolare Hack. . . 74,75	MYRIOSTACHYA Hook.f. 28, 32
rugosum Salisb. . . 74,75	wightiana Hook.f. 32
sulcatum Hack. .. 775	N
timorense Kunth . . 74, 75	NARENGA Bor ${ }^{\text {N }}$ 57,60
ISEILEMA Anderss. 58, 73	NARENGA Bor . . 57, 60
argutum Anderss. 73	porphyrocoma (Hance) Bor . 60
laxum Hack. 73	NEOHOUSNOTIA
K	tonkinensis A. Camus NEOHOUZEAUA A. Camus 8,9,23, 24
KLEMOCHLOA Parker 8, 9, 15	dullooa A. Camus . . $\quad 24$
detinens Parker . . . 15	helferi Gamble 24
L	stricta Parker \quad..
LeERSIA Sw. $\quad .$.	tavoyana Gamble NEYRAUDJA Hook.f.
hexandra Sw. 40	arundinacea (Linn.) Henr. .. 34
LEPTOCHLOA Beauv. 28, 33	madagascariensis Hook.f. ... 34
chinensis Nees 33	madagascariensis Hk.f. var. zol-
contracta Blatter \& McCann . . 33	lingeri Hook.f. ... 34
filiformis Roem. \& Schult. .. 33	reynaudiana (Kunth) Keng .. 34
polystachya Benth. . ${ }^{\text {a }} 33$	
LOLIUM Linn. . . - 27	0
LOPHATHERUM Brongn. 26, 27	OCHLANDRA 23
gracile Brongn. 27	OPHIUROS Gaertn. 59, 78
M	corymbosus Gaertn. 78
MANISURIS M	OPLISMENUS P. Beauv. 4, 43, 53
MANISURIS	burmanii P. Beauv... 53, 54
granularis Linn.f. 77	compositus P. Beauv. 53, 54
porifera Hack. .. 2,77	OROPETIUM Trin. . 3 35, 36
MAYDEA	thomaeum Trin. .. 4, 36
MELOCALAMUS	ORYZA Linn. .. 39,40
compactiflorus Benth. .. 23	coarctata Roxb. 40
MELOCANNA Trin. 8, 9, 26	granulata Nees \& Arn. .. 40
baccifera Skeels 26	latifolia Desv. 40

meyeriana Baill. . $\quad \begin{array}{r}\text { Page } \\ \hline\end{array}$	psilopodium Trin. var. coloratum Page
officinalis Wall. apud Prodoehl 40	Hook.f. 49
sativa Linn. 40	punctatum Burm. 52
sativa Linn. var. fatua Prain . . 40	radicans Retz. 50
ORYZE/E $\quad .$.	ramosum Linn. 53
OTTOCHLOA Dandy $4,42,51$	repens Linn. . . 48,49
nodosa Dandy $\quad .$.	sarmentosum Roxb. 48, 49
OXYTENANTHERA Munro 8, 9, 18	setigerum Retz. 53
albociliata Munro . . 3, 18, 19	stagninum Retz. 50
auriculata Prain 18	tonkinense Bal. 45
hosseusii Pilger . . 18, 19	trigonum Retz. 49
lacei Gamble . . 18, 19	trypheron Schult. 48
nigrociliata Munro 3,18	tuberculatum Presl. .. 49
parvifolia Brandis ex Gamble 18, 19	villosum Lamk. . . . 53
thwaitesii Munro .. 18, 19	violascens Kunth 46
	PAPPOPHOREAE . . 6,27
P	PAPPOPHORUM
PANICEA $\quad .$.	elegans Nees .. ${ }^{\text {a }} 27$
PANICOIDEAE . 6 . 6	PASPALIDIUM Stapf $4,43,52$
PANICUM Linn. . ${ }^{\text {a }}$ 42,47,50	flavidum A. Camus
accrescens Trin. . . . 50	punctatum A. Camus $\quad .52$
acroanthum Steud. .. 49	PASPALUM Linn. .. 43, 51
adscendens H.B. \& K. 46	ambiguum DC. .. 51,52
ambiguum Trin. 53	compactum Roth. .. $\because, 51$
auritum Presl. ex Nees 4, 48, 49	conjugatum Berg. .. 51, 52
brevifolium Linn. .. 48, 49	dilatatum Poir. .. 51, 52
caesium Nees 49	distichum Linn. .. 51, 52, 56
colonum Linn. 50	jubatum Griseb. 46
cruciabile A. Chase 48, 49	longiflorum Retz. 46
crus-galli Linn. . . . 51	longifolium Roxb. 51
distachyum Linn. 53	pedicellare Trin. ex Steud. . . 46
elegantissimum Hook.f. .. 49	royleanum Nees ex Thw. .. 46
fibrosum Hack. 46	sanguinale Hook.f. 46
flavidum Retz. 52	scorbiculatum Linn. 4, 51
humidorum Ham. 48	ternatum Hook.f. 46
humile Nees ex Steud. 5, 48	vaginatum Sw. 52
indicum Linn. . . . 47	zollingeri Steyd. .. .i. 51
interruptum Willd. 47	PENNISETUM Rich. 43, 56
isachne Roth. . . . 53	clandestinum Hochst. ex Chiov. 56
javanicum Hook.f. 53	compressum R. Br. 56
khasianum Munro ex Hook.f. . . 49	hordeiforme Spreng. 5,56
latifolium Hook.f. non Linn. . . 45	purpureum Roem. \& Schult. .. 56
latifolium Linn. var. majus	typhoides Stapf \& Hubb. .. 56
Hook.f. . . . 45	typhoideum Rich. 56
longipes W. \& A. 50	villosum R.Br. 56
lutescens Weig. 55	PEROTIS Aiton 39
maximum Jacq. . 47,49	indica (Linn.) O. Ktze. 4, 39
miliaceum Linn. .. 48,49	longifolia Ait. 39
miliare Lamk. var. hirtum Hk.f.	PHALARIDEA . . 7, 8, 39
ex Wall.	PHRAGMITES Trin. 4,28
montanum Roxb. . . 48,49	karka Trin. \& Steud. . .. 28
myosuroides R.Br. 47	
myuros H.B.K. . . . 47	
nodosum Kunth . . . 51	bambusoides Sieb. \& Zucc. .. 11
notabile Hook.f. . . 2, 50	bawa E.-G. Camus .. 11
ovalifolium Poir. 49	mannii Gamble 11
paludosum Roxb. . . . 48	sedan E.-G. Camus
patens Linn. . . . 50	POA Linn. 27
plicatum Lam. . . . 55	attenuata Trin. 27
proliferum Lam. . . . 48	khasiana Stapf 27
prostratum Lam. . . . 53	sphondyloides Trin. .. 27
psilopodium Trin. .. 48,49	POGONATHERUM Hack. 56, 64

[^1]
G.K.V.K. Liman

UAS LIBRARY GKVK

23562

G.K.V.R. Liban

[^0]: Lemma of the upper floret smooth:-
 Spikelets $4-5 \mathrm{~mm}$. long, sharply acute, oval to elliptic in back view
 P. miliaceum

 Spikelets up to 3 mm . long, rarely to 4 mm . and if so with narrow, lanceolate spikelets:-

 ## Spikelets 1.5 mm . long:-

 Dwarf. Leaves narrow from a narrow base; upper glume 3-nerved; lower floret paleate
 P. humile

 Tall, slender. Leaves linear from a narrow, cordate base; upper glume 5 -nerved; lower floret epaleate.
 Spikelets over 1.5 mm . long:-
 Lower glumes cuspidate-acuminate
 P. humidorum

 Lower glumes not cuspidate-acuminate:-
 Spikelets narrowly lanceolate to lanceolate-oblong, acute:-
 Lower glume orbicular, rotundate or truncate, $\frac{1}{4}$ to the length of the spikelet; panicle branches loose to closely spiculate:-
 Spikelets long, narrowly lanceolate; leaf-blades broad, flat; culms spongy, floating
 P. trypheron

 Spikelets lanceolate to lanceolate-oblong; leafblades narrow, often involute; culms tough, rhizomatous
 Lower glume ovate, acute or obtuse, fo the length of the spikelet, 3 -5-nerved; spikelets 3 mm . long; panicle branches densely spiculate
 Spikelets oblong, ovate-oblong to elliptic, acute or obtuse:-
 Lower glume $1-\frac{1}{4}$ the length of the spikelet:-
 Nodes and leaf-sheaths hairy; annual; transverse nerves in glumes; spikelets shortly pedicelled or sub-sessile
 P. cruciabile Nodes and leaf-sheaths glabrous:Annual; culms erect or geniculately ascending; leaf-blades linear; lower floret with a palea:-
 Spikelets persistent; panicle contracted; spikelets $2-3 \cdot 5 \mathrm{~mm}$. long Spikclets deciduous; panicle effuse Lower glume $\frac{1}{8}-\frac{3}{4}$ the length of the spikelet:Lower fioret paleate
 P. miliare

 Lower floret epaleate .
 P. sarmentosum
 P. montanum

 Leaf-blades lanceolate to ovate, base cordate; spikelets oblique
 P. brevifolium

[^1]: Published under the authority of the Government of Burma by the Director of Agriculture, Burma, Simla, and printed by G. F. Bingham, Baptist Mission Press, 4 IA Lower Circular Road, Calcutta.

