TREATISE

ON

MINERALOGY.
MINERALOGY.
TREATISE
ON
MINERALOGY,
OR THE
NATURAL HISTORY OF THE MINERAL KINGDOM.

BY
FREDERICK MOHS,
PROFESSOR IN THE MINING ACADEMY OF FREIBERG.

Translated from the German, with considerable Additions,

BY
WILLIAM HAIDINGER, F.R.S.E.

VOL. III.

EDINBURGH:
PRINTED FOR ARCHIBALD CONSTABLE AND CO. EDINBURGH;
AND HURST, ROBINSON, AND CO. LONDON.
1825.
TREATISE
ON
MINERALOGY

VOL. II

PHYSICAL HISTORY OF THE MINERAL KINGDOM

EXPLANATION OF THE MINERAL KINGDOM

REED
M + M

By W. H. Huxley, F.R.S.

EIGHTEENTH EDITION

FOURTH IMPRESSION

1835
CONTENTS OF VOL. III.

PHYSIOGRAPHY.

Order XI. Glance 1
Order XII. Blende 31
Order XIII. Sulphur 47

CLASS III.

Order I. Resin 56
Order II. Coal 61

APPENDIX I.

Minerals, the greater part of which will probably form in future distinct Species in the Mineral System 67

APPENDIX II.

Minerals, which will probably never form distinct Species in the Mineral System 177

Plates and Explanations 189

Index 289
PHYSIOGRAPHY.

Order XI. GLANCE.

Genus I. COPPER-GLANCE.

1. TETRAHEDRAL COPPER-GLANCE.

Fundamental form. Hexahedron. Vol. I. Fig. 1.

Simple forms. H (f); \(\frac{O}{2} (P) \) Vol. I. Fig. 13;

Kapnik, Transylvania; \(- \frac{O}{2} (c) \) Vol. I. Fig. 14.;

D (o) Vol. I. Fig. 31.; A2, Vol. I. Fig. 32; \(\frac{B}{2} \)

Vol. I. Fig. 17.; \(\frac{C_i}{2} (l) \) Vol. I. Fig. 15., Kapnik;

\(- \frac{C_i}{2} (r) \) Vol. I. Fig. 16.

Char. of Comb. Semi-tessular with inclined faces.

Combinations. 1. \(\frac{O}{2} \). \(\frac{O}{2} \). Fig. 158., Kapnik.

2. H. \(\frac{O}{2} \). Cornwall.

3. \(\frac{O}{2} \). \(\frac{C_i}{2} \). Vol. I. Fig. 77. Kapnik.
Some yield arsenic, others antimony, when roasted, and the residue melts in different ways. After roasting, they yield a globule of copper.

3. The tetrahedral Copper-glance partakes in the modes of occurrence of the pyramidal Copper-pyrites, and is found in beds and veins; but it occurs seldom or not at all in the repositories of Tin-ore. It is accompanied by the same minerals as pyramidal Copper-pyrites, frequently also by prismatic Hal-baryte.

4. Varieties considered as Fahlerz are found in veins near Freiberg in Saxony, and in beds in Anhalt, in the county of Gömör in Hungary, in Stíria, &c.; varieties called Schwarzerz are met with in veins at Schwatz and other places in Tyrol, at Kapnik in Transylvania, at Cremnitz in Hungary, also at Clausthal and Andreasberg in the Hartz. Tetrahedral Copper-glance occurs besides in the neighbourhood of Dillenburg; in Mansfeld; in small quantities at Airthrie and other places in Scotland; in Cornwall, and in America.

2. PRISMATOIDAL COPPER-GLANCE.

Fundamental form. Scalenè four-sided pyramid of unknown dimensions. Vol. I. Fig. 7.
Simple forms. $P + \infty (M)$; $\bar{P}r (P)$; $\bar{P}r + \infty (h)$.
Char. of Comb. Prismatic. Combination. 1. $\bar{P}r$.
$P + \infty$. $\bar{P}r + \infty$. Sim. Fig. 9.
Cleavage, $\bar{P}r + \infty$ rather perfect, though interrupted. Fracture imperfect conchoidal. Surface rough.
Compound Varieties. Massive: composition granular, individuals strongly connected.

Observations.

1. The prismatoidal Copper-glance has been hitherto found only in the beds of brachytypous Parachrose-baryte at St Gertraud near Wolfsberg in the valley of Lavant in Carinthia. It is very nearly allied to the following species. It will depend upon future accurate examinations, particularly of its regular forms, whether or not the varieties of the two species are identical.*

2. Before the blowpipe the present species gives very nearly the same results as the following one. It appears to contain sulphur, antimony, lead, and copper, and it yields also a little silver, for the extraction of which it is collected by the miners, without, however, properly speaking, being an object of mining.

3. Di-prismatic Copper-glance.

Fundamental form. Scalene four-sided pyramid.

\[P = 136^\circ 7', 66^\circ 13', 133^\circ 3'. \]

\[a : b : c = 1 : \sqrt{1\cdot137} : \sqrt{0\cdot226}. \]

Simple forms. \(P - \infty (k) ; P - 1; P (P) ; (Pr - 1)^5 (y) = 114^\circ 14', 115^\circ 2', 109^\circ 16'; \)

* The present species was determined by Professor Moüs, before he was acquainted with any of the varieties of the following one. Though it is likely that they do not present any specific difference, it would be too precipitate to unite them, without being capable of affording a demonstration of their identity. H.
PHYSIOGRAPHY.

CLASS II. (Pr + \infty)^5 (n) = 96^\circ 31'; (Pr - 2)^5; (Pr - 1)^5;
Pr - 1 (e) = 129^\circ 45'; Pr (d) = 93^\circ 40';
Pr + 1 (f') = 54^\circ 48'; Pr + \infty (s); Pr - 1 (o) = 87^\circ 8'; \frac{3}{4} Pr = 64^\circ 44'; Pr (p) = 50^\circ 51';
Pr + \infty (r).

Char. of Comb. Prismatic.

Combinations. 1. P - \infty. Pr - 1. Pr. Pr + \infty.
Pr + \infty. Fig. 24. Bräunsdorf, Saxony.
2. P - \infty. Pr - 1. P. (Pr + \infty)^3. Pr + \infty.
Pr + \infty. Neusohl, Hungary.
(Pr - 1)^5. P. Pr. (Pr + \infty)^3. Pr + \infty.
Pr + \infty. Fig. 181. Cornwall.
4. P - \infty. Pr - 1. Pr - 1. P - 1. Pr. \frac{3}{4} Pr.
(Pr - 1)^5. (Pr - 2)^5. Pr. (Pr - 1)^3. P.
(Pr + \infty)^3. Pr + \infty. Pr + \infty. Neudorf, Anhalt.

Cleavage, imperfect; the most distinct is parallel to \Pr + \infty, less distinct cleavages are observed parallel to P - \infty and Pr + \infty; traces of Pr - 1 and (Pr + \infty)^3. Fracture conchoidal, uneven.

Surface, nearly equal in all the forms, often highly smooth and splendent. The striae parallel to the intersections with \Pr almost always depend upon regular composition.

Lustre metallic. Colour steel-grey, inclining to blackish lead-grey or iron-black, according to the physical quality of the surface. Streak unchanged.

Brittle. Hardness = 2.5...3.0. Sp. Gr. = 5.763, crystals from Anhalt.
Compound Varieties. Twin-crystals: axis of revolution perpendicular, face of composition parallel to a face of the horizontal prism \(\text{Pr} \). The individuals are generally continued beyond the face of composition. The axes of two individuals cross each other at angles of \(93^\circ 40' \) and \(86^\circ 20' \). The composition is frequently repeated in parallel layers, and forms striae upon the faces, particularly upon the pyramid \(P \), and upon the prism \(\text{Pr} \) itself, but also upon those which produce with it parallel edges of combination. The situation of these striae is useful for discovering the true position of the faces of pyramids and prisms. Massive: composition granular, strongly connected.

Observations.

1. Two varieties, one from Cornwall, and another from Clausthal, have yielded to Klaproth,

<table>
<thead>
<tr>
<th>Material</th>
<th>Klaproth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>28·50</td>
</tr>
<tr>
<td>Lead</td>
<td>39·00</td>
</tr>
<tr>
<td>Copper</td>
<td>13·50</td>
</tr>
<tr>
<td>Iron</td>
<td>1·00</td>
</tr>
<tr>
<td>Sulphur</td>
<td>16·00</td>
</tr>
</tbody>
</table>

Before the blowpipe upon charcoal it melts, smokes, and yields afterwards a black globule. In a strong heat the charcoal becomes covered with oxide of lead. It is easily soluble in heated nitric acid.

2. Di-prismatic Copper-glance has been hitherto found only in veins, and is accompanied by axotomous and prismatoidal Antimony-glance, hexahedral Lead-glance, dodecahedral Garnet-blende, &c.

3. The first varieties of this species noticed by mineralogists were those from Cornwall, where they occur with axotomous Antimony-glance in Wheal Boys in the parish of Endellion near Redruth. Another variety, from
Kapnik in Transylvania, where it is found with dodecahedral Garnet-blende, tetrahedral Copper-glance, &c. had likewise been known long ago. It has been found afterwards in large and magnificent crystals, at Neudorf in Anhalt, also at Andreasberg in the Hartz. It occurs at Bräunsdorf in Saxony in a vein of rhombohedral Quartz, containing argentiferous prismatic Arsenical-pyrites, at Neusohl in Hungary, at Offenbanya in Transylvania, with ores of gold, and in other localities.

4. PRISMATIC COPPER-GLANCE.

Fundamental form. Scalene four-sided pyramid.
\[P = 126^\circ 52', 125^\circ 22', 80^\circ 6'. \]

Simple forms. \(P \rightarrow \infty; P (P); (P r + \infty)^5 (d) \)
\[= 63^\circ 48'; (P)^3 (a) = 148^\circ 25', 65^\circ 28', 124^\circ 11'; \]
\[(P r + \infty)^5 (e) = 114^\circ 16'; \ P r (o) = 119^\circ 35'; \]
\[\frac{1}{4} P r + 1 = 97^\circ 41'; P r + \infty (p); P r + \infty (s). \]

Char. of Comb. Prismatic.

Combinations. 1. Pr. Pr + \infty. Pr + \infty.
2. (P)^5. (Pr + \infty)^5. Pr + \infty. Sim. Fig. 7. The individuals of Fig. 41.
3. Pr. P. (P)^5. (Pr + \infty)^5. Pr + \infty. Pr + \infty. Sim. Fig. 30. All of them from Cornwall.

Cleavage, traces of Pr, very imperfect. Fracture conchoidal. Surface, most of the forms smooth, only the faces parallel to the axis, and
particular Pr + ∞, are streaked parallel to their common intersections, often deeply furrowed. Lustre metallic. Colour blackish lead-grey. Streak unchanged, sometimes shining. Very sectile. Hardness = 2.5 ... 3.0. Sp. Gr. = 5.695, the compact variety from the Bannat.

Compound Varieties. Twin-crystals: 1. Axis of revolution perpendicular to one or to both faces of Pr; face of composition parallel to it; Sim. Fig. 38, only that the re-entering angles between 1 and l are filled up; 2. Axis of revolution perpendicular, face of composition parallel to a face of (Pr)^5, the individuals are continued beyond the face of composition, Fig. 41. The inclination of s on s' is equal to that of the acute terminal edge of (Pr)^3 = 88° 9' on one side, and = 91° 51' on the other; the respective inclinations of a on a' are = 153° 37'' and = 157° 19'. Massive: composition granular, of various sizes of individuals, generally small, and often impalpable; in the last case, the fracture becomes uneven, even or flat conchoidal. Plates.

Observations.

1. The division of Vitreous Copper in the Wernerian system, into foliated and compact Vitreous Copper, depends upon the state of mechanical composition and the perfection of cleavage. But few varieties only are comprehended in the first subspecies, namely, such as possess a granular composition and distinct traces of cleavage. Far the greater part is compact Vitreous Copper, which embraces not only the compact varieties, consisting of impalpable individuals,
PHYSIOGRAPHY.

but by a curious anomaly also the crystals, in which but
indistinct traces of cleavage can be observed. There exist
transitions among all these varieties.

2. According to Klaproth, it consists of

Copper 76·50 78·50.
Sulphur 22·00 18·50.
Iron 0·50 2·25.
Silica 0·00 0·75.

It is the sulphuret of copper, CuS, in which the propor-
tion of copper and sulphur is, according to Berzelius, =
79·73 : 20·27. In the oxidating flame of the blowpipe it
melts and emits with a noise glowing drops. In the re-
ducing flame it becomes covered with a coat, and does not
melt. If the sulphur has been driven off, a globule of cop-
per remains. In heated nitric acid the copper is dissolved,
and the solution assumes a green colour, but the sulphur
remains undissolved.

3. If we except the tetrahedral Copper-glance, the pre-
sent species is among those belonging to the genus, the one
which occurs most frequently in nature, both in beds and
veins. It is associated chiefly with other ores of copper,
with hexahedral Iron-pyrites, rhombohedral Quartz, &c.
It is one of those minerals which, by decomposition, are
converted into copper-black.

4. Large and well defined crystals of this species occur in
several mines near Redruth and in other districts, in Corn-
wall. In that place, and in the vicinity of Freiberg, the
present species occurs in veins. Compound varieties, and in
a few rare instances also crystals, have been found in beds in
the Bannat of Temeswar, near Catharinenburg in Siberia, in
Mansfeld, in Hessia, &c.; in the two last countries in bi-
tuminous shale. The fossil corn-ears, which were referred
by Linnaeus to the genus Phalaris, from Frankenberg in
Hessia, consist in part of prismatic Copper-glance, and con-
tain often a little native Silver. Prismatic Copper-Glance
is found in the district of Siegen, in the mines of Kupfer-
berg and Rudelstadt in Silesia, in Sweden, Norway, and
other countries. The foliated variety is found in Cornwall, in the Bannat, in Siegen, and in Mansfeld.

5. It is a rich and highly valuable ore of copper.

Genus II. Silver-Glance.

1. Hexahedral Silver-Glance.

Fundamental form. Hexahedron. Vol. I. Fig. 1. Simple forms. H (r) Himmelsfürst, Freiberg; O (n) Vol. I. Fig. 2., Joachimsthal, Bohemia; D (s), Vol. I. Fig. 31., Himmelsfürst; Č (o) Vol. I. Fig. 34., Morgenstern mine, Freiberg. Char. of Comb. Tessular. Combinations. 1. H. O. Vol. I. Fig. 3. and 4. 2. H. D. Fig. 151. 3. H. C. Fig. 153. 4. H. O. D. Č. All of them from the mines near Freiberg.

Cleavage, sometimes traces parallel to the dodecahedron. Fracture imperfect and small conchoidal, uneven. Surface, nearly of the same description in all the forms, often uneven, and possessing low degrees of lustre. Subject to tarnish. Lustre metallic. Colour blackish lead-grey. Streak shining.

Malleable. Hardness = 2·0 ... 2·5. Sp. Gr. = 7·196, crystals from Freiberg.
Compound Varieties. Reticulated, arborescent, dentiform, filiform, and capillary shapes: individuals sometimes distinguishable, sometimes impalpable; the dentiform and some other imitative shapes are longitudinally streaked. Massive: composition impalpable; fracture uneven. Plates, and superficial coatings.

Observations.

1. According to Klaproth, the hexahedral Silver-glance is composed of

Silver 85·00.
Sulphur 15·00.

It is Ag_2S_2, according to Berzelius, which would make the proportion $= 87·05 : 12·96$. It is easily fusible before the blowpipe, and intumesces, but it gives a globule of silver by a continuation of the blast. It is soluble in dilute nitric acid.

2. It has been hitherto found almost exclusively in veins, accompanied by a great variety of species, particularly ores of silver, lead, and antimony, dodecahedral Garnet-blende, several species of the order Pyrites and of the genus Lime-haloide. Sometimes, though rarely, it is found along with hexahedral Gold. The rock adjoining the veins is often impregnated with it, and it is itself often covered with Silver-black, which sometimes owes its formation to the decomposition of hexahedral Silver-glance.

3. There are but few localities where the present species is found in any considerable quantity. It occurs at Freiberg, Marienberg, Annaberg, Schneeberg, Johanngeorgenstadt in Saxony; in Bohemia, principally at Joachimsthal; at Schemnitz and Creminitz in Hungary, where it is called Weichgewächs; in the Koliwan mountains in Siberia, in Mexico and Peru. It has been found in smaller quantities, both massive and crystallised, in several mines of Cornwall, in the Hartz, in Norway, in Dauphiny, &c.
ORDER XI. HEXAHEDRAL LEAD-GLANCE. 13

4. The hexahedral Silver-glance is an important species for the extraction of silver.

GENUS III. LEAD-GLANCE.

1. HEXAHEDRAL LEAD-GLANCE.

Fundamental form. Hexahedron. Vol. I. Fig. 1.

Simple forms. H (P), Freiberg; O (e) Vol. I. Fig. 2.; Bleiberg; D (o) Vol. I. Fig. 31.; B (I) Vol. I. Fig. 33.; C2 (z) Vol. I. Fig. 34.

Char. of Comb. Tessular.

Combinations. 1. H. O., Vol. I. Fig. 3. and 4. Alston, Cumberland.
4. H. O. D. B. Fig. 155. Feistritz, Stiria.

Cleavage, hexahedron, highly perfect, and easily obtained. Fracture conchoidal, seldom observable. Surface, the hexahedron and the trigonal-icositetrahedron streaked parallel to the edges of combination with the octahedron. Sometimes subject to tarnish.*

* Mr Allan first observed, in several specimens in his own cabinet, that in some combinations of the hexahedron with the octahedron from Alston, the faces of the octahedron are tarnished, and present iridescent tints, while those of the hexahedron have retained their original lead-grey colour. H.
Rather sectile. Hardness = 2.5. Sp. Gr. = 7.568, of a cleavable variety.

Compound Varieties. Twin-crystals: face of composition parallel, axis of revolution perpendicular to a face of the octahedron. The individuals either terminate at the face of composition, or they reach beyond it, and are often compressed in the direction of the axis of revolution. It is found at Kapnik in Transylvania. Reticulated, tabular, and some other imitative shapes, the individuals of which are often still observable. Massive: composition granular, of various sizes of individuals, sometimes impalpable. In this case the colour becomes pale or whitish lead-grey, the fracture even, or flat conchoidal, and the streak shining. The granular particles of composition sometimes become elongated or compressed in one direction, and then approach to columnar or lamellar ones. Pseudo-morphoses of rhombohedral Lead-baryte. Plates, &c.

Observations.

1. The substance, called Blue Lead is generally separated from the species of hexahedral Lead-glance, and considered as a species of its own. The varieties of it, however, are nothing else but the form of rhombohedral Lead-baryte, filled up with the substance of hexahedral Lead-glance, sometimes in pretty coarse granular compositions, as in the varieties from Poullaouen in Brittany, sometimes quite compact, as in some of those from Zschopau in Saxony. The Blue Lead from Cornwall sometimes shews composition. The remainder of the species has been divided into
Common and Compact Lead-glance, according to the crystallised state of the individuals, or the size of the grain in the compositions. By decomposition sometimes a black sooty substance is produced, called Friable Lead-glance.

2. According to Thomson, the hexahedral Lead-glance consists of

\[
\begin{align*}
\text{Lead} & \quad 85\cdot13. \\
\text{Sulphur} & \quad 13\cdot02. \\
\text{Iron} & \quad 0\cdot50.
\end{align*}
\]

It is Pb S², the proportions of lead and sulphur being \(= 86\cdot55 : 13\cdot45\). Some varieties contain a small quantity of silver, others antimony. Before the blowpipe it melts, if it is heated with precaution, and yields globules of metallic lead, after the sulphur has been driven off. It is partly soluble in nitric acid, and leaves a white residue.

3. Hexahedral Lead-glance is frequently found in veins, but also in great quantity in beds, particularly in limestone rocks. In beds it is accompanied by various other ores of lead, also by dodecahedral Garnet-blende, several species of Pyrites, Iron-ore, &c.; in veins it occurs, besides these, along with ores of silver, copper, and antimony, sometimes with hexahedral Gold. In both kinds of repositories it is associated with octahedral Fluor-haloide, rhombohedral Lime-haloide, rhombohedral Quartz, and many other species.

4. The remarkable beds of hexahedral Lead-glance in Carinthia, which occur in limestone, and are worked at Deutsch-Bleiberg, Windisch-Bleiberg, Windisch-Kappel, Ebriach, and other places, possess in several respects a striking similarity to those of Derbyshire, Durham, and Northumberland, in England, in both of which countries they are accompanied and intersected by lead veins. But it is also found in beds in older rocks, as in Stiria, Carinthia, &c. In veins it occurs in rocks of various ages, from gneiss to the coal formations, in several parts of Saxony and Bohemia, in the Hartz, in Anhalt, in Hungary, in Transylvania, in France, in Scotland, and in many other countries.
Fine crystals have been obtained from the Pfafenberg mine near Neudorf in Anhalt, from Saxony, from Transylvania, from Cumberland and Durham, &c. Compact Lead-glance chiefly occurs at Freiberg in Saxony, in the Hartz, in Carinthia, and at Leadhills in Scotland. The localities of Blue Lead have been mentioned above.

5. Hexahedral Lead-glance is that mineral which yields most of the lead annually produced. On account of its generally containing a small quantity of silver, it is also employed to a considerable extent for the extraction of that metal, or also of gold, if it contains an admixture of it, which is sometimes the case. Potters use either the hexahedral Lead-glance itself reduced to powder, or the litharge produced from it for glazing coarse pottery.

Genus IV. Tellurium-glance.

I. Prismatic Tellurium-glance.

Fundamental form. Scalene four-sided pyramid*.

Vol. I. Fig. 9.

Simple forms. \(P - \infty \); \(P + \infty = 90^\circ \) (nearly); \(\Pr + \infty \); \(\Pr + \infty \).

Char. of Comb. Prismatic.

* According to PHILLIPS and BROOKE, it is an acute isosceles pyramid, the edge at its base being \(= 140^\circ \). A combination quoted by PHILLIPS is similar to Fig. 92, having the oblique edges between \(b \) and \(\tilde{b} \) replaced by the faces of a pyramid, the base of which is \(= 122^\circ 50' \).

Cleavage, P — oo, very perfect. Fracture not observable. Surface, P — oo smooth.

Highly flexible in thin laminae. Very sectile.

Hardness = 1·0 ... 1·5. Sp. Gr. = 7·085.

Compound Varieties. Massive: composition granular, of various sizes of individuals, sometimes longish.

OBSERVATIONS.

1. According to Klaproth, the prismatic Tellurium-glance consists of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tellurium</td>
<td>32·20</td>
</tr>
<tr>
<td>Lead</td>
<td>54·00</td>
</tr>
<tr>
<td>Gold</td>
<td>9·00</td>
</tr>
<tr>
<td>Silver</td>
<td>0·50</td>
</tr>
<tr>
<td>Copper</td>
<td>1·30</td>
</tr>
<tr>
<td>Sulphur</td>
<td>3·00</td>
</tr>
</tbody>
</table>

Before the blowpipe it melts easily upon charcoal, emits white fumes, which are deposited upon the charcoal, and gives a malleable metallic globule. With borax it gives a bead of gold containing a little silver. It is easily soluble in nitric acid.

2. It has been hitherto found only in veins with hexahedral Gold, hexahedral Glance-blende, dodecahedral Garnet-blende, macrotypous Parachrose-baryte, &c.

3. Its chief locality is Nagyag in Transylvania, from whence it obtained its ancient name of Nagyaker-Erz. It is found also with prismatic Antimony-glance, at Offenbanya in the same country.
PHYSIOGRAPHY.

CLASS II.

Genus V. MOLYBDENA-GLANCE.

1. RHOMBOHEDRAL MOLYBDENA-GLANCE.

Fundamental form. Rhombohedron, of unknown dimensions. Vol. I. Fig. 7.

Simple forms. R — 0; P; P + 0. They occur in combination with each other, and seem to possess a di-rhombohedral character.

Cleavage, R — 0, highly perfect. Fracture not observable. Surface, R — 0 smooth; P and P + 0 horizontally streaked.

Thin laminae are highly flexible. Very sectile.

Hardness = 1·0 ... 1·5. Sp. Gr. = 4·591.

Compound Varieties. Massive: composition granular, of various sizes of individuals.

Observations.

1. According to BUCHOLZ, rhombohedral Molybdena-glance consists of

Molybdena 60·00.

Sulphur 40·00.

It does not melt, nor is it reduced before the blowpipe, but it emits sulphureous fumes, which are deposited on the charcoal. It deflagrates with nitre, and is soluble with effervescence in nitric acid, leaving a grey residue.
2. It is generally found imbedded in several rocks, particularly in granite, and is not unfrequently met with in several repositories of pyramidal Tin-ore. Besides this species, it is most commonly accompanied by rhombohedral Quartz and prismatic Scheelium-ore.

3. Among the oldest known localities of the present species are Altenberg in Saxony, and Schlaggenwald and Zinnwald in Bohemia. As in these places, it occurs also in Cornwall, along with pyramidal Tin-ore. In Norway and Sweden it occurs imbedded in zircon-syenite and granite; in granite also, at Carrock in Cumberland, and in Westmoreland in England, at Loch Creran in Scotland, &c. It is frequent in the granite and gneiss of the United States of North America, and has been found also in the valley of Chamouni in Savoy, and in Silesia.

Genus VI. BISMUTH-GLANCE.

1. PRISMATIC BISMUTH-GLANCE.

Fundamental form. Scalene four-sided pyramid of unknown dimensions. Vol. I. Fig. 9.

Simple forms and combinations not determined.

Cleavage, imperfect in the direction of $P + \infty$, which is nearly equal to 90°; with great perfection parallel to one of the diagonals, less distinctly parallel to the other; $P - \infty$ imperfect. Fracture scarcely observable. Surface of the prisms deeply streaked parallel to the axis.
Lustre metallic. Colour lead-grey, inclining a little to steel-grey. Streak unchanged.
Rather sectile. Hardness = 2-0 ... 2-5. Sp. Gr. = 6-549, the variety from Rezbanya.

Compound Varieties. Massive: composition granular, the individuals being of various sizes; or columnar, individuals straight and aggregated in various directions.

Observations.

1. According to Sage it consists of

 Bismuth 60-00.
 Sulphur 40-00.

 According to this analysis it is Bi S₈, which corresponds to 59-51 of bismuth, and 40-49 of sulphur. It is volatilised before the blowpipe, and covers the charcoal with a yellow areola. It is easily fusible, and emits continually small drops in a state of incandescence. It is easily soluble in nitric acid, and the solution yields a white precipitate on being further diluted.

2. Prismatic Bismuth-glance occurs principally in veins, but is found also in beds. It is generally associated with octahedral Bismuth, also with several species of Pyrites, with pyramidal Tin-ore, rhombohedral Quartz, &c.

3. It is rather a rare mineral. It is found at Altenberg, at Schneeberg, and some other places in Saxony, at Joachimsthal in Bohemia, at Rezbanya in Upper Hungary, in the latter place in beds; near Redruth and Botallack in Cornwall; at Riddarhyttan in Sweden, with uncleavable Cerium-ore; in the mountains of Beresof in Siberia, &c. Very fine varieties, in large cleavable individuals, are found at Carrock in Cumberland.
Genus VII. Antimony-Glance.

1. Prismatic Antimony-Glance.

Graphic Gold-Glance or Graphic Tellurium. JAM. Syst.
p. 264. Graphic Tellurium. Graphic Gold. PHILL.
Schrifttellur. HAUSM. I. S. 130. Schrift-Tellur.
LEONH. S. 183. Tellure natif aurifère et argentifère.

Fundamental form. Scalene four-sided pyramid.
Vol. I. Fig. 9.

Simple forms. \(P - \infty \) (k); \(P (P) \); \(\frac{\sqrt{3}}{4} P + 2 (b) \);
\((Pr)^5 \) (z); \((Pr)^5 (a) \); \((Pr + \infty)^3 (d) \); \(Pr (o) \);
\(Pr + \infty (r) \); \(Pr + \infty (s) \).

Char. of Comb. Prismatic.

Combinations. 1. \(P - \infty \). \(Pr. Pr. Pr + \infty. Pr + \infty \).
2. \(P - \infty \). \(Pr. Pr. (Pr)^5. (Pr)^5. \frac{3}{4} P + 2.
(Pr + \infty)^3. Pr + \infty. Pr + \infty \). Fig. 35.

Cleavage, \(Pr + \infty \), highly perfect; \(Pr + \infty \) perfect
though not so easily obtained. Fracture
uneven. Surface, \(Pr + \infty \) vertically streaked;
\(Pr + \infty \) fused like; the remaining faces smooth.
Lustre metallic. Colour pure steel-grey. Streak
unchanged.

Very sectile. Hardness \(= 1.5 \ldots 2.0 \). Sp. Gr.
\(= 5.723 \), MÜLLER VON REICHERNSTEIN.

Compound Varieties. Regular composition of
acicular crystals nearly at angles of 60° and 120°,
in one plane, frequently repeated and imparting to
the whole the appearance of certain characters for
writing. Massive: composition imperfectly columnar or granular, small but not impalpable.

OBSERVATIONS.

1. It is possible that the crystal represented in Fig. 35. is not a simple one, but compound parallel to the plane r, in which case the combinations might be hemi-prismatic. The angle dd over s is $= 85^\circ 40'$, over $r = 94^\circ 20'$ very nearly, the inclination of o on r about 125°. The present species presents a great many different varieties of crystalline forms, which being generally very much engaged among each other, and moreover modified by regular composition, have not yet been satisfactorily developed.*

2. According to Klaproth, it consists of

Tellurium 60·00.
Gold 30·00.
Silver 10·00.

It is remarkable, that the specific gravity of such a composition should be so low as has been stated above, it being much less than that of tellurium itself. By calculation the specific gravity is found above 10·0, which agrees pretty well with that of the Yellow Tellurium, as given by Müller von Reichenstein, but this cannot refer to the same species, the specific gravity of which is given above. The prismatic Antimony-glance melts easily into a grey globule, which fumes and covers the charcoal with a white oxide. After having continued the blast for some time, a ductile metallic globule is obtained. It is soluble in nitric acid.

3. The prismatic Antimony-glance occurs at Offenbanya in Transylvania, in very narrow, but quite regular veins.

* It is difficult to trace the identity of the series of crystallisation in Fig. 35, with the figure given by Mr Phillips, unless one of them be discovered to have been in fact a compound crystal. The inclination of c^a on c^a over M follows $= 94^\circ 30'$, nearly the same as d on d over r, and M on h is given $= 126^\circ 3'$, perhaps a more accurate measurement than that indicated above by approximation $= 125^\circ$. H.
which traverse porphyry, several of them at a short distance from each other and parallel. It is accompanied by hexahedral Gold and rhombohedral Quartz, rarely by prismatic Tellurium-glance. It is occasionally met with along with the latter, at Nagyag in Transylvania.

4. It is a valuable ore, on account of its contents of gold and silver.

2. PRISMATOIDAL ANTIMONY-GLANCE.

Fundamental form. Scalene four-sided pyramid. P = 109° 16', 108° 10', 110° 59'. Vol. I. Fig. 9. R. G.

\[
a : b : c = 1 : \sqrt[3]{0.9577} : \sqrt[3]{0.9327}.
\]

Simple forms. \(\frac{1}{3} P - 2\) (s); P (P); P + \(\infty\) (m) = 90° 45'; \(\frac{4}{3} \Pr - 2\) (c); \(\frac{4}{3} \Pr - 2\) (b); \(\Pr - 1\) (a) = 127° 51'; \Pr + \(\infty\) (o).

Char. of Comb. Prismatic.

Combinations. 1. \(\frac{4}{3} P - 2\). P + \(\infty\). \Pr + \(\infty\).
2. P. P + \(\infty\). \Pr + \(\infty\). Both similar to Fig. 6.
3. P. \(\frac{4}{3} \Pr - 2\). P + \(\infty\). \Pr + \(\infty\).
4. \(\frac{4}{3} P - 2\). \Pr - 1. \(\frac{4}{3} \Pr - 2\). P. \(\frac{4}{3} \Pr - 2\). P + \(\infty\). \Pr + \(\infty\). Fig. 32.

All of them from Felsőbanya, Hungary.

Cleavage, highly perfect in the direction of \Pr + \(\infty\); less distinct \(P - \infty\), P + \(\infty\) and \Pr + \(\infty\), sometimes pretty easily obtained. Fracture small conchoidal, rather imperfect. Surface, the ver-
tical planes deeply striated parallel to their own intersections, and rough. The pyramids in a parallel position with P are sometimes irregularly streaked in a horizontal direction, but generally smooth, as also the other inclined faces. Subject to tarnish.

Sectile. Thin laminae are a little flexible parallel to the intersection of $\mathcal{P}r + \infty$ with $P - \infty$. Crystals sometimes bent. Hardness $= 2.0$. Sp. Gr. $= 4.620$ the cleavable variety from Anhalt.

Compound Varieties. Massive: composition columnar, of various sizes of individuals, sometimes very thin, but not impalpable. They are long and straight, either parallel or divergent from several common centres, and aggregated in a second angulo-granular composition. The faces of composition are irregularly streaked in a longitudinal direction. Sometimes the composition is granular, and then the individuals often become impalpable, but are generally very strongly connected; the fracture becomes even or uneven. Capillary crystals often form a tissue resembling wool or felt.

Observations.

1. The present species has been divided into *Common* and *Plumose Grey Antimony*, differing chiefly in the size of their individuals. The latter consists of capillary crystals, which are sometimes even flexible, and either implanted in groupes, or interlaced with each other; sometimes also they form massive varieties in which the columnar composition
is very delicate. The common Grey Antimony has been farther subdivided into radiated, foliated, and compact. The first contains the crystals and massive varieties with a columnar composition, the second only granular compositions, in which the individuals can still be distinguished; and the third those in which the composition is impalpable.

2. According to Proust and Thomson, the prismatoidal Antimony-glance consists of

Antimony $75\cdot00$
Sulphur $25\cdot00$

Its chemical formula is Sb_2S_3, corresponding to $73\cdot77$ of antimony, and $26\cdot23$ sulphur. It is very fusible before the blowpipe, and is absorbed by the charcoal. By a continued blast it may be volatilised without leaving any considerable residue.

3. The greater part of the varieties of prismatoidal Antimony-glance are found in veins, which in some instances almost exclusively consist of this species. Yet it occurs also in beds, particularly with brachytopous Parachrose-baryte, and beds seem almost always to be the repositories of the compact varieties. Frequently it is associated with prismatic Hal-baryte, often with prismatic Purple-blende, and commonly also with rhombohedral Quartz. It occurs besides along with various other species of the orders Glance, Blende, and Haloide, with prismatic Antimony-baryte, and not unfrequently with hexahedral Gold. Its decomposition produces the Antimony-ochre, a friable or compact yellow substance, with which it is often associated or covered.

4. Veins consisting almost entirely of the present species have been discovered at Pöising near Pressburg in Hungary, and at Wolfsthal in the county of Stollberg in the Hartz; such as contain considerable quantities of it associated with other minerals, at Felsőbanya in Upper Hungary, at Cremnitz, Schemnitz, and other places in Lower Hungary, and in France, from whence beautiful varieties are obtained. It occurs also in Scotland, in Cornwall, at Bräunsdorf near Freiberg in Saxony, and at Neudorf in
Anhalt. The fibrous variety occurs at Loben in the valley of the Lavant in Carinthia, in beds of brachytypous Parachrose-baryte, and the compact one particularly at Magurka in Hungary.

5. It is used for extracting the crude antimony, or the metal itself, which is employed in the manufacture of several metallic alloys, and in medicine.

3. AXOTOMOUS ANTIMONY-GLANCE.

Fundamental form. Scalene four-sided pyramid.
Vol. I. Fig. 9.
Simple forms. $P + \infty = 101^\circ 20'$ (nearly); $Pr + \infty$. Combinations, of the preceding forms, their terminations not observed.
Cleavage, $P - \infty$ highly perfect; less distinct, though easily observed, when the crystals are not too small, $P + \infty$ and $Pr + \infty$. Fracture not observable.
Sectile. Hardness $= 2\cdot0 \ldots 2\cdot5$. Sp. Gr. $= 5\cdot564$.

Compound Varieties. Massive: composition columnar, individuals generally very delicate; straight and parallel, or divergent.

OBSERVATIONS.

1. Nothing as yet is known of the proportions among the ingredients of the present species. It contains sulphur, antimony, and lead.

2. The axotomous Antimony-glance seems to be a rare mineral, or at least not sufficiently attended to by mine-
ralogists. It occurs in masses of considerable dimensions in Cornwall, sometimes along with the di-prismatic Copper-glance. In Hungary it is engaged in rhombohedral Lime-haloide, but its locality is not exactly known.

Genus VIII. Melane*-Glance.

1. Prismatic Melane Glance.

Fundamental form. Scalene four-sided pyramid.

\[P = 130^\circ 16', 104^\circ 19', 96^\circ 7'. \]

Vol. I. Fig. 9.

R. G.

\[a : b : c = 1 : \sqrt{2.526} : \sqrt{1.187}. \]

Simple forms. \(P - \infty \); \(P (P) \); \(P + \infty = 111^\circ 8' \);

\((\Pr) (a) \); \((\Pr + \infty) (d) = 72^\circ 13' \);

\((\Pr + \infty) = 142^\circ 10' \); \((\Pr) \); \(\Pr (o) = 115^\circ 39' \); \(\Pr + \infty (p) \); \(\Pr + \infty (s) \).

Char. of Comb. Prismatic.

1. \(\Pr. \Pr + \infty. \Pr + \infty \). Alte Hoffnung mine, Freiberg.

2. \(P. (\Pr + \infty). \Pr + \infty \). Fig. 7. Alte Hoffnung mine.

3. \(\Pr. P. (\Pr). (\Pr + \infty). \Pr + \infty. \Pr + \infty \).

Fig. 30. Przibram, Bohemia.

4. \(P - \infty. \Pr. P. (\Pr). (\Pr). P + \infty \).

* From μίλαζ, black,
(Pr + ∞)³. (Pr + ∞)³. Pr + ∞. Pr + ∞.
Morgenstern mine, Freiberg.
Cleavage, (Pr + ∞)³ and Pr + ∞, imperfect and
interrupted. Fracture conchoidal, uneven. Sur-
face, Pr and Pr + ∞ generally streaked parallel
to their edges of combination with each other;
the other forms smooth.
Lustre metallic. Colour iron-black. Streak un-
changed.
Sectile. Hardness = 2·0 ... 2·5. Sp. Gr. = 6·269,
a crystal from Przibram.

Compound Varieties. Twin-crystals: face of
composition parallel, axis of revolution perpendicu-
lar to a face of Pr; the composition is frequently
repeated, either in parallel layers, or contiguous to
several parts of the same individual. Thence com-
pound masses arise, consisting of alternating la-
minae of two or more individuals, as in prismatic
Lime-haloide, di-prismatic Lead-baryte, &c., with
the forms of which those of the present species
agree in a remarkable manner. Massive: com-
position granular, individuals strongly connected;
fracture uneven.

Observations.

1. According to *Klaproth*, it consists of
 Silver 60·50.
 Antimony 10·00.
 Iron 5·00.
 Sulphur 12·00.
 Copper and Arsenic 0·50.

Berzelius could not discover any antimony by the blow-
pipe, and is therefore of opinion that it is a compound of sulphur, arsenic, and silver. Before the blowpipe, upon charcoal, it yields a dark coloured metallic globule, which may be reduced either with soda and silica, or with salt-petre. It is soluble in dilute nitric acid.

2. The prismatic Melane-glance is found in silver veins along with other ores of silver, also with hexahedral Lead-glance, dodecahedral Garnet-blende, and several species of the orders Pyrites, Haloide, and Baryte. It is sometimes associated with native Arsene and hexahedral Gold. Prismatic Melane-glance in compact varieties is often intimately mixed with hexahedral Lead-glance, and with prismatoidal Antimony-glance, a mixture designated by the name of White Silver, the Weissgiltigerz of the Wernerian system. The richer it is in silver, the more it approaches in its properties to the pure varieties of the present species, while in the contrary cases it yields more nearly the characters of compact hexahedral Lead-glance and compact prismatoidal Antimony-glance, or of a mixture of both, and differs from them perhaps only in the colour. It is evident that the White Silver does not deserve to be ranked as a particular species, on account of this mode of formation, and the variable proportions of the species entering into the mixture. It is found in silver veins in Saxony.

3. The prismatic Melane-glance occurs chiefly in Saxony, Bohemia, and Hungary; in the last of which countries it is called Röachgewächs. Its chief localities in Saxony are the mining districts of Freiberg, Schneeberg, and Johanngeorgenstadt, in Bohemia those of Przibram and Ratieborzitz, and in Hungary those of Schemnitz and Cremnitz. It is found also at Joachimsthal in Bohemia; at Andreasberg in the Hartz, here only in small quantities; at Zacatecas in Mexico, and in Peru.

4. On account of its considerable contents of silver, it is a valuable ore for the extraction of that metal.

5. The two following minerals must here be noticed, as they seem to be nearly allied to the prismatic Melane-glance.
Flexible Sulphuret of Silver.

Hemi-prismatic. A crystal is given by Mr. Phillips, observed and measured by Mr. Brooke. It nearly resembles Fig. 172., but is flattened between P and P, having the edges between M and T replaced by one plane e, and those between l and P by two planes, d² and d¹. Angles, M on T = 125°, e on T = 159°, l on l = 121°, d² on d² = 83° 30', d¹ on d¹ = 48°, k on k = 126° 40', e on s = 90°.

Cleavage perfect, parallel to P.

Lustre metallic. Colour dark externally, nearly black.

Thin laminae flexible. Yields readily to the knife.

It consists, according to the experiments of Dr. Wollaston, of silver, sulphur, and a little iron. This mineral was first discovered by Count Bournon, who suspects Hungary to be the locality of the specimens he examined.

ii. Sulphuret of Silver and Antimony.

Prismatic. Combinations similar to Fig. 23., without h, and having several other prisms (g¹, g², g³) contiguous to its obtuse edge, which in the figure is that between two adjacent faces of M. Inclination, according to PHILLIPS, of x on x = 130° 3', P on P = 60° 56', s on s = 57° 45', M on M (adjacent) = 100°, g¹ on g¹ = 119° 40', g² on g² = 139°, g³ on g³ = 167°.

Cleavage, easy parallel to M and in other directions. Surface striated in a longitudinal direction.

Lustre metallic. Colour approaching to silver white.

Yields easily to the knife. Sp. Gr. = 5-5.

Before the blowpipe it gives out copious white vapours and a slight sulphureous odour, leaving behind a white metallic globule. It is supposed to consist chiefly of antimony,
sulphur, and silver. The locality quoted of this mineral is the mine of Himmelsfürst near Freiberg. It had first been distinguished by Rome de l'Isle; Mr Freiesleben had given it the name of Schilfglaserz, but it was only of late more accurately described by Mr Phillips.

Order XII. BLENDE.

Genus I. GLANCE-BLENDE.

1. HEXAHEDRAL GLANCE-BLENDE.

Fundamental form. Hexahedron. Vol. I. Fig. 1. Simple forms. H; O, Vol. I. Fig. 2. Combinations. 1. H. O. Vol. I. Fig. 3. and 4. Cleavage, hexahedron, perfect; traces of the dodecahedron. Fracture uneven, imperfect conchoidal. Surface rough. Lustre imperfect metallic. Colour iron-black. Streak dark-green. Opake. Rather sectile. Hardness = 3·5 ... 4·0. Sp. Gr. = 4·014, a cleavable variety.

Compound Varieties. Massive: composition granular, of various sizes of individuals; faces of composition irregularly streaked or rough.

Observations.

1. According to Klaproth and Vauquelin, the hexahedral Glance-blende consists of
PHYSIOGRAPHY.

Class II.

Protoxide of Manganese 82.00 85.00.
Sulphur 11.00 15.00.
Carbonic Acid 5.00 0.00.

It is generally, however, considered as a sulphuret of manganese. Before the blowpipe it is melted with difficulty, and only on its thinnest edges. It emits sulphuretted hydrogen, if reduced to powder and thrown into nitric, muriatic, or dilute sulphuric acid, and is dissolved.

2. It is a rare mineral. It occurs chiefly in veins along with prismatic Tellurium-glance, at Nagyag in Transylvania. According to PHILLIPS, it is found also in Cornwall.

Genus II. GARNET-BLENDE.

1. DODECAHEDRAL GARNET-BLENDE.

Fundamental form. Hexahedron. Vol. I. Fig. 1.
Simple forms. \(\hat{H} (\alpha) \) Cornwall; \(\frac{O}{2} (g) \) Vol. I. Fig. 13.;
\(- \frac{O}{2} (g) \) Vol. I. Fig. 14.; \(D (P) \) Vol. I. Fig. 31.;
\(\frac{B}{2} \) Vol. I. Fig. 17.; \(- \frac{C_2}{2} (y) \) Vol. I. Fig. 16.
Char. of Comb. Semi-tessular, with inclined faces.

Combinations. 1. \(\frac{O}{2} \) \(- \frac{O}{2} \) Fig. 158. Cornwall.
2. \(\frac{O}{2} \) \(- \frac{C_2}{2} \) Vol. I. Fig. 78, the faces \(r \) considerably enlarged, so as to intersect each other. Junge hohe Birke mine near Freiberg.
3. D. $\frac{C_2}{2}$. Fig. 162. Alston Moor, Cumberland.

4. $\frac{O}{2} = \frac{O}{2}$. D. $\frac{B}{2}$. Kapnik, Transylvania.

5. H. $\frac{O}{2}$. D. $\frac{C_2}{2}$. Alston Moor.

Cleavage, dodecahedron highly perfect. Fracture conchooidal. Surface, the tetrahedrons and the two tetragonal dodecahedrons generally, though faintly streaked parallel to their common intersections; the trigonal dodecahedron is often uneven or curved, but at the same time smooth and shining.

Lustre adamantine. Colour green, yellow, red, brown, black, none of them bright. Streak white ... reddish-brown, corresponding to the colour. Transparent ... translucent.

Brittle. Hardness = 3.5 ... 4.0. Sp. Gr. = 4.078, a cleavable variety; = 4.027, a columnar, compound variety.

Compound Varieties. Twin-crystals: face of composition parallel, axis of revolution perpendicular to a face of the octahedron. Fig. 156, and 163. This composition is often repeated, either in parallel layers, or in the direction of several faces of the octahedron. Reniform and other imitative shapes: surface rough; composition columnar, often almost impalpable; straight, divergent, and frequently producing a second curved lamellar, or granular composition. Massive: composition columnar or granular...
lar, sometimes impalpable, often very distinct. The fracture of impalpable compositions is uneven or even.

Observations.

1. Although the subspecies distinguished among the varieties of the species Blende have been denominated after their colours, yet they do not depend entirely or solely upon these colours. The colours of yellow Blende are green, yellow, or pale reddish-brown; its varieties possess the highest degrees of transparency which occur in the species. The red and brown colours of the brown Blende are darker, and its degrees of transparency lower than in the preceding subspecies. The varieties of black Blende are either black and opaque, or they are blood-red. Brown Blende has been further subdivided into foliated, radiated, and fibrous brown Blende. Simple varieties and compound ones, consisting of granular individuals, are contained in the first of these divisions; columnar compositions, in which the individuals are still discernible, in the second; and very thin columnar or impalpable compositions originating from them, which assume various imitative shapes, are comprehended in the third division. In the columnar compositions the individuals often present in the cross fracture the even faces of regular composition parallel to a face of the octahedron. Three of the faces of cleavage may be easily obtained parallel to the axis, and produce with the above mentioned faces of composition a regular six-sided prism. On account of the great facility with which the faces of composition may be obtained, it is more difficult to observe the inclined faces of cleavage, which nevertheless are very distinct, and produce with the vertical ones the dodecahedron, as the real form of cleavage of the species. The exact distinction of the Wernerian subspecies of yellow, brown, and black Blende, requires a great deal of practice, and can be acquired only empirically, and even then many varieties will occur that render the distinction impossible. This is a sure though empirical demonstration that the distinction itself is useless.
2. According to Thomson and Gueniveau, it consists of

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>59.09</td>
</tr>
<tr>
<td>Iron</td>
<td>12.05</td>
</tr>
<tr>
<td>Sulphur</td>
<td>23.86</td>
</tr>
</tbody>
</table>

Its chemical formula is ZnS_2, agreeing with 66.72% of zinc and 33.28% of sulphur. When strongly heated in the oxidating flame of the blowpipe, it gives off vapours of zinc, which form a coating on the charcoal, but it does not melt. It is soluble in nitric acid, during which process sulphuretted hydrogen is disengaged.

3. Dodecahedral Garnet-blende is frequently found in nature; but all its varieties are not equally common. It is met with in beds and veins, accompanied chiefly by hexahedral Lead-glance, several species of Iron-pyrites, Arsenical-pyrites, Copper-pyrites, several Haloides, Barytes, &c., in beds also by dodecahedral Garnet, octahedral Iron-ore, and several species of Augite-spar. It is not rare in rich silver veins, and is associated with native Silver, and the different ores of that metal.

4. Yellow Blende principally occurs in fine varieties at Schemnitz in Lower Hungary, and at Kapnik in Transylvania; also at Scharfenberg, Schwarzenberg, and Rittersgrün in Saxony, at Ratieborzitz in Bohemia, at Gummerud in Norway, and other places. Brown Blende is found at Freiberg, and other localities in Saxony, in Bohemia, Hungary, and Transylvania, in the Hartz, at Sahla in Sweden, in great quantities in Derbyshire and Cumberland; also in Cornwall in England. The radiated variety in particular is found at Przibram; it is that variety which contains the greatest proportion of cadmium. The chief localities of fibrous Blende are Raibel in Carinthia, Geroldseck in Swabia, and Wheal Unity in Cornwall; of black Blende, Freiberg, Annaberg, Breitenbrunn, and Schwarzenberg in Saxony, and many places in Bohemia, Hungary, Transylvania, Silesia, in the Hartz and other countries.

5. The application of dodecahedral Garnet-blende for the extraction of zinc, is as yet very limited.
Genus III. Purple-blende.

I. Prismatic Purple-blende.

\[a:b:c:d = 5:0:3:1:1. \]

Simple forms. \(P - \infty \); \(\frac{\Pr + 1}{2} = 15° 47' \); \(-\frac{\Pr}{2} = 34° 6' \); \(\Pr + \infty \). The faces of all the forms hitherto observed, are parallel to one of the diagonals of \(P \), and this is supposed to be the short diagonal.

Char. of Comb. Hemi-prismatic. Inclination of \(P - \infty \) on \(\Pr + \infty = 101° 19' \).

Combinations. 1. \(-\frac{\Pr}{2} \), \(\Pr + \infty \). 2. \(P - \infty \).

\(-\frac{\Pr}{2} \), \(\Pr + \infty \). 3. \(P - \infty \). \(\frac{\Pr + 1}{2} \), \(\frac{\Pr}{2} \).

\(\Pr + \infty \). All of them are elongated, and often appear only as thin filaments parallel to the short diagonal; the termination of the crystals in that direction has not been observed.

Cleavage. \(\Pr + \infty \) highly perfect; less distinct \(\Pr + \infty \); there are traces in other directions perhaps of \(P + \infty \). Fracture not observable.
Surface more or less deeply streaked parallel to the edges of combination.
Lustre common or metallic adamantine. Colour cherry-red. Streak cherry-red or brownish-red. Feebly translucent.
Sectile. Thin laminae are slightly flexible. Hardness = 1·0 ... 1·5. Sp. Gr. = 4·5 ... 4·6.

Compound Varieties. Tufts of capillary crystals. Massive: composition very thin columnar, straight and divergent from common centres.

Observations.

1. The division of Red Antimony in the system of *Werner* is similar to that of the Grey Antimony. *Common Red Antimony* forms the first, and *Tinder-Ore* the second subspecies. The Tinder-Ore comprises those varieties which, originally consisting of short capillary individuals, interlaced with each other, appear in flakes resembling tinder, while the Common Red Antimony refers to crystals, and to those compound varieties, in which the columnar individuals are still discernible.

2. According to *Klaproth*, the prismatic Purple-blende consists of

<table>
<thead>
<tr>
<th>Element</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>67·50</td>
</tr>
<tr>
<td>Oxygen</td>
<td>10·80</td>
</tr>
<tr>
<td>Sulphur</td>
<td>19·70</td>
</tr>
</tbody>
</table>

Alone before the blowpipe it melts easily upon charcoal, by which it is absorbed, and at last entirely volatilised. Immersed in nitric acid, it is covered with a white coating.

3. It is almost always accompanied by prismatoidal Antimony-glance, which has induced some mineralogists to believe it to have been produced from a decomposition of that species. It occurs in veins; besides the above mentioned species, it is accompanied by prismatic Antimony-baryte, rhombohedral Quartz, &c.
4. The varieties of this species occur at Brüunsdorf near Freiberg in Saxony, at Malazka near Pösing in Hungary, and at Allemont in Dauphiny in France. The principal localities of Tinder-ore are Clausthal and Andreasberg in the Hartz.

Genus IV. Ruby-Blende.

1. Rhombohedral Ruby-Blende.

Fundamental form. Rhombohedron. $R = 108° 18'$. Vol. I. Fig. 7. R. G.

$$a = \sqrt{1.895}.$$

Simple forms. $R - \infty (o); R - 2 (s) = 157° 40'; R - 1 (z) = 137° 39'; R (P); R + 1 (g, i) = 80° 59'; R + \infty (k); P + \infty (n);$

$(P - 2)^5 (t); (P - 1)^5 (a); (P - 1)^5 (l); (P)^5; (P + 1)^5.$

Char. of Comb. Rhombohedral. Sometimes the configuration of the opposite apices is different. Of the faces of $R + \infty$ often only the alternating ones appear, as in rhombohedral Tourmaline.

Combinations. 1. $R - 1. P + \infty. R + 1. R - 1$. Fig. 182. Andreasberg, Hartz.*

2. $R - 1. \frac{R + \infty}{2}. P + \infty$. Fig. 136. Andreasberg.

* In the cabinet of Mr Allan. H.
3. \((\frac{5}{4} P - 1)^5 \). \((P)^5 \cdot P + \infty \). Saxony.
4. \(R - 2. R - 1. (P)^5 \). \(P + \infty \). Beschertglück, Saxony.
5. \(R - 1. (P - 2)^5 \). \(R. P + \infty \). Joachimsthal, Bohemia.
6. \(R + 1. (P)^5 \). \(R + \infty \). P + \infty . Marienberg, Saxony.
7. \(R - 1. R + 1. (P)^5 . (P)^5 \). \(P + \infty \). Beschertglück.
8. \(R - 1. (P - 2)^5 \). \(R. (P - 1)^5 \). \((\frac{5}{4} P - 1)^5 \), \((P)^5 \). \(P + \infty \). Fig. 126.

Cleavage, \(R \), in several varieties pretty distinct, in others scarcely observable. Fracture conchoi-dal. Surface, \(R - 2 \) streaked parallel to the edges of combination with \(R - 1; R - 1, (P - 2)^5 \) and the pyramids belonging to \(R \), also \(P + \infty \) often striated parallel to their common edges of combination; \(P + \infty \) is sometimes rough, as is also \((\frac{5}{4} P - 1)^5 \).

Lustre common adamantine in light coloured va-rieties, metallic adamantine in dark coloured ones. Colour iron-black ... cochineal-red. Streak several shades of cochineal-red, corresponding to the colour; in some varieties it is almost aurora-red.

Semi-transparent ... opake.

Sectile. Hardness = 2·0 ... 2·5. Sp. Gr. = 5·846, crystals from Beschertglück.

Compound Varieties. Twin-crystals. 1. Face of composition perpendicular, axis of revolution parallel to an edge of \(R - 1 \). Fig. 139. This
kind of regular composition is frequently repeated, contiguous to all the terminal edges of $R - 1$, as in Fig. 140., or still farther, since two new individuals may again be joined to every one of the former group. A great number of individuals are often joined in that manner.

2. Face of composition parallel, axis of revolution perpendicular to a face of $R - 2$. This mode of composition forms the supplement to the preceding one, but it is far less frequent.

3. Face of composition parallel to a face of $R + \infty$, axis of revolution perpendicular to it. If the individuals are continued beyond the face of composition, then the composition is parallel to all the faces of $R + \infty$.

Massive: composition granular, of various sizes of individuals, strongly connected. If the composition becomes impalpable, fracture is uneven, even, or flat conchoidal. Plates, superficial coatings.

Observations.

1. The difference between the Light and Dark Red Silver, though originally founded on the different tints of colour and streak of the two minerals, and on their lustre, which is dependent upon them, is deeper rooted in the essence of these bodies than it would appear at first sight. The forms of the Light Red Silver have not yet been ascertained with sufficient exactness; they do not seem, however, to be very different from those of the Dark Red Silver, and also the peculiarities in their crystallisations are common to both. There is no difference in their hardness. The specific gravity of the two substances, however, is considerably different, being circumscribed, as far as our present information goes, within the limits of $5.8 \ldots 5.9$.
for the dark red, and of 5·4 ... 5·6 for the light red variety. A dark red cleavable variety from the Hartz gave 5·831, a light red one, also cleavable, from Annaberg, 5·524, and a crystallised one from the Churprinz mine near Freiberg, having the colour of the dark red variety, 5·422. This subject deserves the particular attention of mineralogists, though as yet it is impossible to settle any thing in regard to the determination of the species. The colours of the Dark Red Silver are dark cochineal-red passing into iron-black, its streak is more or less deep cochineal-red, and it is opake or but faintly translucent on the edges. The colours of Light Red Silver are more distinctly cochineal-red, but approach in some varieties to those of Dark Red Silver; its streak is light cochineal-red, and often almost aurora-red; it is translucent on the edges, and frequently semi-transparent. In these properties, however, the two varieties are joined by transitions.

2. The rhombohedral Ruby-blende consists, according to Bonsdorf, of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>58·949</td>
</tr>
<tr>
<td>Antimony</td>
<td>22·846</td>
</tr>
<tr>
<td>Sulphur</td>
<td>16·609</td>
</tr>
<tr>
<td>Earthy substances</td>
<td>0·209</td>
</tr>
</tbody>
</table>

He gives for its chemical formula $3\text{AgS}_2 + 2\text{SbS}_3$, which corresponds to 58·98 of silver, 23·47 antimony, and 17·55 of sulphur. It decrepitates before the blowpipe upon charcoal, melts and emits fumes of sulphur and antimony, after which it yields a globule of silver. It is soluble in dilute nitric acid.

3. The rhombohedral Ruby-blende has been hitherto always found in veins, associated with various other ores of silver, with hexahedral Silver, hexahedral Lead-glance, dodecahedral Garnet-blende, and several species of Pyrites: the light red varieties often with native Arsenic, prismatic Iron-pyrites, octahedral Cobalt-pyrites, and other species.

4. Rhombohedral Ruby-blende is confined to a small number of localities, but in some of these it occurs in pret-
ty considerable quantities. It is found in many of the veins near Freiberg, also at Marienberg, Annaberg, Schnee-
berg, and Johanngeorgenstadt in Saxony; likewise at Joachimsthal, Przibram, and other places in Bohemia.
The light red varieties are more generally met with in the districts of the Saxon and Bohemian mines, nearer the highest ridge of mountains, while the dark red occur in greater proportion in the neighbourhood of Freiberg, and in other places of the lower districts. The dark red silver is found in beautiful crystals at Andreasberg in the Hartz. It is met with also at Schemnitz, Cremnitz, Nagybanya, &c. in Hungary, in Alsace and Dauphiny in France, at Kongsberg in Norway. Some other countries produce but a small quantity of it, as, for instance, Cornwall; but it is very abundant in Mexico and Peru.

5. It is a valuable mineral for the extraction of silver. It has been observed that the dark red yields a greater quantity of silver than the light red variety.

2. HEMI-PRISMATIC RUBY-BLENDE.

One of the varieties commonly comprised among the Dark Red Silver.

Fundamental form. Scalene four-sided pyramid.

\[P = \{ 128^\circ 59', 130^\circ 7', 77^\circ 16' \} \]

Inclination of the axis = 11° 6', in the plane of the long diagonal. Vol. I. Fig. 41. Ap.

\[a : b : c : d = 5:1 : 9:5 : 8:7 : 1. \]

Simple forms. \(P - \infty (b) \); \(\frac{P}{2} = 128^\circ 59' \); \(P + \infty \)

\[(f') = 86^\circ 4'; \quad \frac{(Pr)^5}{2}; \quad \frac{Pr + 1}{2} (l) = 47^\circ 26'; \quad \frac{5Pr + 2}{2} = 28^\circ 9'. \]
ORDER XII. HEMI-PRISMATIC RUBY-BLENDE.

Char. of Comb. Hemi-prismatic. Inclination of $P - \infty$ on $Pr + \infty = 101^\circ 6'$.

Combination. 1. $P - \infty. \frac{Pr + 1}{2}. P + \infty$. Fig. 183. There occur many secondary faces; the whole has much the appearance of crystals of hemi-prismatic Vitriol-salt.

Cleavage, $\frac{3}{4} Pr + \frac{2}{2}$ and $Pr + \infty$, imperfect. Fracture imperfect conchoidal. Surface, deeply streaked parallel to the edges of combination with $\frac{3}{4} Pr + \frac{2}{2}$, particularly $P - \infty$ and $P + \infty$, as indicated in the figure; the pyramids are smooth, $- \frac{Pr + 1}{2}$ rough, though even.

Lustre intermediate between metallic and metallic adamantine. Colour iron-black. Streak dark cherry-red. Opake, except in thin splinters, where it transmits a deep blood-red colour.

Very sectile. Hardness = 2·0 ... 2·5. Sp. Gr. = 5·234.

Observations.

1. The chemical composition of this species has not been as yet exactly ascertained. Before the blowpipe it gives results nearly agreeing with those of rhombohedral Ruby-blende, but it contains only about 35 ... 40 per cent. of silver, besides sulphur and antimony. The only specimen of it, in the possession of Mr Von Weissenbach at Freiberg, is supposed to have been found in the mine called Neue Hoffnung Gottes, at Brünnsdorf near Freiberg in
Saxony. It consists only of crystals, and is not accompanied by any other mineral. *

3. PERITOMOUS RUBY-BLENDE.

Fundamental form. Rhombohedron. \(R = 71^\circ 47' \).

Vol. I. Fig. 7. *HAUy.*

\[a = \sqrt[3]{15.75} \]

Simple forms. \(R - \infty (o); R - 2 (u) = 122^\circ 35' \);
\(\frac{2}{3} R - 2 (z) = 110^\circ 6'; \frac{2}{3} R - 1 (k) = 101^\circ 59'; R - 1 (a) = 92^\circ 36'; R (P); R + \infty (l) \).

Char. of Comb. Rhombohedral.

Combinations. 1. \(R - \infty \). \(R + \infty \). Almaden, Spain.
2. \(R - \infty \). \(R - 2 \). \(\frac{2}{3} R - 2 \). R. Idria, Carniola.
3. \(R - \infty \). \(\frac{2}{3} R - 2 \). R. \(R + \infty \). Almaden.
4. \(R - \alpha \). \(R - 2 \). \(\frac{2}{3} R - 2 \). \(\frac{2}{3} R - 1 \). R - 1. R - 1. R. \(R + \infty \). Fig. 125. Almaden.

Cleavage, \(R + \infty \), highly perfect. Fracture conchooidal. Surface, the rhombohedrons horizontally streaked, some of them very deeply.

Lustre adamantine, inclining to metallic in dark coloured varieties. Colour several shades of co-

* I must here mention a finely crystallised specimen in the possession of Mr Brooke, which seems to have some properties analogous to the semi-prismatic Ruby-blende. Yet its combinations appear to be tetarto-prismatic, and may therefore belong to another species. II.
chineal-red, the darker varieties inclining to lead-grey. Streak scarlet-red. Semi-transparent ... translucent on the edges.

Sectile. Hardness = 2·0 ... 2·5. Sp. Gr. = 8·098, the cleavage variety from Neumarktel.

Compound Varieties. Twin-crystals: face of composition parallel, axis of revolution perpendicular to a face of R = ∞; the individuals frequently continued beyond the face of composition. Rarely in some indistinct imitative shapes. Massive: composition granular, of various sizes of individuals, generally small, and often impalpable. In the last case fracture becomes uneven, even, or flat conchoidal. Plates, superficial coatings. There is sometimes a tendency to thin columnar composition, the mass being friable, and the colour scarlet-red.

Observations.

1. Cinnabar and Quicksilver Liver-Ore or Hepatic Cinnabar, which formerly used to be distinguished as two different species, in fact do not differ more from each other than calcareous spar and compact limestone, or crystallised and compact hexahedral Lead-glance. The Quicksilver Liver-Ore is a compound variety of Cinnabar, sometimes impure, and having on that account a streak which is not perfectly scarlet-red, but inclines to brown. There is a farther subdivision of each of these two kinds of rhombohedral Ruby-blende. The dark red Cinnabar comprehends the crystals, and those compound varieties in which the individuals are still discernible; it is generally cochineal-red. The bright red Cinnabar is friable, and of a scarlet-red colour. The compact Quicksilver Liver-Ore contains uniform massive varieties of a granular composition, consisting of impalpable individuals. The slaty Quicksilver Liver-
Ore is the same thing, only interrupted by irregularly streaked smooth faces, which possess a slaty appearance. These, however, are entirely accidental, and have no relation to the composition itself. These varieties, and the dark-red Cinnabar, are closely connected by transitions, as is always the case in well determined species. This is not so immediately the case in the bright red Cinnabar, perhaps because the latter seems to have undergone a kind of disintegration, as the traces of columnar composition which are often observable, indicate.

2. According to two analyses by Klaproth, it consists of

Mercury 84.50 85.00.
Sulphur 14.75 14.25.

Its chemical formula is Hg S², corresponding to 86.29 of mercury, and 13.71 of sulphur. The Quicksilver Liver-Ore contains small quantities of carbon, silica, oxide of iron, and other foreign admixtures. Before the blowpipe the pure varieties are entirely volatilised. It is soluble in nitric acid. It may be obtained in crystalline masses, showing a columnar composition, on being sublimated.

3. Peritomous Ruby-blende chiefly occurs in beds, accompanied by fluid Mercury, and the rare species of do-decahedral Mercury and pyramidal Pearl-kerate, sometimes only by rhombohedral Lime-haloide and rhombohedral Quartz. Some of its varieties have also been found in veins, where they occur along with several ores of iron. It is found besides in small quantities in the beds of brachytypous Parachrose-baryte.

4. It occurs in beds in gneiss, at Reichenau in Upper Carinthia, and at Hartenstein in Saxony; also at Dumbrawa in Transylvania, in greywacke. Included in limestone in irregular beds, and in those veins of calcareous spar which traverse it in all directions, it is found at Hermagor, Windisch-Kappel, and other places in Carinthia, but particularly at Neumarktel in Carniola. Its most important repositories, however, are Idria in Carniola, the Palatinate,
and Almaden in Spain. At Idria it occurs in beds of bituminous shale, with black Mineral-resin, and dark grey sandstone, associated with limestone. It seems that the repositories of Moschellandsberg, Wolfstein, and Almaden, are much of the same nature. The peritomous Ruby-blende is found in veins at Schemnitz, Creminitz, and Rosenau in Hungary, at Horzowitz in Bohemia, and in the Erzberg near Eisenerz in Stiria. The Quicksilver Liver-Ore has been found only at Idria, the bright red Cinnabar at Wolfstein in the Palatinate. Peritomous Ruby-blende is found besides in considerable quantities in Mexico and Peru, in China, Japan, &c.; small quantities are met with in several countries.

5. It is used for the extraction of mercury; but only if very pure, it may be employed as a pigment in its natural state.

Order XIII. Sulphur.

Genus I. Sulphur.

1. Prismatoidal Sulphur.

Fundamental form. Scalene four-sided pyramid.

\[P = 131^\circ 36', 94^\circ 20', 105^\circ 6'. \] Vol. I. Fig. 7. AP.

\[a : b : c = 1 : \sqrt{0.8} : \sqrt{2.2}. \]

Simple forms. \(P (P) \); \(P + \infty = 117^\circ 49' \); \((\bar{P}r)^5 \);

\((\bar{P}r + \infty)^5 (u) = 79^\circ 20' \); \(\bar{P}r (o) = 83^\circ 37' \);

\(\bar{P}r + \infty (s); \bar{P}r + \infty. \)

Char. of Comb. Prismatic.
Combinations. 1. P. P + ∞. (Pr + ∞)². Sim. Fig. 36., without n and x.
2. Pr. P. (Pr + ∞)². Pr + ∞. Fig. 17.
All of them from Tajowa, Hungary.
Cleavage, Pr + ∞, highly perfect; the faces of cleavage are streaked parallel to the edges of intersection with Pr + ∞, parallel to which there are likewise some traces of cleavage. Fracture scarcely observable. Surface, Pr + ∞, rough, but even; all the other faces are streaked parallel to their edges of combination with Pr + ∞, and generally uneven.
Lustre metallic-pearly upon the perfect faces of cleavage, for the rest resinous. Colour several shades of lemon-yellow. Streak lemon-yellow, generally a little paler than the colour. Semi-transparent ... translucent on the edges.
Sectile. Thin laminae are highly flexible. Hardness = 1·5 ... 2·0. Sp. Gr. = 3·480, a cleavable variety.

OBSERVATIONS.

1. Orpiment and Realgar, the prismatic and the hemi-prismatic Sulphur, are improperly united within one
and the same species in most mineralogical works. Their specific difference is obvious in several of their properties, in the measures of their angles, the character of their combinations, and particularly in their cleavage. Eminent faces of cleavage, like those in the present species, never disappear altogether in simple varieties, and may be observed even in compound ones, though the particles of composition be nearly impalpable. But no trace of such a cleavage exists in the following species, and this circumstance will therefore always yield a sure and palpable, though not the only character for distinguishing Orpiment from Realgar.

2. According to Klaproth and Laugier, the prismatoidal Sulphur consists of

\[
\begin{align*}
\text{Sulphur} & : 38.00 & 38.14. \\
\text{Arsenic} & : 62.00 & 61.86.
\end{align*}
\]

Its chemical formula \(\text{As S}^3\) agrees with 39.08 of sulphur, and 60.92 of arsenic. Before the blowpipe upon charcoal it burns with a blue flame, and emits fumes of sulphur and arsenic. It is soluble in the nitric, muriatic, and sulphuric acids.

3. The prismatoidal Sulphur is found in imbedded nodules, more rarely in imbedded crystals in blue clay, and is accompanied by hemi-prismatic Sulphur. In this way it is met with at Tajowa near Neusohl in Lower Hungary, in the neighbourhood of Vienna, and probably also in Wallachia, Servia, and other countries. At Kapnik in Transylvania, and Felsőbanya in Upper Hungary, it occurs in metalliferous veins with several species of Pyrites, Blende, and Glance, with native Arsenic, and particularly with hemi-prismatic Sulphur. It is found likewise in Natolia, China, and Mexico.

5. It is used as a pigment.

2. HEMI-PRISMATIC SULPHUR.

Fundamental form. Scalene four-sided pyramid.
\[P = \{130^\circ, 1'\}, 142^\circ 59', 62^\circ 44' \]. Inclination of the axis = 4° 1' in the plane of the long diagonal. Vol. I. Fig. 41. Arp.

Simple forms. \[P \{n\} = \{130^\circ, 1'\}; \quad P + \infty \]

\[(f); \quad \frac{P}{2} \{q\} = \{94^\circ, 2'\}; \quad \frac{P}{2} \{l\}; \]

\[(P + \infty)^5 (g) = 113^\circ 20'; \quad (P + \infty)^7 (w) = 90^\circ 48'; \quad (P + \infty)^{\frac{5}{2}} = 124^\circ 30'; \quad (P + \infty)^5 (v) \]

\[= 53^\circ 56'; \quad \frac{P}{2} \{x\} = \{73^\circ 18'\}; \quad \frac{P}{2} \{P + 2\} \]

\[= 43^\circ 52'; \quad P + \infty (r); \quad P + \infty (u). \]

Char. of Comb. Hemi-prismatic. Inclination of \[P = \infty \] on \[P + \infty = 85^\circ 59'. \]

Combinations. 1. \[P + \infty. \] Sim. Fig. 44., reversed.

2. \[\frac{P}{2} - \frac{P}{2}. \]

3. \[\frac{P}{2} - \frac{(P)^5}{2}. \]

4. \[\frac{(P)^5}{2} - \frac{P}{2} - \frac{P}{2} - \frac{(P)^5}{2}. \]

5. \[\frac{(P)^5}{2} - \frac{P + \infty. \quad (P + \infty)^5. \quad (P + \infty)^5. \]
(Pr + ∞)^5. Pr + ∞. Pr + ∞. Fig. 184. All of them from Nagyag, Transylvania. Cleavage, \(\frac{P}{2} \) and \(\frac{Pr}{2} + \infty \) rather perfect; less distinct \(\frac{P}{2} \), \(P + \infty \) and \(\frac{Pr}{2} + \infty \); traces of

(Pr + ∞)^5; all of them much interrupted. Fracture perfect conchoidal. Surface, the prisms in the direction of the principal axis streaked parallel to that line, the inclined faces often rough, particularly \(\frac{P}{2} \), and almost always \(\frac{Pr}{2} \) and \(\frac{\frac{3}{2} Pr + 2}{2} \); \(\frac{Pr}{2} \) is sometimes streaked parallel to the edges of combination with \(\frac{P}{2} \).

Lustre resinous. Colour, aurora-red, several shades, little differing from each other. Streak orange-yellow ... aurora-red.

Sectile. Hardness = 1.5 ... 2.0. Sp. Gr. = 3.556, a semi-transparent crystal.

Compound Varieties. Massive: composition granular, of various sizes of individuals, strongly connected. Fracture conchoidal, uneven.

Observations.

1. According to **KLAPROTH and LAUGIER**, hemi-prismatic Sulphur consists of

<table>
<thead>
<tr>
<th></th>
<th>Sulphur 31-00</th>
<th>30-43.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>69-00</td>
<td>69-67.</td>
</tr>
</tbody>
</table>

Its chemical formula is \(\text{As} \text{S}^2 \), which requires 29.96 of sul-
physur, and 70·04 of arsenic. It gives the same re-actions as the preceding species.

2. Some of the varieties of hemi-prismatic Sulphur occur along with the prismatic one, in beds of clay, as at Tajowa in Hungary. It is found in small nodules, along with tetrahedral. Copper-glance and hexahedral Iron-pyrites, engaged in dolomite, a granular variety of macroty- pous Lime-haloide, at St Gothard in Switzerland. More generally it is met with in metalliferous veins, particularly with ores of silver and lead, with native Arsenic, several species of Pyrites, of Baryte, and Haloide, &c. The chief localities are Kapnik and Nagyag in Transylvania, Felsöbanya in Upper Hungary, Joachimsthal in Bohemia, Schneeberg in Saxony, Andreasberg in the Hartz, and many other places. Hemi-prismatic Sulphur is found in Peru, in the United States of North America, and along with the preceding species in the vicinity of several active volcanoes.

4. The hemi-prismatic Sulphur, like the preceding species, is used as a pigment.

3. PRISMATIC SULPHUR.

Fundamental form. Scalene four-sided pyramid.
P = 106° 38', 84° 58', 143° 17'. Vol. I. Fig. 7.

MITSCHERLICH:

\[a : b : c = 1 : \sqrt{0.2776} : \sqrt{0.1824}. \]

Simple forms. \(\frac{4}{3} P - 2 = 142° 4', \)
\(183° 3', 62° 9'; \frac{3}{7} P - 2 (s) = 127° 1', 113° 11', \)
\(90° 15'; \frac{3}{7} (P), \) Conil, Spain;
\(P + \infty (m) = \)
ORDER XIII. PRISMATIC SULPHUR.

101° 59'; Ùr \((n) = 55° 36' \); Ùr = 46° 15'; Ùr + \(\infty \) (o).

Char. of Comb. Prismatic.

Combinations. 1. P — \(\infty \). P.
2. P — \(\infty \). \(\frac{3}{4} \) P — 2. Ùr. P. P + \(\infty \). Fig. 18. Sicily.
3. P — \(\infty \). \(\frac{3}{4} \) P — 2. \(\frac{3}{4} \) P — 2. Ùr. Ùr. P. P + \(\infty \). Artern, Thuringia.

Cleavage, P and P + \(\infty \), imperfect, difficultly obtained, and interrupted. Fracture conchoidal, sometimes highly perfect. Surface, Ùr commonly rough, the rest of the faces generally smooth and shining, possessing nearly the same physical quality.

Lustre resinous. Colour, several shades of sulphur-yellow, inclining sometimes to red or green. Streak sulphur-yellow, passing into white. Transparent ... translucent on the edges.

Sectile. Hardness = 1·5 ... 2·5. Sp. Gr. = 2·072, crystals from Spain.

* This kind of regular composition has been observed by Dr G. Rose. H.
OBSERVATIONS.

1. The usual division of the present species into common and volcanic Sulphur depends upon the geological situation of their natural repositories. The second kind is a product of sublimation; it appears in the shape of crusts, superficial coatings, stalactites, or also in loose mealy masses; and consists generally of columnar particles of composition, not unfrequently terminating in crystalline points. It occurs sometimes also in very considerable crystals. Common Sulphur has been farther subdivided into compact and earthy, the last of which comprehends those varieties which, on account of the smallness of the individuals in the granular compositions, appear as a friable mealy powder.

2. The prismatic Sulphur is the pure sulphur as it occurs in nature, occasionally mixed with bitumen or clay. It acquires resinous electricity by friction, is easily inflammable, and burns with a blue or white flame, and a pungent smell of sulphurous acid. It is insoluble in water, but unites readily with potash or soda. It may be obtained crystallised by sublimation, or still more easily from solutions in liquids. Professor Mitscherlich has shewn, that the forms of sulphur, crystallised from fusion, are incompatible with those of the present species. They are hemi-prismatic, being generally oblique rhombic prisms of 90° 32', the terminal face of which is inclined to the obtuse edge of the prism, which is itself commonly replaced, at an angle of 95° 46'; a horizontal prism in the direction of the short diagonal measures 90° 16'. It occurs almost always in regular compositions. The crystals are at first transparent, but they soon become opaque. It has not yet been observed in nature.

3. The prismatic Sulphur is principally met with in beds of prismatoidal Gypsum-haloide, or in the accompanying strata of clay. It is generally associated with rhombohedral Lime-haloide, and often also with prismatoidal Hal-baryte. In veins it occurs with pyramidal Copper-pyrites, hexahedral Lead-glance, hemi-prismatic Sulphur,
It is deposited from several springs, and in large quantities from volcanoes. Sometimes it occurs in beds of bituminous Mineral-coal.

4. Prismatic Sulphur is found in splendid crystals, and pure massive varieties, also in globular concretions, which, however, are seldom without earthy or bituminous admixtures, in Sicily, and several provinces of Italy. It occurs in imbedded spheroidal masses of a brown colour, which is owing to bitumen, at Radoboy near Crapina in Croatia. Near Cracovia in Poland it is likewise met with in more or less pure massive varieties and small crystals. The finest crystals, besides Sicily, are known from Conil near Cadiz in Spain. Small crystals have been observed investing the brown coal from Artern in Thuringia. In veins it occurs in Swabia, in Spain, and in Transylvania. The earthy Sulphur is found in Poland, in Moravia, and other countries, the volcanic Sulphur in Iceland, near Vesuvius, in the Solfatara, in fine crystals in Teneriffe, in great profusion near the volcanoes of Java, and in the vicinity of most other active volcanoes. Prismatic Sulphur occurs besides in Savoy, in Piedmont, in Switzerland, at Lauenstein in Hanover, in South America, and many other countries.

5. Prismatic Sulphur requires to be purified, either by melting or by sublimation, for rendering it fit to be an object of commerce. It is used in the manufacture of gunpowder, of cinnabar, of several pharmaceutical preparations, of sulphuric acid, and various other articles.
CLASS III.
RESIN. COAL.

ORDER I. RESIN.

GENUS I. MELICHROME*-RESIN.

1. PYRAMIDAL MELICHROME-RESIN.

Fundamental form. Isosceles four-sided pyramid.
\[P' = 118^\circ 4', 93^\circ 22'. \]

Simple forms. \[P - \infty (o); P - 1 (t) = 130^\circ 55', 73^\circ 44'; P (P); [P + \infty] (g). \]

Char. of Comb. Pyramidal.

Combinations. 1. \(P - \infty \). P. Sim. Fig. 92. 2. P. \([P + \infty] \). 3. \(P - \infty \). P - 1. P. \([P + \infty] \). Fig. 105. All of them from Artern.

* From μελίχρω, having the colour of honey.
Cleavage, P, very difficult. Fracture conchoidal. Surface, P - \infty rough and curved, P - 1 rough, P and [P + \infty] smooth and shining. Lustre resinous, inclining to vitreous. Colour honey-yellow, inclining often to red or brown. Streak white. Transparent ...translucent. Sectile. Hardness = 2.0...2.5. Sp. Gr. = 1.597.

Observations.

1. According to Klaproth, the present species consists of

 Alumina 16.00.
 Mellitic Acid 46.00.
 Water 33.00.

 It loses colour and transparency, when exposed to the flame of a candle, and is soluble in nitric acid.

2. It does not frequently occur in nature, as there is only one well authenticated locality of it, Artern in Thuringia, where it is found in a bed of brown coal, which is nearly earthy, sometimes accompanied by small crystals of prismatic Sulphur. It has been quoted from Switzerland.

Genus II. MINERAL-RESIN.

1. YELLOW MINERAL-RESIN.

Irregular forms, grains and spheroidal masses,
Cleavage none. Fracture conchoidal. Surface uneven and rough.
Lustre resinous. Colour yellow prevalent, passing into red, brown, and white. Streak white. Transparent ... translucent.
Not very brittle. Hardness = 2.0 ... 2.5. Sp. Gr. = 1.081, a honey-yellow variety. Resinous electricity produced by friction.

OBSERVATIONS.
1. Two subspecies have been distinguished in Amber, according to their lustre and transparency. Yellow Amber contains yellow and red varieties, possessing the highest degrees of transparency to be met with in the species, while white Amber refers to white and pale yellow faintly translucent varieties. Often, however, both kinds are joined in one and the same specimen, and pass insensibly into each other, which demonstrates their identity.
2. According to Drappier, it consists of
 Carbon 80.59.
 Hydrogen 7.31.
 Oxygen 6.73.
 Lime 1.54.
 Alumina 1.10.
 Silica 0.63.
It burns with a yellow flame, giving out an agreeable odour, and leaves a carbonaceous residue. It is soluble in alcohol.
3. The yellow Mineral-resin no doubt derives its origin from the vegetable kingdom. This receives an additional evidence by the insects and other organic bodies which it includes. It is found in beds of bituminous wood, from which it is disengaged by the action of the waves on the sea coast, and then thrown out or taken with nets.
4. The greatest quantity of the present species is obtained on the Prussian coasts of the Baltic, also on the coasts of Courland, Livonia, Pomerania, and Denmark. But it
has been found also, generally engaged in bituminous wood, in Sicily, in Spain, near Paris in France, in Greenland, in China, and other countries.

5. It is cut into various ornaments and works of art, it enters the composition of certain kinds of varnish, and serves for fumigation. Considerable value is attached to large specimens which are transparent.

2. **BLACK MINERAL-RESIN.**

Aggregation solid, or fluid, and all the intermediate stages. No regular form. Stalactitic shapes: surface smooth. Massive.

Fracture conchoidal, more or less perfect, uneven. Lustre resinous. Colour black prevalent, but passing also into various brown and red tints. Fluid varieties are sometimes perfectly colourless. Streak commonly unchanged, sometimes lighter than the colour. Translucent on the edges, opaque; some fluid varieties are transparent.

Sectile, malleable, elastic. Bituminous odour. Hardness = 0·0 ... 2·0. Sp. Gr. = 0·828, brown, malleable; = 1·073, black, slaggy; 1·160, hyacinth-red, slaggy.

OBSERVATIONS.

1. *Mineral Oil* and *Mineral Pitch*, generally considered as two distinct species, are included in the black Mineral-
resin, as they scarcely differ in any thing but in their state of aggregation, which, however, from the perfectly fluid to the solid varieties, forms an uninterrupted series. The mineral oil is first inspissated, and then it is changed into mineral pitch by exposure to the air. Mineral pitch has been divided into elastic, earthy, and slaggy. The first is distinguished by its elasticity, which, however, it loses on exposure to the air, the fracture of the second is earthy, that of the third more or less perfectly conchoidal, and corresponding to the degrees of lustre it possesses. All these varieties are joined by transitions.

2. The fluid variety of the present species, called Naphtha, consists, according to Thomson and Saussure, of

<table>
<thead>
<tr>
<th>Carbon</th>
<th>82-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>87-60</td>
</tr>
</tbody>
</table>

Mineral oil is easily inflammable, and burns with a white flame and much smoke. Also the mineral pitch is very inflammable, and burns with a bituminous smell; some varieties melt in a higher temperature.

3. The fluid varieties of the present species ooze out of several rocks, as sandstone, slaty clay, &c., or they are found on the surface of springs and other waters. The elastic varieties occur only in the repositories of hexahedral Lead-glance in limestone rocks; the earthy ones in beds associated with limestone, and probably included in some of the coal formations. The slaggy varieties are often included in nodules in limestone, in agate balls, in veins, with hexahedral Lead-glance, octahedral Fluor-haloide, &c.; also in beds. It is met with on the shores and in the waters of the Dead Sea.

4. Fluid varieties have been found in various districts of Italy, in Sicily, in Zante, in the Caspian Sea, in Persia, and other countries in Asia; also, though in smaller quantities, in Westphalia and Alsace. Elastic mineral pitch, sometimes called Mineral Caoutchouk, has been hitherto found only at Castleton in Derbyshire. Earthy mineral pitch is found near Neufchatel in Switzerland, at Grund in the Hartz, in Dalmatia, &c.; the slaggy varieties occur
forming nodules in limestone at Bleiberg in Carinthia, imbedded in sandstone in Albania, in great profusion in the island of Trinidad. It is found in veins in the Iberg near Grund in the Hartz, in Derbyshire, and other places.

5. The different varieties of the present species allow of considerable application for illuminating, for fuel, in fireworks, in the manufacture of varnish, of black sealing-wax, and for other purposes.

Order II. COAL.

Genus I. MINERAL-COAL.

1. BITUMINOUS MINERAL-COAL.

No regular form or structure. Fracture conchoidal, uneven.

Lustre resinous, more or less distinct. Colour, black or brown, passing in earthy varieties into greyish tints. Streak unchanged, except that it sometimes becomes shining. Opake.

Sectile, in different degrees. Hardness = 1·0...2·5.

Sp. Gr. = 1·223, moor-coal from Teplitz; = 1·270, common brown coal from Eibiswald in
Stiria; = 1·271, black coal from Newcastle; = 1·288, bituminous wood; 1·329, common brown coal from Leoben in Stiria; 1·423, cannel coal from Wigan in Lancashire.

Compound Varieties. Massive: composition lamellar, faces of composition smooth and even, different gradations; granular texture, often impalpable, and then fracture is uneven, even, or flat conchoidal. Ligniform shapes, the structure of which resembles that of wood, sometimes very distinct, but often obliterated, with the exception of some slight traces. Fracture then becomes conchoidal, particularly across the fibres. There are some earthy varieties of a loose friable texture.

OBSERVATIONS.

I. In the present species of bituminous Mineral-coal are comprised the Brown Coal and the Black Coal of Werner, excepting the columnar coal, which must be referred to the following species. These two kinds, however, and still more so the varieties which they contain, are very difficult to be ascertained. Colour, structure, and the kind of lustre which depends upon the latter, are almost all that remain for their distinction. The colour of Brown Coal, as the name imports, is brown; it possesses a ligneous structure, or consists of earthy particles; the colour of Black Coal is black, not inclining to brown, and it does not possess the structure of wood. The varieties of Brown Coal are the following: Bituminous Wood, which presents a ligneous texture, and very seldom any thing like conchoidal fracture, imperfect, and without lustre; Earthy Coal, consisting of loose friable particles; Moor Coal, or Trapezoidal Brown Coal, distinguished by the want of ligneous structure, by the property of bursting and splitting into angular
fragments, when removed from its original repository, and the low degree of lustre upon its imperfect conchoidal fracture; Common Brown Coal, which, though it still shews traces of ligneous texture, is of a more firm consistency than the rest of the varieties, and possesses higher degrees of lustre upon its more perfect conchoidal fracture. Some varieties of Black coal immediately join those of Brown coal. They are: Pitch Coal, of a velvet-black colour, generally inclining to brown, strong lustre, and presenting in every direction large and perfect conchoidal fracture. Slate Coal possesses a more or less coarse slaty structure, which, however, seems to be rather a kind of lamellar composition, than real fracture. Foliated Coal is similarly compound, only the laminae are thinner, and Coarse Coal has a composition resembling it, only the component particles are smaller, and approach to a granular appearance. Cannel Coal is without visible composition, and has a flat conchoidal fracture in every direction, with but little lustre, by which it is distinguished from Pitch-coal. It is most like the Moor coal, but the difference in their specific gravity is greater than between almost any other two varieties of coal. All these kinds are joined by numerous transitions, so that it often becomes doubtful to which of them we should ascribe certain specimens, though they undoubtedly are bituminous Mineral-coal.

2. The preceding varieties of coal consist of bitumen and carbon in various proportions. They are more or less easily inflammable, and burn with flame and a bituminous smell. Several varieties become soft, and others coal, when kindled. They leave a more or less considerable earthy residue.

3. The varieties called slate coal, foliated coal, coarse coal, cannel coal, and pitch coal, occur chiefly in the coal formation; some varieties of pitch-coal, also the moor-coal, bituminous wood and common brown coal, are met with in the formations above the chalk; the earthy coal, and some varieties of bituminous wood and common brown coal, are often included in diluvial and alluvial detritus. The coal
seams alternate with beds of slaty clay and common clay, sandstone, limestone, sand, &c. They are often associated with vegetable organic remains, in slaty clay, sometimes also with shells. Generally there is some hexahedral or prismatic Iron-pyrites intermixed along with them, and they are traversed by veins, generally narrow, of hexahedral Lead-glance.

4. The bituminous Mineral-coal is so universally distributed, that only a few localities can here be mentioned as examples. Bituminous wood is found in considerable quantity in Iceland, and is called Surturbrand; in the Meissner mountain in Hessa, in the Westerwald, at Voitsberg in Stiria, at Bovey in Devonshire. Earthy coal is found at Merseburg, Halle, Bernburg, at Eisleben in Thuringia. Moor coal occurs in the northern districts of Bohemia, as at Elbogen, Carlsbad, Teplitz, &c. also at Kaltennordheim. Common brown coal occurs in immense quantities on the river Sau, and on the foot of the Schwamberg Alps in Lower Stiria, at Judenburg, Leoben, and other places in Upper Stiria, in the Meissner in Hessa. Pitch coal is likewise found in the Meissner, at Planitz and Zwickau in Saxony, in Silesia, on the Rhine, in France; slaty coal at Potschappel in Saxony, in Silesia, in Westphalia, but particularly at Newcastle, Whitehaven, and other places in England and Scotland. Foliated coal is raised at Potschappel, at Löbegün near Halle on the Saale, also at Härting in the Tyrol, at Liege; coarse coal at Neustadt in the Hartz, at Potschappel in Saxony, in Silesia, &c.; and the cannel-coal particularly in Lancashire and Shropshire in England, and in Scotland.

5. The important use of the bituminous Mineral-coal is well known. The cannel-coal is worked into buttons, snuff-boxes, &c.

2. NON-BITUMINOUS MINERAL-COAL.

No regular form or structure. Fracture conchoidal, often perfect.
Not very brittle. Hardness = 2.0 ... 2.5. Sp. Gr. = 1.400, columnar coal from Meissner; = 1.482, glance coal from Schönfeld, in Saxony.

Compound Varieties. Massive: composition lamellar, faces of composition either smooth and shining, or rough; generally impalpable, fracture conchoidal, more or less perfect. Some varieties are vesicular, others divided into columnar masses, meeting in rough faces.

OBSERVATIONS.

1. Besides Glance-Coal, the present species contains also the Columnar Coal, which in the Wernerian system is comprised in the species of Black Coal, to which, however, it does not belong. The Columnar Coal in particular is remarkable for its irregular columnar composition, which is probably produced by fissures, and the low degree of lustre in its fracture. Glance-coal has been divided into Conchoidal and Slaty Glance-Coal, the latter of which in particular is designated by the name of Anthracite. The first of them possesses a perfect conchoidal fracture, the second is compound like Slate Coal.

2. The varieties of the present species do not contain any bitumen, but consist wholly of carbon, occasionally mixed with variable proportions of oxide of iron, silica, and alu-
mina. They are difficultly inflammable, and burn without smoke, flame, or bituminous smell, leaving a more or less considerable earthy residue.

3. The non-bituminous Mineral-coal is less frequent than the bituminous one. It very often occurs included in more ancient rocks; but some varieties are found in secondary strata. It is sometimes met with in veins traversing trap rocks.

4. The columnar coal is principally found on the Meissner in Hessia, along with the conchoidal Glance-coal, forming the uppermost division of a bed of bituminous wood, covered by basalt. It is said also to have been found in Dumfriesshire, and other districts of Scotland. Besides the Meissner, the conchoidal Glance-coal occurs at Schönfeld near Frauenstein in Saxony; in the neighbourhood of Spa; also in Ayrshire in Scotland, and in Staffordshire in England. The slaty Glance-coal is found in considerable quantity at Schönfeld; also at Lischwitz near Gera in Saxony, in Savoy, at Kongsberg in Norway, in the isle of Arran and other places in Scotland, as, for instance, in the trap rocks of the Calton hill near Edinburgh.

5. On account of its difficult inflammability, the employment of the non-bituminous Mineral-coal is less general than that of the bituminous one; yet it has been used for burning lime, in the process of refining iron, &c.

6. The Mineral Charcoal seems to be most nearly allied to the present species. It occurs in thin layers and massive specimens, of a very delicate columnar composition, and presenting on that account a kind of silky lustre. It is greyish-black or velvet-black, and inclosed in the varieties of bituminous Mineral-coal, particularly slate-coal and brown-coal. It occurs in many districts of Bohemia, Saxony, Silesia, England, &c. At Voitsberg in Stiria it is very plentiful in bituminous wood.
APPENDIX I.

MINERALS, THE GREATER PART OF WHICH WILL PROBABLY FORM IN FUTURE DISTINCT SPECIES IN THE MINERAL SYSTEM.

ACMITE.

SPAR.

Hemi-prismatic. Combination observed similar to Fig. 186.* Inclination of M on M over $r = 86^\circ 56'$, angle $abc = 28^\circ 19'$, Mitscherlich; s on $s = 119^\circ 30'$, edge between s and s on $r = 106^\circ$.

Cleavage, distinct parallel to M, also to r and l and s. Fracture imperfect conchoidal. Surface, r irregularly streaked in a longitudinal direction, the rest of the faces pretty even, but not very smooth.

Lustre vitreous. Colour brownish-black. Streak pale yellowish-grey. Opake, very thin edges are translucent, and shew a fine yellowish-brown tint.

Ström.

* In the cabinet of Mr Allan.
It resembles paratomous Augite-spar in a remarkable degree, particularly in regard to form and regular composition. It has been found by Berzelius to consist of

Silica 55·25.
Oxide of Iron 31·25.
Oxide of Manganese 1·08.
Lime 0·72.
Soda 10·40.

It melts readily before the blowpipe, into a black globule.

It is found at Eger in Norway, imbedded in granite. Its name is derived from ανπι a point, from the form of the crystals.

ALLANITE.

ORE.

Tetarto-prismatic. Combination observed similar to Fig. 185. Inclination of r on $M = 129^\circ$, r on $P = 116^\circ$, M on $P = 115^\circ$; s on $r = 135\frac{1}{2}^\circ$, d on $r = 124\frac{1}{2}^\circ$, y on $r = 109^\circ$, s on $x = 156\frac{3}{4}^\circ$, x on $t = 164\frac{1}{2}^\circ$, x on $y = 151^\circ$, t on $y = 166\frac{1}{2}^\circ$.

Cleavage parallel to r and P indistinct. Fracture imperfect conchoidal.

Lustre imperfect metallic. Colour brownish- or greenish-black. Streak greenish-grey. Opake, faintly translucent in thin splinters, and brown. Brittle. Hardness = 6·0. Sp. Gr. = 4·001, BOURNON.

Allanite froths before the blowpipe, and melts imperfectly into a black scoria. It gelatinises in nitric acid, and consists, according to Dr THOMSON, of
It was discovered at Alluk in East Greenland, by Sir Charles Giesecke, and first observed by Mr Allan. It is accompanied by pyramidal Zircon, rhombohedral Quartz, &c.

ALOPHANE.

Oxide of Cerium 33·90.
Oxide of Iron 25·40.
Silica 35·40.
Lime 9·20.
Alumina 4·10.

It was discovered at Alluk in East Greenland, by Sir Charles Giesecke, and first observed by Mr Allan. It is accompanied by pyramidal Zircon, rhombohedral Quartz, &c.

ALOPHANE.

Reniform, botryoidal, massive: composition impalpable. Fracture conchoidal.
Lustre vitreous, inclining to resinous. Colour blue, green, brown. Transparent ... translucent on the edges.
Hardness = 3·0 nearly. Sp. Gr. = 1·852 ... 1·889,

STROMEYER.

Without addition it is infusible before the blowpipe. With borax it melts into a transparent, colourless glass. It consists, according to Stromeyer, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>32·202</td>
</tr>
<tr>
<td>Silica</td>
<td>21·922</td>
</tr>
<tr>
<td>Lime</td>
<td>0·730</td>
</tr>
<tr>
<td>Sulphate of Lime</td>
<td>0·517</td>
</tr>
<tr>
<td>Carbonate of Copper</td>
<td>3·058</td>
</tr>
<tr>
<td>Hydrate of Iron</td>
<td>2·270</td>
</tr>
<tr>
<td>Water</td>
<td>41·301</td>
</tr>
</tbody>
</table>

It is found at Saalfeld in Thuringia, in the mining district of Schneeberg in Saxony, and other places. It was first described by Professor Stromeyer.
ALUMINITE.

Colour white. Streak white, a little glimmering. It soils. Opake.
Sp. Gr. = 1·669, SCHREBER.

It is difficultly fusible. In acids it is readily dissolved, and does not effervesce. It imbibes water, but does not fall into pieces. According to STROMEYER, it consists of
from Halle. from Newhaven.

<table>
<thead>
<tr>
<th>Component</th>
<th>Halle</th>
<th>Newhaven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>30·262</td>
<td>29·868</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>23·365</td>
<td>23·270</td>
</tr>
<tr>
<td>Water</td>
<td>46·327</td>
<td>46·762</td>
</tr>
</tbody>
</table>

It occurs at Halle on the Saale in Prussia, in beds of plastic clay, and also near Newhaven in Sussex in limestone.

AMBLYGONITE.

SPAR.

Prismatic. $P + \infty = 106^\circ 10'$. Cleavage, $P + \infty$. Fracture uneven.
Lustre vitreous, inclining to pearly. Colour greenish-white, passing into light mountain- and celandine-green. Streak white. Semi-transparent ... translucent.
Hardness = 6·0, BREITHAUP. Sp. Gr. = 3·00 ...

3·04, BREITHAUP.
Before the blowpipe it is easily fusible, intumesces, and is converted into a white enamel. According to Berzelius, it consists of alumina, the phosphoric and fluoric acids, and lithia, in greater quantities than any other mineral.

It has hitherto been found only at Chursdorf near Penig in Saxony, where it occurs in granite, along with rhombohedral Tourmaline and prismatic Topaz. It was first discovered to be a particular species by Mr Breithaupt.

ANORTHITE.

FELD-SPAR.

Tetarto-prismatic. Simple forms and combinations, also the regular compositions exactly similar to those of Albite, p. 255., represented in Figs. 84–87. Dr Rose gives the following measurements of the angles.

\[
\begin{align*}
 l \text{ on } M &= 122^\circ 2' \quad y \text{ on } P \quad (\text{over } x) = 93^\circ 29'. \\
 T \text{ on } l &= 120^\circ 30' \quad P \text{ on } M \quad (\text{over } x) = 85^\circ 48'. \\
 T \text{ on } M &= 117^\circ 28' \quad P \text{ on } M \quad (\text{opposite}) = 94^\circ 12'. \\
 P \text{ on } T &= 110^\circ 57' \quad s \text{ on } M = 115^\circ 20'. \\
 x \text{ on } P &= 128^\circ 27' \quad P \text{ on } n = 133^\circ 13'.
\end{align*}
\]

Cleavage perfect parallel to \(P \) and \(M \); none parallel to \(T \). Fracture conchoidal. Surface of \(T \) more smooth than of \(l \).

Lustre pearly upon cleavage planes, vitreous in other directions. Colour white. Streak white. Transparent ... translucent.

Brittle. Hardness = 6-0. Sp. Gr. = 2-763, massive; = 2-656 small crystals, apparently not entirely free from pyroxene. Rose.
According to Dr G. Rose, it consists of
Silica 44-49.
Alumina 34-46.
Oxide of Iron 0-74.
Lime 15-68.
Magnesia 5-26.

Before the blowpipe it comports itself nearly like prismatic Feld-spar, Albite, and Labradorite, only that with soda it does not give a clear glass. It is entirely decomposed by concentrated muriatic acid.

The only locality of Anorthite is Mount Vesuvius; it is found lining cavities in limestone, along with a green variety of paratomous Augite-spar.

APHRITE.

It effervesces violently with nitric acid, and is completely dissolved. The friable varieties readily absorb water, during which they give a crackling noise. According to Bucholz, it consists of

Lime 51-500.
Silica 5-715.
Oxide of Iron 3-285.
Carbonic Acid 39-000.
Water 1-000.

It occurs at Rubiz near Gera in Saxony, upon the Meiss-
ner in Hessia, and in several places in the county of Mansfeld. It is found in those varieties of secondary limestone, which have been called Rauchwacke and Asche, and is sometimes accompanied by, and intermixed with, prismatical Gypsum-haloide.

ARGFVEDSONITE.

Spar.

Cleavage, a rhombic prism of $123^\circ 55'$, with brilliant faces.

Colour black. Sp. Gr. = 3·44, Brooke.

It resembles hemi-prismatic Augite-spar, and is generally considered as a ferriferous variety of it. It accompanies the dodecahedral Kouphone-spar from Greenland, and black paratomous Augite-spar, with which it is grouped with parallel axes, in the same manner as amphibole and pyroxene in several varieties of diallage. It has not been analysed, but according to Mr Children (Ann. of Phil. XI.III. p. 37.), it melts easily into a black globule, if exposed in the platina forceps to the blast of the blowpipe. With borax it gives a glass coloured by iron; with salt of phosphorus likewise, but paler, and becoming colourless on cooling; a dark grey silica skeleton remains undissolved.

ARGENTIFEROUS COPPER-GLANCE.

GLANCE.

Massive: composition impalpable.

Fracture flat conchoidal, even.

Constituent parts, according to STROMEYER,

- Silver 52.272.
- Copper 30.478.
- Iron 0.333.
- Sulphur 15.782.

It occurs along with pyramidal Copper-pyrites, rhombohedral Lime-haloide and rhombohedral Quartz at Schlangenberg in Siberia, and is very rare. It was first described by Professors HAUSMANN and STROMEYER.

ARSENICAL BISMUTH.

Arsenik-Wismuth. WERN. Syst. S. 56.

Implanted globular shapes, massive: composition thin columnar, impalpable, also curved lamellar.
Fracture imperfect conchoidal or uneven.
Lustre resinous. Colour dark hair-brown.
Rather brittle. Soft. Heavy.

It decrepitates briskly before the blowpipe, emits an arsenical odour, and is finally converted into a glass, which effervesces with borax.
It occurs at Schneeberg in Saxony.

ATACAMITE.

MALACHITE.

Prismatic. Combinations somewhat resembling Fig. 21.; often only the faces o and d, producing a combination like Fig. 1. Inclination of o on o
BABINGTONITE.

(adjacent) = 107° 10'; of d on d (adj.) = 112° 45'; of M on M (over o) = 80°, z on z (over M) = 127° 7'. PHILLIPS. Reniform, massive: composition columnar.

Cleavage, perfect parallel to P, less distinct parallel to M.

Colours olive-, leek-, grass-, emerald-, and blackish-green. Streak apple-green. Nearly transparent ... translucent on the edges.

Rather brittle. Hardness = 3·0 ... 3·5. Sp. Gr. = 4·43, LEONHARD.

It communicates bright blue and green colours to the flame of a candle, or if exposed to the blast of the blow-pipe, it develops vapours of muriatic acid, and melts at last into a globule of copper. It is soluble without effervescence in nitric acid. It consists, according to PROUST and Klaproth, of

- Oxide of Copper 76·595
- Muriatic Acid 10·638
- Water 12·767

It is chiefly brought from Chili and Peru, but is also found in Europe, as in the repositories of Iron-ore at Schwarzenberg in Saxony, and upon lava in the neighbourhood of Mount Vesuvius. It is often produced when metallic copper or copper-ores have been exposed to the action of the atmosphere, or of sea-water.

BABINGTONITE.

SPAR.

Tetarto-prismatic. Combination observed, represented Fig. 187. Angles, according to Lévy:
PHYSIOGRAPHY.

\[p \text{ on } m = 92^\circ 34'; p \text{ on } t = 88^\circ, t \text{ on } h = 155^\circ 25', m \text{ on } t = 112^\circ 30', m \text{ on } h = 137^\circ 5', p \text{ on } d = 150^\circ 25', g \text{ on } m = 132^\circ 15', h \text{ on } g = 89^\circ 20'. \]

Cleavage distinct, parallel to \(p \) and \(t \). Fracture imperfect conchoidal.

Lustre vitreous. Colour black, often greenish, thin splinters are faintly translucent, and of a green colour perpendicular to \(p \), of a brown colour parallel to it. In larger crystals it appears opake. Hardness = 5·5 ... 6·0.

It resembles certain dark coloured varieties of paratomoous Augite-spar. According to Mr CHILDREN, it is composed of silica, iron, manganese, and lime, with a trace of titanium. It occurs at Arendal in Norway in small crystals disposed on the surface of crystals of Albite.

BARYTO-CALCITE.

HAL-BARYTE.

Hemi-prismatic. Combinations similar to Fig. 44. and Fig. 188. Inclination of \(M \) on \(M = 106^\circ 54' \), \(h \) on \(P \) (over \(a \)) = 106° 8', \(P \) on \(M = 102^\circ 54' \), according to Brooke; \(b \) on \(b = 95^\circ 15' \), \(h \) on the edge between \(b \) and \(b = 119^\circ \), \(P \) on the same edge = 135°, \(c \) on \(c = 145^\circ 54' \), \(d \) on \(d \) over \(h = 68^\circ \). It is also found massive, in granular compositions.

Cleavage perfect, parallel to \(M \), less easily obtained.
BERGMANNITE.

though perfect parallel to P. Fracture uneven, imperfect conchoidal. Surface, h striated parallel to the edges of combination with M, the vertical prisms parallel to the axis.

Lustre vitreous, inclining to resinous. Colour white, greyish, yellowish, or greenish. Streak white. Transparent ... translucent.

Hardness $= 4.0$. Sp. Gr. $= 3.66$, CHILDREN.

It does not melt alone before the blowpipe, but gives a clear globule with borax. It consists, according to Mr CHILDREN, of

Carbonate of Barytes 65.9.
Carbonate of Lime 33.6.

It sometimes gives traces of iron and manganese.

It occurs in pretty considerable quantities at Alston Moor in Cumberland, both massive and crystallised.

The discovery of Baryto-Calcite is in particular favourable to shew the advantages of a systematic nomenclature. Upon examining its characters and resemblance to other species, it is immediately arranged with the genus Hal-baryte, and must therefore assume the denomination of the hemi-prismatic Hal-baryte.

BERGMANNITE.

SPAR.

Massive: composition thin columnar, or promiscuous. Lustre pearly. Colour several tints of grey, passing into white and brick-red. Opake.

Not very brittle. Soft, passing into semi-hard,
Breithaupt. Scratches glass, and even quartz, Haüy. Sp. Gr. = 2·300, Schumacher.

Before the blowpipe it becomes white, and then melts without effervescence into a colourless glass. It occurs in the neighbourhood of Stavern in Norway, along with prismatic Feld-spar.

Bismuthic Silver.

Glance?

Lustre metallic. Colour light lead-grey, subject to be tarnished. Opake.

Sectile. Soft.

It melts readily before the blowpipe, covers the charcoal with an areola of the oxides of lead and bismuth, and finally yields a silver button. It is dissolved in dilute nitric acid, and, according to Klaproth, consists of

- Lead 33·00.
- Bismuth 27·00.
- Silver 15·00.
- Iron 4·30.
- Copper 0·90.
- Sulphur 16·30.

It has been found at Schapbach in Baden, along with several minerals of the orders Pyrites and Glance, and also with rhombohedral Quartz. It is used as an ore of silver.

Black Cobalt Ochre.

BLOEDITE.

Before the blowpipe it gives out an arsenical smell, and colours borax smalt blue. It consists of the oxides of cobalt and manganese.

It occurs at Saalfeld, Kamsdorff, and Glücksbrunn in Thuringia; at Riechelsdorf in Hessia, in the principality of Fürstenberg, in different mineral repositories, which also contain several species of Cobalt-pyrites. It is used in the fabrication of smalt.

It seems that the yellow and the brown cobalt ochre are in a close connexion with the black variety; yet they all require some farther examination.

BLOEDITE.

SALT.

It occurs at Ischel in Upper Austria, along with prismatic Gypsum-haloide and the Polyhalite. It consists, according to JOHN, of
Sulphate of Magnesia 36:66.
Sulphate of Soda 33:34.
Protosulphate of Manganese 0:33.
Muriate of Soda 22:00.
Water 0:34.

with a mechanical admixture of persulphate of iron with excess of base.

BREISLAKITE.

This name has been given to a substance from Vesuvius in very delicate capillary crystals, of a reddish-brown or chestnut-brown colour, bent and grouped like wool, on the surface of cavities in a kind of lava, resembling the *Graustein* of Werner. Its other properties have not been ascertained. It contains a considerable quantity of copper, giving with salt of phosphorus a green globule in the oxidating flame, which becomes red in the reducing flame of the blowpipe.

BREWSTERITE.

KOUPHONE-SPAR.

Hemi-prismatic. Combination represented Fig. 189.
Inclination of the edge between d and d on that between h and h, $= 93^\circ 40'$; d on $d = 172^\circ$.
Prisms: $h = 176^\circ$; $g = 136^\circ$; $e = 131^\circ$; $c = 121^\circ$. Brooke.

Cleavage, perfect parallel to P, traces parallel to a plane, which replaces the edge between h and h.
Fracture uneven.
Surface of the prisms streaked parallel to their common intersections.
Lustre vitreous, pearly upon P. Colour white,
inclining to yellow and grey. Transparent ... translucent.

Hardness = 5·0 ... 5·5. Sp. Gr. = 2·12 ... 2·20,

Dr Brewster.

It is found in crystals and crystalline coats, associated with rhombohedral Lime-haloide, at Strontian in Argyll-shire. It resembles particularly the prismatical and hemi-prismatic Kouphone-spars, with which it has been formerly confounded. Before the blowpipe it loses first its water and becomes opake, then it froths and swells up, but is difficultly fusible. It gives a skeleton of silica with salt of phosphorus.

BROCHANTITE.

MALACHITE.

Prismatic. Combination observed similar to Fig. 21. without z, and compressed between P and P.

Inclination of o on o, adjacent = 150° 30'; of M on M, over the edge between o and o = 114° 20', of d on d, adjacent = 63° 0'. Lévy.

Cleavage, traces parallel to M. Surface, M blackish and dull, the remaining faces smooth and shining.

Colour emerald-green. Transparent.

Hardness = 3·5 ... 4·0, nearly.

According to the experiments before the blowpipe, made by Mr Children, it consists of sulphuric acid and oxide of copper. On account of its insolubility in water, it is either a salt with excess of base, or, as Mr Children supposes, it contains some other substance, as silica or alumina, beside the two above mentioned. It is found in small
but well defined crystals on a reniform variety of the hemi-
prismatic Habroneme-malachite, which itself covers octa-
hedral Copper-ore, in the Bank mine at Ekatherineburgh,
Siberia.

BROOKITE.

ORE.

Prismatic. \(P = 135° 46', 101° 37', 94° 44'. \) Vol. I.

Fig. 9. Lévy.

\[a : b : c = 1 : \sqrt[3]{2} : 1 : 1.49. \]

Simple forms. \(P \rightarrow \infty (p) ; \ P (e^3); \ (Pr - 1)^5 \)

\((b^3) = 126° 31', 135° 41', 72° 0' ; \ (Pr + \infty)^5 \)

\((m) = 100° 0' ; \ (\frac{4}{3} Pr - 2)^5 (i) = 124° 11', 149° \)

\(37', 65° 0' ; 4 Pr (e^5) = 77° 36' ; \ Pr + 1 (e^2) \)

\(= 56° 24' ; \ Pr + \infty (g') ; \ Pr - 1 (a^2) = 148° \)

\(56' ; Pr (a') = 124° 52' ; Pr + \infty (h'). \)

Char. of Comb. Prismatic.

Combination. 1. \(Pr - 1. \ Pr. \ (\frac{4}{3} Pr - 2)^5. \)

\((Pr - 1)^5. \frac{4}{3} Pr. \ P. \ (Pr + \infty)^5. \ Pr + \infty. \)

\(Pr + \infty. \) Snowdon. Fig. 190.

Lustre metallic adamantine. Colour hair-brown,
passing into a deep orange-yellow, and some red-
dish tints. Streak yellowish-white. Translu-
cent ... opake, the brighter colours are observed
by transmitted light.

Brittle. Hardness = 5.5 ... 6.0.

It contains titanium, but has not yet been analysed. The
first varieties were noticed by Mr Soret among the mi-
nerals accompanying pyramidal Titanium-ore from Dau-
phiny; but much finer crystals, some of them half an inch in diameter, have lately been found at Snowdon in Wales. In both places they are accompanied by rhombohedral Quartz; in Dauphiny, besides pyramidal Titanium-ore, also by Crichtonite and Albite.

Hemi-prismatic. Combination observed similar to Fig. 16. only that the faces P', contiguous to o, are larger than those marked P.

Inclination of the faces, according to Levy,

- o on $d = 103° 56'$. o on $P = 121° 30'$.
- d on $d = 70° 40'$. o on $o' = 99° 41'$.
- d on $p = 125° 20'$. o' on $P' = 95° 40'$.
- o on $p = 114° 55'$. d on $P' = 160° 24'$.

Cleavage not observable. Colour dark-brown, nearly black. Opake. It appears to be harder than paratomous Augite-spar.

It was discovered in small crystals on a specimen from Neskiel mine, near Arendal in Norway, where it occurs with black hemi-prismatic Augite-spar, with pyramidal Feld-spar, and with rhombohedral Lime-haloide. It resembles paratomous Augite-spar.

PHYSIOGRAPHY.

Colour blue ... green, rather bright. Streak un-coloured. Feebly translucent on the edges ... opake.

Hardness = 6·0. Sp. Gr. = 2·830 ... 3·000, FISCHER.

It is not dissolved by muriatic acid. Before the blowpipe it becomes brown in the reducing flame, and gives a green colour to it. It is infusible by itself, but very easily with borax or salt of phosphorus. According to BERZELIUS, it consists of phosphate of alumina and lime, silica, oxide of iron and copper, and a little water.

It is found in Persia, either in pebbles, or in small veins traversing a kind of trap in its original repository. Cut and polished, it is used for different ornamental purposes.

CHIASTOLITE.

Spar.

Prismatic. $P + \infty = 91^\circ 50'$. $Pr = 120^\circ$. HAÜY.
Cleavage, $P - \infty$. $P + \infty$. $Pr + \infty$. $Pr + \infty$, all of them imperfect. Fracture imperfect conchoidal, splintery. The crystals present a black cross in their transverse section.

Hardness = 5·0 ... 5·5, if the mineral be not disintegrated. Sp. Gr. = 2·944, HAÜY:

Before the blowpipe the whitish part of the crystals is infusible, but assumes a purer white tint. It melts but difficultly with either borax or salt of phosphorus. According to BERZELIUS, it is a compound of silica and alumina.
CHLOROPAL.

It occurs imbedded in clay-slate in a great number of places, at St Jago di Compostella in Spain; near Barèges in the Pyrenees; near Gefrees in the Bayreuth; besides in the Hartz, in Cumberland, in North America. It has also been found upon the Simplon in dolomite.

CHILDRENITE.

Prismatic. \(P = 130^\circ 20', 102^\circ 30', 97^\circ 50'. \) Brooke.

\[
a : b : c = 1 : \sqrt{2} 448 : \sqrt{1.103}.
\]

Simple forms. \(P - \infty (f) \); \(\frac{2}{3} P (b) = 135^\circ 56', 111^\circ 42', 85^\circ 3'. P (e); \frac{4}{5} Pr + 2 (a) = 55^\circ 6'; \frac{5}{4} Pr + \infty (P). \)

Cleavage, imperfect parallel to \(Pr + \infty \). Fracture uneven.

Hardness = 4.5 ... 5.0.

Dr Wollaston found it to be a compound of phosphoric acid, alumina, and iron. It has been hitherto found only in the neighbourhood of Tavistock, disposed in single crystals and crystalline coats on brachytypous Parachroso-baryte, hexahedral Iron-pyrites, and rhombohedral Quartz, occasionally accompanied by rhombohedral Fluor-haloide.

CHLOROPAL.

Massive: composition impalpable, earthy. Fracture conchoidal, passing into earthy.

Colour pistachio-green. Opake, or scarcely translucent on the edges.
Fragile. Hardness between 3·0 and 4·0. Sp. Gr. = 2·000, of a conchoidal variety; from 1·727 ... 1·870, the earthy varieties.

It consists, according to Brandes, of

<table>
<thead>
<tr>
<th></th>
<th>Conchoidal var.</th>
<th>Earthy var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>46·00</td>
<td>45·00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>35·30</td>
<td>32·00</td>
</tr>
<tr>
<td>Manganese</td>
<td>2·00</td>
<td>0·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>1·00</td>
<td>0·75</td>
</tr>
<tr>
<td>Water</td>
<td>18·00</td>
<td>20·00</td>
</tr>
<tr>
<td>Manganese</td>
<td>a trace</td>
<td>2·00</td>
</tr>
<tr>
<td>Potash</td>
<td>a trace</td>
<td>a trace</td>
</tr>
</tbody>
</table>

It is remarkable for a very singular magnetic property. When taken from its original repositories, it breaks pretty readily in a kind of parallelopipeds, the upper end and two adjoining lateral edges having the opposite magnetic poles from the other two edges and the lower end. It is not phosphorescent.

It has been found accompanying uncleavable Quartz near Unghvar, in the county of the same name in Hungary, and is often called Green Iron-Earth.

CHLOROPHAEITE.

Massive: in small grains, imbedded in basalt or amygdaloid, and sometimes hollow. Fracture conchoidal ... nearly earthy.

Colour pistachio-green and transparent, or opake; but soon turning into brown and black on being exposed to the air, without losing its lustre, which takes place also to the depth of an inch or two into the rock.

Before the blowpipe it remains nearly unchanged, altering neither colour nor transparency. Besides silica, it contains iron and a little alumina. It occurs in Scuirmore cliff in the island of Rum, also in Fifeshire and in Iceland.

CHONDRODITE.

GEM.

Hemi-prismatic. $P = \frac{P + \infty}{2} = 147^\circ 48'$. Fr + oo.

Haüy. Grains.

Cleavage, $\frac{Pr}{2} = 67^\circ 48'$, very indistinct; also Fr + oo. Fr + oo.

Lustre vitreous. Colour yellow ... brown. Transparent ... translucent.

Hardness = 6.5. Sp. Gr. = 3.199, of the variety from Ersby.

It is very difficultly fusible before the blowpipe. It loses its colour almost entirely, becomes opake, and shews traces of fusion in its thinnest edges. The brown varieties act upon the magnetic needle, particularly if the double magnetism is employed. According to d'Ohsson, it consists of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>38.00</td>
</tr>
<tr>
<td>Magnesia</td>
<td>54.00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>5.10</td>
</tr>
<tr>
<td>Alumina</td>
<td>1.50</td>
</tr>
<tr>
<td>Potash</td>
<td>0.86</td>
</tr>
</tbody>
</table>
It occurs at Ersby in the parish of Pargas in Finland, along with Pargasite (hemi-prismatic Augite-spar) imbedded in rhombohedral Lime-haloide; also near Newton in Sussex county, New Jersey, along with Graphite and curved lamellar calcareous spar. Count D'OhssoN first described the Chondrodite from Pargas. Dr Bruce discovered the American variety, which was named Brucite after him, by Gibbs. Seybert gave it the name of Maclureite.

COBALT-KIES.

PYRITES?

It emits a sulphureous odour before the blowpipe, and after having been roasted, it communicates a blue colour to glass of borax. It consists, according to Hisinger, of Cobalt 43·20. Copper 14·40. Iron 3·53. Sulphur 38·50. It is found at Riddarhyttan in Sweden, in beds in gneiss, along with pyramidal Copper-pyrites, and hemi-prismatic Augite-spar.

COBALTIC GALENA OR COBALTIC LEAD-GLANCE.

GLANCE.

BAUERSACHS.

This mineral has been formerly confounded with hexahedral Lead-glance. It is very probable that when better known, it will be found to belong to the same genus.

Before the blowpipe it shews nearly the same phenomena as hexahedral Lead-glance; the only variety hitherto known communicates a small blue colour to glass of borax. It consists, according to Du MENIL, of

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>62.89</td>
</tr>
<tr>
<td>Arsenic</td>
<td>22.47</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.47</td>
</tr>
<tr>
<td>Iron</td>
<td>2.11</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.94</td>
</tr>
<tr>
<td>Arsenical Pyrites</td>
<td>1.44</td>
</tr>
</tbody>
</table>

The loss of 9.76 is attributed to intermixed rhombohedral Lime-haloide. The contents of lead and of arsenic are very nearly in the proportion of 73.34 : 26.66, corresponding to BERZELIUS’ formula Pb As.

It has hitherto been found only in the level of St George near Clausthal in the Hartz, in a vein of clay-slate and brown-spar, traversing greywacke. It was first described by Messrs BAUERSACHS and Du MENIL.

COMPTONITE.

KOUPHONE-SPAR.

Prismatic. Combination observed nearly similar to Fig. 25., without ρ. Inclination of i on i = vol. III.
PHYSIOGRAPHY.

177° 35', of s on s (over M) = 91°, Brooke; = 93° 45' nearly, Brewster.

Cleavage, parallel to T and M, the first a little more distinct; also parallel to s. Fracture small conchoidal, uneven. Surface s striated parallel to the edges of combination with M and T; the remaining faces smooth.

Lustre vitreous. Colour white. Streak white. Transparent ...semi-transparent.

Hardness = 5.0 ...5.5.

Before the blowpipe it gives nearly the same results as other species of the genus Kouphone-spar. It first gives off water, intumesces a little, and becomes opake, then it melts imperfectly into a vesicular glass. The globule obtained with borax is transparent, but vesicular; that with salt of phosphorus contains a skeleton of silica, and becomes opake on cooling. With a little soda it melts imperfectly, but with a larger quantity it becomes infusible. The glass with solution of cobalt is dirty blueish-grey. According to Dr Brewster, it forms a gelatine if exposed in the state of powder to the action of nitric acid.

It occurs in the cavities of an amygdaloidal rock, along with paratomous Kouphone-spar, and has been hitherto found only at Mount Vesuvius. The name of Comptonite, given to this species by Dr Brewster, was proposed by Mr Allan.

CRONSTEDTITE.

Cleavage, R — ∞ perfect; R + ∞ imperfect.
CUPREOUS BISMUTH.

Thin laminae are elastic. Hardness = 2·5 (nearly).
Sp. Gr. = 3·848, STEINMANN.

Before the blowpipe it froths a little without melting: with borax it yields a black opake and hard bead. Reduced to powder, it gelatinises in concentrated muriatic acid. It consists, according to STEINMANN, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>22·452</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>58·653</td>
</tr>
<tr>
<td>Oxide of Manganese</td>
<td>2·885</td>
</tr>
<tr>
<td>Magnesia</td>
<td>5·078</td>
</tr>
<tr>
<td>Water</td>
<td>10·700</td>
</tr>
</tbody>
</table>

It occurs at Przibram in Bohemia, in veins containing silver-ores, along with prismatic Iron-ore, brachytypous Parachrose-baryte, prismatic Iron-pyrites, and rhombohedral Lime-haloide. It has also been found at Wheal Maud-lin in Cornwall.

CUPREOUS BISMUTH.

GLANCE?

Massive: composition columnar, impalpable. Fracture uneven.
Lustre metallic. Colour pale lead-grey, passing into steel-grey and tin-white; subject to tarnish.
Streak black. Opake.
Sectile. Soft.

It is partly soluble in nitric acid, leaving the sulphur undissolved. According to KLAPROTH, it consists of

- Bismuth 47·24.
- Copper 34·66.
- Sulphur 12·58.

It occurs in the principality of Fürstenberg, in cobalt-veins,
PHYSIOGRAPHY.

along with octahedral Bismuth, pyramidal Copper-pyrites, &c.

CUPREOUS MANGANESE.

Small reniform and botryoidal groupes, massive. Composition impalpable. Fracture imperfect conchoidal.
Not particularly brittle. Intermediate between semi-hard and soft. Sp. Gr. = 3.197 ... 3.216, BREITHAUP.

Before the blowpipe it becomes brown, but is infusible. To borax and salt of phosphorus it communicates the colours of copper and manganese. It consists, according to LAMPADIUS, of
- Black Oxide of Manganese 82:00.
- Brown Oxide of Copper 13:50.
- Silica 2:00.
BERZELIUS found it to contain a considerable quantity of water.
It occurs in the tin mines at Schlaggenwald in Bohemia, and was first distinguished by Messrs BREITHAUP and LAMPADIUS.

DIASPORE.

SPAR.

Prismatic.* Cleavage P + ∞ = 130° (nearly). More distinctly Pr + ∞.

* Mr PHILLIPS mentions a doubly oblique prism, a tétartoprismatic form, Sim. Fig. 82. Incidence of M on T = 64° 54', of P on T = 101° 20', of P on M = 108° 30'. H.

Before the blowpipe it decrepitates most violently, and splits into many small scaly particles, possessing a feeble alkaline reaction. According to Vauquelin and Chidren, it consists of

\[
\begin{align*}
\text{Alumina} & \quad 80-00 & 76-06. \\
\text{Protoxide of Iron} & \quad 3-00 & 7-78. \\
\text{Water} & \quad 17-30 & 14-70.
\end{align*}
\]

Berzelius is of opinion that, besides these, it also contains some alkaline substance.

Its locality is unknown.

Elaolite. Spar.

Prismatic. Cleavage, \(P - \infty \). \(\text{Pr} + \infty \). Less distinct \(P + \infty = 112^\circ \). Phill. Massive. Fracture conchoidal.

Lustre resinous. Colour duck-blue, passing into blue and green, or brick-red passing into grey and brown. Translucent. If cut, several varieties become opalescent.

Hardness = 5.5 ... 6.0. Sp. Gr. = 2.546 ... 2.618, Hoffmann.

Before the blowpipe it melts into a white enamel. Reduced to powder, it forms a copious gelatine with acids. According to Klaproth, it consists of

\[
\begin{align*}
\text{Silica} & \quad 46-50. \\
\text{Alumina} & \quad 30-25.
\end{align*}
\]
PHYSIOGRAPHY.

Lime 0.75.
Potash 18.00.
Oxide of Iron 1.00.
Water 2.00.

It occurs near Laurvig, Stavern, and Frederiksværn in Norway, imbedded in Syenite along with prismatic Titanium-ore and pyramidal Zircon.

EUCAIRITE.

GLANCE.

Before the blowpipe it melts easily, and emits the odour of selenium. It is soluble in boiling nitric acid. Component parts, according to Berzelius,

Silver 38.93.
Copper 23.05.
Selenium 26.00.
Foreign substances 8.90.

It has been found only at Skrikerum mine in the parish of Tryserum in Smaland in Sweden, in a talcose or serpentine-like rock, accompanied by rhombohedral Lime-haloide.

EUCHROITE.

EMERALD-MALACHITE.

Prismatic. $P = 119^\circ 7', 81^\circ 47', 120^\circ 54'$. Vol. I. Fig. 7. AP.
EUCHROITE.

\[a : b : c = 1 : \sqrt{0.923} : \sqrt{0.344} \]

Simple forms. \(P - \infty (P) \); \(P + \infty (M) = 117^\circ 20' \); \((\Pr + \infty)^5 (s) = 95^\circ 12'; (\Pr + \infty)^5 (i) = 78^\circ 47'; \Pr (n) = 87^\circ 52'; \Pr + \infty (k) \).

Combinations. 1. \(P - \infty. \Pr. P + \infty. (\Pr + \infty)^5 \).

2. \(P - \infty. \Pr. P + \infty. (\Pr + \infty)^5. (\Pr + \infty)^5. \Pr + \infty \).

Fig. 192.

Cleavage, indistinct, parallel to \(n \) and \(m \), interrupted. Fracture small conchoidal, uneven. Surface the vertical prisms striated, parallel to their common edges of combination, \(P - \infty \) often rounded.

Lustre vitreous. Colour bright emerald-green.

Streak pale apple-green. Double refraction considerable. Transparent, translucent.

Rather brittle. Hardness = 3.5 ... 4.0. Sp. Gr. = 3.389.

According to Dr Turner, it consists of

Peroxide of Copper 47.85.
Arsenic Acid 33.02.
Water 18.80.

In the matrass it loses its water, and becomes yellowish-green and friable. When heated to a certain point upon charcoal, it is reduced in an instant with a kind of deflagration, leaving a globule of malleable copper, with white metallic particles dispersed throughout it, which are entirely volatile at a continued blast.

It was discovered at Libethen in Hungary, in quartzose mica slate, and brought to London, under the name of Euchroite. It will enter the genus Emerald-malachite of Mohs, under the name of the prismatic Emerald-malachite.
Eudiolyte.

Physiography.

Fundamental form. Rhombohedron. \(R = 73° 24' \)

Simple forms. \(R - \infty (u) \); \(R - 2 (z) = 126° 13' \); \(R - 1 = 84° 16' \); \(R (P) \); \(R + \infty (c) \);

\(P + \infty (u) \).

Char. of Comb. Rhombohedral.

Comb. 1. \(R - \infty \). \(R - 2 \). \(R \). \(P + \infty \). Fig. 125.

2. \(R - \infty \). \(R - 2 \). \(R \). \(R + \infty \). \(P + \infty \).

Cleavage, \(R - \infty \) distinct; \(R - 2 \) less distinct; \(R \) and \(P + \infty \) traces, not always observable. Fracture conchoidal or uneven.

Surface smooth, but often rather uneven; of nearly the same description in all the forms.

Lustre vitreous. Colour brownish-red. Streak white. Translucent on the edges ... opaque.

Hardness = 5·0 ... 5·5. Sp. Gr. = 2·898.

Before the blowpipe it melts into a leek-green scoria. If reduced to powder, it gelatinises with acids. According to *Stromeyer*, it consists of

- Silica: 52·00.
- Zirconia: 10·89.
- Lime: 10·14.
- Soda: 13·92.
- Oxide of Iron: 6·35.
- Oxide of Manganese: 2·57.
- Muriatic Acid: 1·03.

* This angle has been found by Mr *Levy* = 73° 40'. Edinb. Phil. Journ. Vol. XII. p. 81. H.
FAHLUNITE. 97

It is found in Greenland mixed with dodecahedral Kouphone-spar, hemi-prismatic Augite-spar, and a mountain-green variety of prismatic Feld-spar. It was first described as a particular species by Professor Stromeyer.

FAHLUNITE.

Lustre vitreous. Colour olive-green and oil-green, passing into yellow, brown, and black. Streak greyish-white. Feebly translucent on the edges ... opake.

Scratches glass, Hauy. Sp. Gr. = 2·61 ... 2·66, Hisinger.

Before the blowpipe it becomes pale grey, and melts in its thinnest edges. It is but slowly dissolved in glass of borax, and communicates to it the colour produced by oxide of iron. In consists, according to Hisinger, of

Silica 46·79.
Alumina 26·73.
Magnesia 2·97.
Protoxide of Iron 5·01.
Oxide of Manganese 0·43.
Water 13·50.

It occurs at Fahlun in Sweden, in a talcose or chloritic slate, along with hexahedral Lead-glance, pyramidal Copper-pyrites, &c. It was described by Hisinger under the name of Fahlunite. It is doubtful, whether the forms and hardness given on the authority of Hauy, refer to the same substance.
FEIGUSONITE.

ORE.

Pyramidal. Fundamental form. Isosceles four-sided pyramid. \(P = 100^\circ 28', 128^\circ 27' \). Vol. I. Fig. 8. Ap.

\[a = \sqrt{4.5}. \]

Simple forms. \(P = \infty (i); P (s); \frac{(P - 1)^5}{2} (z) \)

angle at the base = \(159^\circ 2' \); \(\frac{[(P + \infty)^5]}{2} \).

Char. of Comb. Hemi-pyramidal, with parallel faces.

Combinations. 1. \(P = \infty. \frac{[(P + \infty)^5]}{2} \).

2. \(P = \infty. P. \frac{[(P + \infty)^5]}{2} \), Fig. 110.

3. \(P = \infty. P. \frac{(P - 1)^5}{2} \frac{[(P + \infty)^5]}{2} \), Fig. 193.

Cleavage, traces parallel to P. Fracture perfect conchoidal. Surface rather uneven.

Brittle. Hardness = 5.5...6.0. Sp. Gr. = 5.838, Allan; = 5.800, Turner. Not magnetic.

It loses its colour before the blowpipe, and becomes pale greenish-yellow, but is alone infusible. It is entirely
dissolved in salt of phosphorus, but some particles remain a long time unaltered. The pale greenish globule becomes opaque by flaming, or on cooling, when very much saturated. Before the whole portion has been dissolved, it assumes a pale rose colour in the reducing flame. It has been considered as an Yttro-tantalite, which is not contradicted by the experiments before the blowpipe. It is described under that denomination in the German original of the present work.

It is found imbedded in rhombohedral Quartz at Kiker-tausak near Cape Farewell in Greenland. The specimens to which the preceding description refers are in the cabinet of Mr Allan, who proposed the name of Fergusonite.

FIBROLITE.

Prismatic. \(P + \infty = 100^\circ \) (nearly). Cleavage \(P + \infty \), imperfect. Fracture conchoidal. Massive: composition columnar.

Colour white, grey, inclining to green.

Harder than quartz, *Bournon.* Sp. Gr. = 3·214;

Bournon.

It is infusible before the blowpipe. If rubbed it emits a dark red phosphoric light. According to *Chenevix*, it consists of

- Silica 33·00.
- Alumina 58·25.
- Oxide of Iron 0·75.

It occurs in the Carnatic, and likewise in China, along with rhombohedral Corundum. It was described by Count *Bournon.*
PHYSIOGRAPHY.

FIGURESTONE OR AGALMATOLITE.

Colour white, grey, green, yellow, red, and brown, none of them bright. Acquires some lustre in the streak. Translucent, in most cases only on the edges.

Before the blowpipe it is infusible, but becomes white. It is partly soluble in sulphuric acid, leaving a siliceous residue. It consists, according to Klaproth, of

Silica 54·50.
Alumina 34·00.
Potash 6·25.
Oxide of Iron 0·75.
Water 4·00.

It is brought from China. Less characteristic varieties have been found also in Transylvania and in Saxony. It is cut into figures and different ornaments.

FLUATE OF CERIUM.

i. Neutral Fluate.

Six-sided prisms, plates and amorphous masses. Colour reddish.

It has been found by Berzelius to consist of 30·43 fluate of protoxide of cerium, and 68·00 fluate of peroxide of cerium, with a trace of yttria. Heated in the matrass or the glass tube, it corrodes the glass; alone it does not
fuse, but its colour changes to brown; with borax and salt of phosphorus it gives a red or orange coloured globule, which becomes pale on cooling. It occurs at Finbo and Broddbo near Fahlun, imbedded in Albite, rhombohedral Quartz, &c.

ii. Fluate with excess of base.

Traces of crystalline structure. Colour yellow.

It resembles porcelain jasper. It contains twice as much of the oxides of cerium as the preceding substance. It also comports itself much like it before the blowpipe. If heated alone on charcoal, its colour turns black at an incipient redness, but it assumes, on cooling, successively dark brown, red, and orange tints. It is found at Finbo.

iii. Fluate of Cerium.

Not described.

It has not been analysed, but presents nearly the same characters before the blowpipe as the preceding substance, except that in the matrass it does not give off so much water, and that its colour turns brown.

iv. Fluate of Yttria and Cerium.

Earthy, found in masses seldom exceeding the size of a pea. Colour pale red, sometimes deep red, yellow, or white. Easily scratched by the nail.

According to BERZELIUS, it is a mechanical mixture of fluate of yttria with fluate of cerium and silica. It gives nearly the same reactions as the Neutral Fluate i.

FLUELLITE.

HALOIDE?

Prismatic. $P = 109^\circ, 82^\circ, 144^\circ$. Vol. I. Fig. 9. Transverse section $= 105^\circ$ (nearly). WOLLASTON.
Colour white. Transparent. Index of refraction
\[= 1.47 \] (that of the Wavellite being \[= 1.52 \]),

WOLLASTON.

It occurs in minute crystals affecting the form of the fundamental pyramid, with its most acute solid-angle replaced, along with the Wavellite from Cornwall, and was discovered by LÉVY, but named and examined by WOLLASTON, who found it to contain alumina and fluoric acid.

FORSTERITE.

GEM.

Forsterite. LÉVY. Ann. of Phil. XXXVII. p. 61.

Prismatic. Combination observed similar to Fig. 28, without \(z \) and \(P \). Inclination of \(M \) on \(M = 128^\circ 54' \); of \(y \) on \(y \) (over \(M \)) = \(107^\circ 48' \); \(y \) on \(y \) (adjacent) = \(139^\circ 14' \).

Cleavage easy parallel to \(o \).

Colourless, brilliant, translucent.

Hard enough to scratch quartz.

It contains, according to Mr CHILDREN, silica and magnesia. It was discovered by Mr LÉVY in small crystals, accompanying pléonaste and olive-green pyroxene on Mount Vesuvius. The angles of this substance agree pretty nearly with those of prismatic Corundum, given Vol. II. p. 304., in the same succession = \(128^\circ 35' \), \(107^\circ 29' \), and \(139^\circ 53' \), only the face perpendicular to the axis, which in Forsterite has even an easy cleavage parallel to it, has not yet been observed in prismatic Corundum.

GEHLENITE.

Spar.

Pyramidal or prismatic. $P = \infty$. $P + \infty$ or $P - \infty$. $Pr + \infty$. $Pr + \infty$. Cleavage, $P - \infty$ distinct, the other faces imperfect.

Lustre resinous, inclining to vitreous. Colour different shades of grey, none of them bright. Opake. Sometimes faintly translucent on the edges.

Brittle. Hardness $= 5\cdot5...6\cdot0$. Sp. Gr. $= 3\cdot029$.

It is difficultly fusible before the blowpipe, and only in thin splinters. Also in borax it is very slowly dissolved. It gelatinises in heated muriatic acid. It consists, according to Fuchs, of

- Alumina $= 24\cdot80$.
- Silica $= 29\cdot64$.
- Lime $= 35\cdot30$.
- Oxide of Iron $= 6\cdot56$.
- Water $= 3\cdot30$.

It has been found on Mount Monzoni, in the valley of Fassa in the Tyrol, along with rhombohedral Lime-haloide. It was described by Professor Fuchs.

Gibbsite.

Irregular stalactites, tuberose masses.

Structure fibrous, the fibres radiating from the centre.

Lustre faint. Colour dirty greenish- or greyish-white. Slightly translucent.

Hardness a little above 3\cdot0, but easily reduced to powder. Sp. Gr. $= 2\cdot400$.

It yielded to Torrey, alumina 64\cdot8, and water 34\cdot7. It whitens before the blowpipe, but is infusible. Its locality
PHYSIOGRAPHY.

is Richmond in Massachusetts, North America, where it is found along with prismatic Iron-ore.

GIESECKITE.

Rhombohedral. $R = \infty$. $R + \infty$. Cleavage not perceptible. Fracture uneven, splintery.
Lustre resinous, faint. Colour olive-green, grey, brown. Streak uncoloured. Feebly translucent on the edges ... opake.

Hardness = 2·5 ... 3·0. Sp. Gr. = 2·832.

According to Stromeyer, it consists of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>46·07</td>
</tr>
<tr>
<td>Alumina</td>
<td>33·82</td>
</tr>
<tr>
<td>Magnesia</td>
<td>1·20</td>
</tr>
<tr>
<td>Black Oxide of Iron</td>
<td>3·35</td>
</tr>
<tr>
<td>Oxide of Manganese</td>
<td>1·15</td>
</tr>
<tr>
<td>Potash</td>
<td>6·20</td>
</tr>
<tr>
<td>Water</td>
<td>4·88</td>
</tr>
</tbody>
</table>

It occurs in Greenland, with prismatic Feld-spar. It was first described by Mr Sowerby.

GMELINITE.

KOUPHONE-SPAR.

Rhombohedral. Combination $P = \infty$. $P - \infty$, similar to Fig. 196. Angles approaching to those of rhombohedral Kouphone-spar, which are for the isosceles pyramid $= 145^\circ 54', 71^\circ 48'$. The inclination of y on y', Dr Brewster found to be $= 83^\circ 36'$.
Cleavage distinct, parallel to R. Fracture uneven. Surface streaked, the prism in a horizontal direction, the isosceles pyramid parallel to the edges of combination with R; R — z rough, but even. Lustre vitreous. Colour white passing into flesh-red. Streak white. Translucent.

Hardness = 4·5. Sp. Gr. = 2·05, Brewster.

The Sarcolite of Vauquelin, which is quite different from the Sarcolite of Thomson, is the same mineral to which De Dreé has given the name of Hydrolite, and has no connexion with the Analcime, as was supposed by Haüy. The low degrees of hardness already remarked by Vauquelin, and the form discovered by Léman in the varieties from the Vicentine, prove incontestibly that this mineral agrees more nearly with the rhombohedral Kouphone-spar. The variety represented in Fig. 196 is of a white colour, and marked with striae, shewing indications of a regular composition according to the same law which so frequently occurs in other varieties of that mineral, and in Levyne. It was found by Mr Allan in the little deer park of Glenarm, county of Antrim, Ireland, and mentioned in his Synonymes; it was recognised by Léman as a variety of the Hydrolite from the Vicentine. Two analyses of the varieties from Vicenza and Castel yielded to Vauquelin,

<table>
<thead>
<tr>
<th>Component</th>
<th>Vicenza</th>
<th>Castel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>50·00</td>
<td>50·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>20·00</td>
<td>20·00</td>
</tr>
<tr>
<td>Lime</td>
<td>4·50</td>
<td>4·25</td>
</tr>
<tr>
<td>Soda</td>
<td>4·50</td>
<td>4·25</td>
</tr>
<tr>
<td>Water</td>
<td>21·00</td>
<td>20·00</td>
</tr>
</tbody>
</table>

Dr Brewster found that Gmelinite possesses the property of flying off in numerous scales when held in the flame of a candle, and that its refractive power is lower than that of rhombohedral Kouphone-spar, the index being only 1·474. Both in the Vicentine and in Ireland it occurs in the cavities of amygdaloidal rocks.
GREEN IRON-EARTH.

Reniform, botryoidal, globular. Surface smooth and shining. Composition very thin columnar, impalpable, also curved lamellar. Massive: composition impalpable. Fracture even ... uneven. Sometimes in the state of powder.

It becomes brown and black before the blowpipe, but does not melt. It is said to colour glass of borax red. It is not dissolved in nitric acid. Both the friable and the massive varieties have been found at Schneeberg in Saxony, and in the Hollerter Zug in the county of Sayn.

HATCHETINE.

In the shape of flakes like spermaceti, or of granular masses, like bees' wax.

Lustre slightly glistening and pearly, and of considerable degrees of transparency, when in flakes, else dull and opake. Colour yellowish-white, wax-yellow, and greenish-yellow.

Hardness, like soft tallow. Very light. Without odour or elasticity.

It melts below the boiling point of water. Ether dissolves it readily; being evaporated, the solution leaves a viscid oily inodorous matter. Distilled over the spirit-lamp, it gives a bituminous smell, a greenish-yellow butyraceous substance is disengaged, and a coaly residue remains in the
retort. At a lower temperature a light oil is distilled. It occurs in small contemporaneous veins with rhombohedral Quartz, rhombohedral Lime-haloide, and Iron-ores, at Merthyr Tydvil in South Wales. It has been described by Mr Brande under the denomination of Mineral Adipocire.

The description of Hatchetine agrees very nearly with the following one given of Mountain Tallow, in Vol. XI. of the Edinburgh Philosophical Journal.

Mountain Tallow has the colour and feel of tallow, and is tasteless; its specific gravity is = 0.6078 in its natural state, but it is increased by melting it to 0.933, the air bubbles being driven off. It melts at 118°, and boils at 290°; when melted it is transparent and colourless, but becomes opake and white on cooling. It is insoluble in water, but is dissolved by alcohol, oil of turpentine, olive-oil, and naphtha, when hot, but is precipitated when they cool. It does not form soap with alcaline substances, but is combustible. It has been found in a bog on the borders of Loch Fyne, and has been formerly noticed on the coast of Finland; in one of the Swedish lakes; near Strasburg; and by Professor Jameson in Scotland.

\[HAÜYNE. \]

SPAR.

Haüyne. PHILL. p. 111.

Lustre vitreous. Colour blue, commonly bright, verging to green, white. Streak white. Transparent ... translucent.

Scratches glass easily. HAÜY. Sp. Gr. = 2.687, L. GMELIN; = 3.333, GISMONDI.
Before the blowpipe it melts into a vesicular glass, and loses its colour. It effervesces if melted with glass of borax, and forms a transparent globule, which becomes yellow on cooling. According to L. Gmelin, it consists of

Silica 35.48.
Alumina 18.87.
Lime 12.00.
Sulphuric Acid 12.39.
Potash 15.45.
Oxide of Iron 1.16.
Water 1.20.

It occurs at Albano and Frascati near Rome, among the products of Vesuvius. Also in the neighbourhood of the Puy de Dome, on the lake of Laach, in the quarries of Niedermennich, and in several other places near Andernach, partly imbedded in pumice.

Hisingerite.

Massive. Cleavage distinct in only one direction.
Fracture earthy.
Colour black. Streak greenish-grey.

If gently heated before the blowpipe, it becomes magnetic; in a stronger heat it melts into a dull opaque black globule, and yields a yellowish-green glass with borax. It consists, according to Berzelius, of

Oxide of Iron 51.50.
Silica 27.50.
Alumina 5.50.
Oxide of Manganese 0.77.
Volatile substance 11.75.
Magnesia a trace.

It has been found in the parish of Svärta in Südermanland, intermixed with rhombohedral Lime-haloide.
HOPEITE.

HALOIDE.

Prismatic. \(P = 139^\circ 41', 107^\circ 2', 86^\circ 49'. \) Vol. I. Fig. 9. Ap.

\[a : b : c = 1 : \sqrt{4.443} : \sqrt{1.493}. \]

Simple forms. \(P - \infty (g); P (P); (Pr + \infty)^5 \)

\((s) = 81^\circ 34'; Pr (M) = 101^\circ 24'; Pr + \infty (l); \)

\(Pr + \infty (p). \)

Char. of Comb. Prismatic.

Combination. \(P - \infty. Pr. P. (Pr + \infty)^5. \)

\(Pr + \infty. Pr + \infty. \) Fig. 29.

Cleavage, \(Pr + \infty \) perfect, less distinct \(Pr + \infty. \)

Surface, \(Pr + \infty \) deeply streaked in a longitudinal direction, the rest of the faces smooth.

Lustre vitreous, pearly upon \(Pr + \infty. \) Colour greyish-white. Streak white. Transparent ... translucent. Refraction double; two axes, the principal one perpendicular to the axis of \(P \) and to the face \(l; \) angle of the resultant axes about \(48^\circ, \) in the plane of \(P - \infty (g), \) contiguous to the obtuse lateral solid angle of \(P. \) Index of ordinary refraction nearly \(1.601. \)

Sectile. Hardness = 2.5 ... 3.0. Sp. Gr. = 2.76, Brewster, of a perfect crystal.

Hopeite had been formerly considered as a variety of Stilbite. According to NORDENSKJÖLD, it gives off its water before the blowpipe, and then melts easily into a clear colourless globule, which tinges the flame green. It gives no skeleton of silica with salt of phosphorus, with which it
melts in all proportions. If much of the mineral is added, the globule turns opaque on cooling, but does not deposit any fumes of zinc on the charcoal. The globule obtained from fusing it with borax does not become opaque on cooling. With soda it gives a scoria, which is yellow when hot; copious fumes of zinc, and nearest the scoria also some of cadmium are deposited. The melted mineral forms a fine blue glass with solution of cobalt. Hopeite seems therefore to be a compound of some of the stronger acids, as phosphoric or boracic acid, of zinc, an earthy base, a little cadmium, and a great deal of water.

It has been hitherto found only in the calamine mines of Altenberg near Aix-la-Chapelle, and is very rare.

HUMBOLDTINE.

Crystals belonging to the pyramidal system, according to Hauy; massive plates.

Colour bright yellow.

Soft, yielding to the nail. Sp. Gr. = 1.3.

Acquires resinous electricity by friction.

According to Rivero, it consists of

- Protoxide of Iron 53.56.
- Oxalic Acid 46.14.

On ignited charcoal it is decomposed, giving out a vegetable odour, while the colour of the remaining oxide of iron is changed into different shades of yellow, then black, and at last red. It is insoluble in water and alcohol. It occurs imbedded in moor-coal, near Bilin in Bohemia, and is supposed by Rivero to have been produced from the decomposition of succulent plants.

HUMITE.

Form prismatic, according to Phillips; combina-
HYALOSIDERITE.

Prismatic. Combination similar to Fig. 9. Inclination of \(M \) on \(M' \) adjacent, 77° 50', of \(P \) on \(P' \), adjacent, 99° 22'.

Cleavage indistinct parallel to \(h \). Fracture small conchoidal. Surface tarnished brass-yellow, or gold-yellow.

Lustre vitreous, on the surface metallic. Colour reddish- or yellowish-brown. Streak of a cinna-

tions somewhat resembling Fig. 28. and 38., with numerous pyramids and prisms between the six-sided terminal face and the six-sided prism, which has two angles of 129° 40' and four of 115° 10'. There occurs frequently regular composition, as in prismatic Lime-haloide, parallel to the faces of a rhombic prism.

Cleavage, traces parallel to the six-sided face. Fracture imperfect conchoidal.

Lustre vitreous. Colour various shades of yellow, sometimes almost white, passing into reddish-brown. Transparent ...translucent.

Brittle. Hardness = 6.5 ... 7.0.

It occurs on Monte Somma, with mica and various other minerals. Alone before the blowpipe it becomes opaque on the outside, but is infusible. It gives a clear glass with borax.

HYALOSIDERITE.
mon colour. Translucent on the edges, hyacinth-red or wine-yellow.

Hardness = 5.5. Sp. Gr. = 2.875.

It consists, according to Dr. Walchner, of

- Silica = 31.634.
- Protoxide of Iron = 29.711.
- Magnesia = 32.403.
- Alumina = 2.211.
- Oxide of Manganese = 0.480.
- Potash = 2.788.
- Chrome = a trace.

Before the blowpipe it becomes first black and magnetic, and then melts into a black magnetic globule. It was found imbedded in a brown basaltic amygdaloid in the Kaiserstuhl near Sasbach in Brisgaw, accompanied by paratomous Augite-spar, &c. The mixture of iron-slags and of prismatic Chrysolite are very analogous to that of Hyalosiderite, and the latter is therefore considered by Mitscherlich as a peridot, in the chemical sense of the word, meaning a silicate of protoxide of iron, or of the isomorphous bases of protoxide of manganese, magnesia, &c. having the same prismatic form. Hardness and specific gravity are given lower than would be necessary for uniting Hyalosiderite with the natural-historical species of prismatic Chrysolite.

HYDRATE OF MAGNESIA.

MICA.

Rhombohedral. Low six-sided prisms, rare. * Mas-

* A fine specimen of this variety is in the possession of Dr Anderson of Leith. H.
sive: composition lamellar, broad columnar, the latter sometimes stellular.

Cleavage, \(R - \infty \) perfect.

Lustre pearly upon the perfect faces of cleavage. Colour white, inclining to green. Streak white. Translucent, sometimes only on the edges. Some varieties lose their transparency on being exposed to the open air.

Sectile. Thin laminae flexible. Hardness = 1.0 ... 1.5. Sp. Gr. = 2.350, the variety from Unst.

Before the blowpipe it loses in transparency and weight, and becomes friable. In acids it is dissolved without effervescence, and consists, according to Drs Bruce and Fyfe, of

\[
\begin{align*}
\text{Magnesia} & \quad 70.00 && 69.75. \\
\text{Water} & \quad 30.00 && 30.25.
\end{align*}
\]

It occurs at Hoboken in New Jersey, in small veins in serpentine; also at Swinaness in Unst, one of the Shetland isles, under similar circumstances. In the latter place it is frequently associated with a white variety of rhombohedral Lime-haloide.

INDIANITE.

SPAR.

Grains. Cleavage in two directions, forming an angle of 95° 15', Brooke.

Colour greenish-white. Translucent.

Scratches glass. Sp. Gr. = 2.74, Bournon.
PHYSIOGRAPHY.

It is infusible before the blowpipe. If digested in acids, it becomes friable and gelatinous. It consists, according to CHENEVIX, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>42.50</td>
</tr>
<tr>
<td>Alumina</td>
<td>37.50</td>
</tr>
<tr>
<td>Lime</td>
<td>15.00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>3.00</td>
</tr>
</tbody>
</table>

and a trace of Oxide of Manganese.

It occurs in the Carnatic, imbedded in prismatic Feld-spar, and accompanied by rhombohedral Corundum, dodecahedral Garnet, hemi-prismatic and prismatic Augite-spar. Indianite is not a well defined species. Mr BROOKE observes, that the angle of its cleavage planes is that of silicate of lime (prismatic Augite-spar). It is supposed by BEUDANT to be a variety of Labradorite.

IRIDIUM.

METAL.

WOLLASTON.

If melted with nitre it becomes black; but again acquires both its colour and lustre, if heated with charcoal. It is not dissolved by nitro-muriatic acid. It is an alloy of iridium and osmium, and is found in South America with native Platina. It was first described by Dr WOLLASTON.
JEFFERSONITE.

IRON-SINTER.
Reniform, stalactitic ... massive. Composition impalpable. Fracture conchoidal.
Lustre vitreous. Colour yellowish-, reddish-, blackish-brown. Transparent ... translucent on the edges.

Before the blowpipe it intumesces, and some varieties emit a strong arsenical odour, during which they are partly volatilised. It consists, according to Klaproth and Stromeyer, of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Iron</td>
<td>67·00</td>
</tr>
<tr>
<td>Arsenic Acid</td>
<td>0·00</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>8·00</td>
</tr>
<tr>
<td>Protoxide of Manganese</td>
<td>0·00</td>
</tr>
<tr>
<td>Water</td>
<td>25·00</td>
</tr>
</tbody>
</table>

It is found in several old mines, as at Freiberg and Schneeberg in Saxony, and in Upper Silesia.

JEFFERSONITE.

AUGITE-SPAR.

Hemi-prismatic. Massive. Cleavage, $P + \infty = 106^\circ$; also $P - \infty$, inclined at angles of $94^\circ 45'$ and $85^\circ 15'$ to the axis, less perfect than the former; besides these, also other faces occur, which are parallel to the axis, and intersect each other at angles of 116° and 64°, and of $99^\circ 45'$ and $80^\circ 15'$, according to Keating. Fracture uneven.

Hardness = 4·5. Sp. Gr. = 3·51 ... 3·60, Keating.

Before the blowpipe it melts easily into a black globule. In heated nitro-muriatic acid one-tenth of it is dissolved, and the residue assumes a lighter colour. It consists, according to Keating, of:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>56·00</td>
</tr>
<tr>
<td>Lime</td>
<td>15·10</td>
</tr>
<tr>
<td>Protoxide of Manganese</td>
<td>13·50</td>
</tr>
<tr>
<td>Peroxide of Iron</td>
<td>10·00</td>
</tr>
<tr>
<td>Oxide of Zinc</td>
<td>1·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>2·00</td>
</tr>
</tbody>
</table>

It occurs near Sparta, Sussex county, New Jersey, along with octahedral and dodecahedral Iron-ore, dodecahedral Garnet, Chondrodite, &c. It is very nearly allied to the paratomous Augite-spar.

KARPHOLITE.

Massive: composition thin columnar, scopiform and stellular, rather incoherent, meeting again in angularly granular compositions.

Lustre silky, colour high straw-yellow, sometimes approaching to wax-yellow. Opake.

The hardness appears to be low. Sp. Gr. = 2·935, Breithaupt.
KILLINITE.

It intumesces before the blow-pipe, becomes white, and melts imperfectly into a coherent mass. It consists, according to Steinmann and Stromeyer, of

Silica 37·53 36·154.
Alumina 26·48 28·669.
Protoxide of Manganese 17·09 19·160.
Protoxide of Iron 5·64 2·290.
Lime 0·00 0·271.
Fluoric Acid 0·00 0·470.
Water 11·36 10·780.

It occurs in granite at Schlaggenwald in Bohemia, accompanied by octahedral Fluor-haloide and rhombohedral Quartz.

KILLINITE.

Killinite of Taylor. Phil. p. 322.

Irregular imbedded crystals, massive. Cleavage parallel to a rhombic prism of 135° (nearly), and its short diagonal, Phil. Fracture uneven.

Sectile. Hardness = 4·0. Sp. Gr. = 2·698.

Its analysis by Dr Barker yielded

Silica 52·49.
Alumina 24·50.
Potash 5·00.
Oxide of Iron 2·49.
Oxide of Manganese 0·75.
Water 5·00.

with 0·50 of lime, magnesia, and iron. It becomes white before the blowpipe, intumesces, and melts into a white enamel. It occurs in granite veins traversing mica-slate, at Killiney near Dublin in Ireland, along with prismatic Triphane-spar and rhombohedral Quartz.
PHYSIOGRAPHY.

KNEBELITE.

Knebelite of Lenz and Doebereiner. PHILL. p. 206.

Massive. Fracture imperfect conchoidal.
Lustre glistening. Colour grey, spotted dirty white, red, brown, and green. Opake.

It was found by DOEBEREINER to contain silica 32.5, protoxide of iron 32.0, and protoxide of manganese 35.0.

KUPFERINDIG.

Not particularly sectile. Intermediate between soft and very soft. Sp. Gr. = 3.80 ... 3.82, BREITH.

Before the blowpipe it burns before it becomes red-hot, with a blue flame, and melts into a globule, which is strongly agitated, and emits sparks. Finally it yields a button of copper. It occurs at Sangerhausen in Thuringia, the imitative crystalline varieties at Leogang in Salzburg.

LATROBITE.

SPAR.

Tetarto-prismatic. Crystallised and massive. Cleavage in three directions, intersecting each other at angles of $98^\circ 30'$, 91°, and $93^\circ 30'$. Colour pale red. Hardness, between 5·0 and 6·0. Sp. Gr. = 2·8, Brooke; = 2·720, Gmelin.

According to Children, it fuses before the blowpipe in the platina forceps into a white enamel. With borax it yields a globule, pale amethyst red in the oxidating flame, and colourless in the reducing one. With salt of phosphorus, a globule with a silica skeleton is obtained, yellow in the oxidating flame, and becoming opake on cooling, transparent in the reducing flame. Professor Gmelin of Tubingen obtained from two analyses, one of them with carbonate of baryta, the other with carbonate of soda, the following results:

<table>
<thead>
<tr>
<th>Component</th>
<th>Silica</th>
<th>Alumina</th>
<th>Lime</th>
<th>Oxide of Manganese</th>
<th>Magnesia (with some manganese)</th>
<th>Potash</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44·653</td>
<td>36·814</td>
<td>8·291</td>
<td>3·160</td>
<td>0·628 with a little magnesia</td>
<td>6·575</td>
<td>2·041</td>
</tr>
</tbody>
</table>

It occurs in Amitok island, near the coast of Labrador, with mica and rhombohedral Lime-haloide.

It consists, according to Clarke, of silex 75, alumina 22, manganese 2·5, water 0·50. It occurs at Gryphytta in Westmania in Sweden.
PHYSIOGRAPHY.

LEVYNE.

KOUPHONE-SPAR.

Rhombohedral. \(R = 79^\circ 29' \). Vol. I. Fig. 7. AP.
\[a = \sqrt{83} \]
Simple forms. \(R - \infty (o) \); \(R - 1 (g) = 106^\circ 4' \);
\(R (P); R + 1 (n) = 70^\circ 7' \).
Char. of Comb. Rhombohedral.
Combination. \(R - \infty \). \(R - 1 \). R. Fig. 194.
represents two individuals compound parallel to \(R - \infty \), the individuals continued beyond the face of composition, as in rhombohedral Kou-
phone-spar. Inclination of \(o \) on \(g = 136^\circ 1' \), of \(o \) on \(P = 117^\circ 24' \), of \(o \) on \(n = 109^\circ 13' \).
Cleavage, indistinct, parallel to R. Fracture im-
perfect conchoidal. Surface, \(R - 1 \) and R
streaked parallel to their common edges of in-
tersection. \(R - \infty \) uneven, and generally curved,
so that the opposite faces are often inclined on
each other at an angle of \(2^\circ - 3^\circ \).
Semi-transparent.
Brittle. Hardness = 4-0.

Levyne was first observed by Mr Heuland, and sus-
pected to be a new mineral. Dr Brewster afterwards
subjected it to an optical examination, and gave to it the
name of Levyne, in honour of Mr Levy, who had first
examined its crystallographic properties.
In the glass tube it gives off a considerable quantity of
water, and becomes opaque. Upon charcoal it intumesces a
little. With salt of phosphorus it yields a transparent
MAGNESITE.

globule, which contains a skeleton of silica, and becomes opake on cooling. It occurs at Dalsnypen in Faroe, with hemi-prismatic Kouphone-spar, in the vesicular cavities of an amygdaloid.

LIGURITE.

Hemi-prismatic. $\frac{\Pr}{2} P + \infty = 140^\circ$. $\Pr + \infty$.

Inclination of $\frac{\Pr}{2}$ on $\Pr + \infty = 152^\circ$ (nearly).

Fracture uneven.

Lustre of the fracture intermediate between vitreous and resinous. Colour apple-green. Streak greyish-white. Transparent ... translucent.

Hardness above 5·0. It is said to be harder than oriental chrysolite. Sp. Gr. = 3·49.

According to VIVIANI, who gave the preceding description of this mineral, it consists of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>57·45</td>
</tr>
<tr>
<td>Alumina</td>
<td>7·36</td>
</tr>
<tr>
<td>Lime</td>
<td>25·30</td>
</tr>
<tr>
<td>Magnesia</td>
<td>2·56</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>3·00</td>
</tr>
<tr>
<td>Oxide of Manganese</td>
<td>0·50</td>
</tr>
</tbody>
</table>

It has only been found on the banks of the Stura in the Appennines, in a talcous rock.

MAGNESITE.

HALOIDE.

Reniform, tuberose, massive. Composition impalp-
Fracture flat conchoidal, sometimes fine earthy.

Not very brittle. Semi-hard in a moderate degree (between 3·0 and 4·0). Compound varieties are often very tough; it has been observed that some of them give sparks with steel, and yet do not scratch the octahedral Fluor-haloide. Sp. Gr. = 2·808, Breithaupt.

Adheres pretty strongly to the tongue.

It is infusible before the blowpipe. It is dissolved with a slow effervescence in the nitric and dilute sulphuric acids. According to Lampadius and Klaproth, it consists of

From Moravia. From Stiria.

<table>
<thead>
<tr>
<th></th>
<th>From Moravia</th>
<th>From Stiria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesia</td>
<td>47·00</td>
<td>48·00</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>51·00</td>
<td>49·00</td>
</tr>
<tr>
<td>Water</td>
<td>1·00</td>
<td>3·00</td>
</tr>
</tbody>
</table>

It occurs at Hrubschitz in Moravia, in the Gulsen mountain in Stiria, at Baumgarten in Silesia, at Baudissero in Piedmont, in Spain, and in other countries. The Manganese Marble of Mr Nuttal, from Hoboken in New Jersey, which has been found both massive and crystallised in six-sided prisms, seems to possess some analogy with Magnesite.

MANGANESE-SPAR.

Spar.

Prismatic. Cleavage apparent in two directions perpendicular to each other, less distinct in two
others forming an angle of 87° 5', according to Rose, being the angle of Pyroxene.
Massive. Composition fine granular, strongly coherent.
Lustre intermediate between pearly and resinous.
Colour rose-red. Translucent on the edges.
Brittle. Hardness = 5·0 ... 5·5. Sp. Gr. = 3·588, Berzelius; = 3·685, Breithaupt.
Heated before the blowpipe, it becomes dark-brown, and melts into a reddish-brown globule. The colour it imparts to glass of borax in the oxidating flame is hyacinth-red; but in the reducing flame the glass remains white. According to Lampadius and Berzelius, it consists of

From Siberia. From Sweden.

<table>
<thead>
<tr>
<th>Substance</th>
<th>From Siberia</th>
<th>From Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Manganese</td>
<td>61·00</td>
<td>54·42</td>
</tr>
<tr>
<td>Silica</td>
<td>30·00</td>
<td>48·00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>5·00</td>
<td>a trace</td>
</tr>
<tr>
<td>Alumina</td>
<td>2·00</td>
<td>0·00</td>
</tr>
<tr>
<td>Lime and Magnesia</td>
<td>0·00</td>
<td>3·34</td>
</tr>
</tbody>
</table>

It is found at Longbanshyttan in Sweden in beds of iron-ore, near Elbingerode in the Hartz, and in the district of Catharinenburg in Siberia; also near Callington in Cornwall, and other places.

The substances called Allagite, Corneous Manganese, Photizite and Rhodonite, appear to be compact varieties of the present species, occasionally mixed with a variable quantity of the macrotypous Parachrose-baryte. They have been analysed, the first by Du Menil, the others by Brandes, and found to consist of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Allagite</th>
<th>Corn. Mang.</th>
<th>Photizite</th>
<th>Rhodonite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Manganese</td>
<td>75·00</td>
<td>57·16</td>
<td>37·39</td>
<td>49·87</td>
</tr>
<tr>
<td>Silica</td>
<td>16·00</td>
<td>35·00</td>
<td>36·00</td>
<td>39·00</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>7·50</td>
<td>5·00</td>
<td>14·00</td>
<td>4·00</td>
</tr>
<tr>
<td>Water</td>
<td>0·00</td>
<td>2·50</td>
<td>6·00</td>
<td>6·00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>0·00</td>
<td>0·25</td>
<td>0·50</td>
<td>0·25</td>
</tr>
<tr>
<td>Alumina</td>
<td>0·00</td>
<td>0·00</td>
<td>6·00</td>
<td>0·12</td>
</tr>
</tbody>
</table>
The manganese in Allagite is in the state of peroxide, in all the rest it is protoxide.

They agree very nearly with the Manganese-spar in respect to hardness and specific gravity. Their colours are several green, brown, and reddish tints, which become darker on the surface on being exposed to the air, and generally assume at the same time a slight degree of lustre. They differ in a more or less perfect conchoidal fracture and slight shades of colour, which hardly allow of being expressed in words. They have all been found near Rübeland in the Hartz.

MARMOLITE.

Massive. Cleavage in two directions, intersecting each other obliquely, one of them more distinct. Composition columnar.

Lustre pearly (inclining to metallic). Colour pale, green and grey. Opake.

It is said to resemble very much prismatic Talc-mica, with which it had hitherto been confounded. Before the blowpipe it decrepitates, hardens, and splits into laminae, but does not melt. With nitric acid it yields a thick partly gelatinous mass. It consists, according to Nuttall, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesia</td>
<td>46·00</td>
</tr>
<tr>
<td>Silica</td>
<td>36·00</td>
</tr>
<tr>
<td>Lime</td>
<td>2·00</td>
</tr>
<tr>
<td>Water</td>
<td>15·00</td>
</tr>
<tr>
<td>Oxide of Iron and Chrome</td>
<td>0·50</td>
</tr>
</tbody>
</table>

It occurs in serpentine at Hoboken, and in the Barehills near Baltimore.
MELLILITE.

MASCAGNINE OR SULPHAT OF AMMONIAC.

SALT.

Taste pungent, bitter.

It is soluble in double its weight of water. It attracts moisture from the atmosphere, and is entirely volatile in a higher temperature. It consists of

- Sulphuric Acid 53:29.
- Water 23:91.

and its formula is $\text{NH}_4\text{SO}_4\text{H}_2\text{O}$, according to Berzelius. It occurs in the neighbourhood of Vesuvius and Etna, in the Solfatara near Puzzuolo, and in the Lagunes near Siena in Tuscany.

MELLILITE.

Prismatic. $P + \infty = 115^\circ$. $\varphi r = 70^\circ$ (nearly).

Hauy. According to Phillips, they are square prisms, having the lateral edges replaced. Colour yellow, inclining to red or green. Opake. Gives sparks with steel.

Before the blowpipe it melts without ebullition into a greenish glass. Reduced to powder, it gelatinises with nitric acid. According to Carpi, it consists of

- Silica 38:00.
- Lime 19:60.
Physiography.

Magnesia 19·40.
Alumina 2·90.
Oxide of Iron 12·10.
Oxide of Titanium 4·00.
Oxide of Manganese 2·00.

It is found at Capo di Bove and Tivoli near Rome, accompanied by rhombohedral Feld-spar, in the fissures of a volcanic rock.

Mesole.
Kouphone-spar.

Implanted globules, reniform shapes: composition broad columnar, radiating from the centre.
Colour white, sometimes inclining a little to yellow.
Faintly translucent.
Hardness = 3·5. Sp. Gr. = 2·370.

According to Berzelius, it consists of
Silica 42·60.
Alumina 28·00.
Lime 11·43.
Soda 5·63.
Water 12·70.

It contains generally a little carbonate of lime. Berzelius gives the formula $NS^2 + 2 CS^2 + 9 AS + 3 Aq$.

It is found in Faroe lining the cavities of an amygdaloidal rock, the first stratum being generally Mesoline, the second Mesole, and having crystals of pyramidal and prismatical Kouphone-spar disposed upon it.

Mesoline.
Kouphone-spar.

Crystalline coats of a whitish colour on the surface
of the amygdaloid from Faroe, containing the Mesole and the pyramidal and prismatical Kouphone-spars.

This is probably a variety of Chabasie, which is found along with the other species in the above mentioned specimens. The following table contains the analyses of, 1. Mesole by Berzelius, 2. Chabasie from Fassa by Arfvedson, 3. Chabasie from the Giants Causeway by Arfvedson, and 4. Chabasie from Gustafberg by Berzelius.

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>47.50</td>
<td>43.38</td>
<td>49.07</td>
<td>50.65</td>
</tr>
<tr>
<td>Alumina</td>
<td>21.40</td>
<td>19.28</td>
<td>18.19</td>
<td>17.90</td>
</tr>
<tr>
<td>Soda</td>
<td>4.80</td>
<td>0.00</td>
<td>12.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Potash</td>
<td>0.00</td>
<td>2.50</td>
<td>a trace.</td>
<td>1.70</td>
</tr>
<tr>
<td>Lime</td>
<td>7.90</td>
<td>8.70</td>
<td>0.00</td>
<td>9.73</td>
</tr>
<tr>
<td>Water</td>
<td>18.19</td>
<td>21.14</td>
<td>19.73</td>
<td>19.90</td>
</tr>
</tbody>
</table>

Berzelius observes that the Mesole was not quite pure, but had a little of the rock attached to it. These analyses, together with those of the other varieties of rhombohedral Kouphone-spar and of Gmelinite, differ only in the kind and proportions to each other of the alkaline base which they contain. The substances themselves are not, all of them, sufficiently known, to say whether, as it is probable, this difference is founded in really different natural-historical species, as in the case of prismatic Feld-spar, Albite, and Labradorite, or whether they should be comprised in one species.

Before the blowpipe it melts very easily into a globule, that can be entirely volatilised, during which the supporting charcoal is covered with a yellow oxide. If dissolved in the state of powder in nitric acid, a precipitate of sulphur is formed. It consists, according to Klaproth, of

- Bismuth 95.00.
- Sulphur 5.00.

It has been found at Deutsch Pilsen in Hungary, accompanied by several species of the genera Lime-haloide, Iron-pyrites, &c.

It seems that in Hungary several species, different from each other, have been designated by the collective undetermined name of Molybdena-Silver. Thus a species very distinct from that described above, presents the following characters:

Form probably rhombohedral. It occurs in imbedded masses, having a general resemblance to three and six-sided prisms.

Cleavage perfect, axotomous. Fracture imperfect conchoidal, uneven, scarcely perceptible.

This species likewise is found in Hungary. Several specimens of it are in the collection of the Johanneum at Gratz. It is accompanied by hexahedral Gold and pyramidal Copper-pyrites, imbedded in rhombohedral Quartz. Its chemical compounds are as yet unknown. Before the blowpipe it gives the reactions of sulphur, tellurium, and bismuth.

Another variety of Molybdena-Silver examined by Berzelius, which had been communicated to him by Professor Weiss of Berlin, was found to contain only tellurium and bismuth.

It melts easily before the blowpipe, and covers the charcoal with a yellow oxide. Octahedral crystals may be obtained by fusion. Metallic lead, as it occurs in nature, is almost in every instance accompanied by such substances as betray its having once been in a state of fusion. It was first noticed by Rathke from the island of Madeira, where it is imbedded in vesicular masses, considered as slags by some, and as volcanic rocks by others. Many other localities are of a similar kind. It has been found in a rolled mass of a stone weight in Anglaise river, North America, traversing hexahedral Lead-glance in narrow veins. It has been quoted also from some abandoned mines in the vicinity of Carthagena in Spain, as occurring in capillary and other imitative shapes, engaged in a blackish clay. Lately metallic lead has also been found near Alston in Cumberland. It is associated with hexahedral Lead-glance, rhombohedral Quartz, &c., but also with litharge, and a fused mass resembling a slag. It fills a vein near the surface of the earth, in compact limestone.

NATIVE NICKEL.

Delicate, capillary crystals.
Lustre metallic. Colour brass-yellow, inclining to bronze-yellow and steel-grey.

According to Arfwedson, it consists of

- Nickel 64.35.
- Sulphur 34.26.

Before the blowpipe it melts into a brittle metallic globule; it colours glass of borax violet-blue; in nitric acid it is dissolved without leaving a residue, and forms a pale green solution. It occurs at Johanngeorgenstadt in Saxony, Joachimsthal in Bohemia, and in the Westerwald, accompanied by several species of Iron-pyrites, Lime-haloide, &c. It has been sometimes called Capillary Pyrites.

NEEDLE-ORE.

Glance.

Lustre metallic. Colour blackish lead-grey.

Hardness = 2.0 ... 2.5. Sp. Gr. = 6.125, John.

Before the blowpipe its sulphur is driven off, and it melts and emits numerous sparkling metallic globules. A button of lead containing copper remains, which communicates a greenish-blue colour to glass of borax. It is soluble in nitric acid, and consists, according to John, of

- Bismuth 43.20.
- Lead 24.32.
- Copper 12.10.
- Nickel 1.58.
- Tellurium 1.32.
- Sulphur 11.58.
- Gold 0.79.

It occurs near Catharinenburg in Siberia, imbedded in
Nickeliferous Grey Antimony.

Nephrite.

Massive: composition impalpable. Fracture coarse splintery, in some varieties slaty in the great. Colour green, particularly leek-green passing into grey and white. Translucent, often only on the edges.

Not particularly brittle; some varieties are remarkably tough. Hardness = 7-0. Sp. Gr. = 2·932 ... 3·024, Breithaupt.

Alone it is infusible before the blowpipe, but becomes white. It consists, according to Kastner, of

Silica 50·50.
Magnesia 31·00.
Alumina 10·00.
Oxide of Iron 5·50.
Oxide of Chrome 0·05.
Water 2·75.

It is brought from China and Egypt. A large block has lately been found in the alluvial soil of the alum-earth mines at Schwemmsal in Saxony.

Nickeliferous Grey Antimony.

Pyrites.

Lustre metallic. Colour steel-grey, inclining to silver-white.
Brittle. Hardness = 5·0 ... 5·5. Sp. Gr. = 6·451, a cleavable variety.

It is partly volatilised before the blowpipe, during which the supporting charcoal is covered with a white coating; at last it melts into a metallic globule, which communicates a blue colour to glass of borax. It consists, according to Stromeyer and Klaproth, of

<table>
<thead>
<tr>
<th>Metal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>36·60</td>
</tr>
<tr>
<td>Antimony</td>
<td>43·80</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0·00</td>
</tr>
<tr>
<td>Sulphur</td>
<td>17·71</td>
</tr>
<tr>
<td>Iron and Manganese</td>
<td>1·89</td>
</tr>
</tbody>
</table>

It is met with in several mines in the principality of Nassau, along with brachytypous Parachrose-baryte, pyramidal Copper-pyrites, hexahedral Lead-glance, &c.

NITRATE OF SODA.

SALT.

Fundamental form. Rhombohedron. \(R = 106^\circ 33' \). Vol. I. Fig. 7. AP.

\[a = \sqrt[3]{2·05}. \]

Simple form. \(\hat{R} \).
Char. of Comb. and the combinations not observed.
Cleavage, \(R \), perfect. Fracture conchoidal, almost imperceptible. Surface smooth.
Rather sectile. Hardness = 1·5 ... 2·0. Sp. Gr. = 2·0964, Klaproth. Taste cooling.
ORTHITE.

It is soluble in three times its weight of water at a temperature of 12° R. It melts and deflagrates upon glowing charcoal, but not so violently as the prismatic Nitre-salt. If rubbed in an isolated state, it acquires a very strong negative electricity. It consists of

Nitric Acid 54·97.
Soda 45·03.

according to Berzelius' formula, Na_2N_2.

It is found in Peru, in the district of Atacama, near the seaport of Yquique, and according to Mariano de Rivero, occurs with clay in beds of different thickness, extending more than fifty miles, and is worked to great advantage.

NUTTALLITE.

Crystals, right square prisms, imbedded in calcareous spar. Resembling Scapolite, but softer and more glassy in the fracture. Play of light similar to that of Elaolite upon the faces of the prism. Colour grey.

ORTHITE.

Before the blowpipe it froths, becomes yellowish-brown, and melts with effervescence into a black vesicular globule; with borax into a transparent one. It gelatinises in heated acids, and according to Berzelius, it consists of

- Silica: 32.00
- Lime: 7.84
- Alumina: 14.80
- Oxide of Cerium: 19.44
- Protoxide of Iron: 12.44
- Oxide of Manganese: 3.40
- Yttria: 3.44
- Water: 5.36

It occurs at Finbo near Fahlun in Sweden, along with rhombohedral Quartz, prismatic Feld-spar, Albite, &c. in veins traversing gneiss.

PALLADIUM.

Metal.

Grains. Octahedrons and prisms with a square base are quoted by Sowerby.

Lustre metallic. Colour steel-grey, inclining to silver-white.

Hardness superior to wrought iron. Sp. Gr. = 11.8, Wollaston; = 12.14, Lowry.

It is reducible by heat. By itself it is infusible before the blowpipe, but melts with sulphur. With nitric acid it yields a red solution. It consists essentially of palladium, but contains also a small portion of platina and iridium. It occurs along with native Platina in Brazil, and was discovered by Dr. Wollaston. The pure metal is ductile and very malleable; it is flexible in thin slips, but not very elastic.
Pharmacolite.

Capillary crystals, in globular aggregation. Globular, reniform, botryoidal. Composition thin columnar ... impalpable. Farinaceous. Lustre vitreous; also pearly in the thin columnar particles of composition. Colour white. Translucent ... opaque.

Sectile, very soft. Sp. Gr. = 2.640, Klaproth.

Before the blowpipe it emits an arsenical odour, and melts with difficulty into a white enamel. In nitric acid it is dissolved without effervescence. According to Klaproth and John, it consists of

From Wittichen. From Andreasberg.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>25.00</td>
<td>27.28</td>
</tr>
<tr>
<td>Arsenic Acid</td>
<td>50.54</td>
<td>45.68</td>
</tr>
<tr>
<td>Water</td>
<td>24.46</td>
<td>23.86</td>
</tr>
</tbody>
</table>

It is found in the principality of Fürstenberg, at Andreasberg in the Hartz, at Riechelsdorf in Hessia, and other places, in veins that also contain native Arsenic, several species of Cobalt-pyrites, &c.

The description of the Picropharmacolite of Stromeyer (Untersuchungen. Vol. I. p. 135.), does not differ from that given of the Pharmacolite. The only difference discovered between the two substances consists in a small quantity of magnesia which the former contains. It is composed of

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>24.646</td>
<td></td>
</tr>
<tr>
<td>Magnesia</td>
<td>3.218</td>
<td></td>
</tr>
<tr>
<td>Oxide of Cobalt</td>
<td>0.998</td>
<td></td>
</tr>
<tr>
<td>Arsenic Acid</td>
<td>46.971</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>23.977</td>
<td></td>
</tr>
</tbody>
</table>

It occurs in the cobalt mines of Riechelsdorf in Hessia, along with prismatic Hal-baryte.
PHOSPHATE OF MANGANESE.

Pyramidal or prismatic. Massive: cleavage in three directions perpendicular to each other, one of them more distinct. Fracture small conchoidal.

Brittle. Hardness = 5·0 ... 5·5. Sp. Gr. = 3·439, Vauquelin; = 3·775, Ullmann.

Before the blowpipe it melts easily into a black scoria, is readily dissolved in nitric acid without effervescence, and consists, according to Vauquelin, of

Oxide of Iron 31·00.
Oxide of Manganese 42·00.
Phosphoric Acid 27·00.

It has been found near Limoges in France, in a vein of quartz traversing granite, accompanied by rhombohedral Emerald.

PICROLITE.

Lustre faint, inclining to pearly. Colour leek-
green passing into yellow. Streak a little shining. Translucent on the edges.

Hardness between 3·0 and 6·0.

According to ALMROTH, it consists of
Silica 40·04.
Magnesia 38·89.
Water 9·03.
Protoxide of Iron 8·28.
Carbonic Acid 4·70.

It colours glass of borax green, but the colour disappears on cooling. It occurs in irregular veins in the beds of octahedral iron-ore in the Taberg, and at Nordmarken in Sweden, and has been mentioned also from Reichenstein in Silesia.

**PICROSMINE.*

Picrosmin. H A I D I N G E R.

Fundamental form. Scalene four-sided pyramid.
\[P = 151^\circ 3', 120^\circ 0', 67^\circ 59'. \] Vol. I. Fig. 9. Ap.
\[a : b : c = 1 : \sqrt[3]{11·00} : \sqrt[3]{2·75}. \]

Simple forms and combinations not known; the character of the latter prismatic, as it appears from cleavage.

Cleavage. \(\Pr + \infty (M) \) perfect; \(\Pr + \infty (T) \) less, \(\Pr (i) = 117^\circ 49' \) still less distinct. Least of all \(P + \infty (s) = 126^\circ 52' \). The product of all the faces of cleavage is represented by Fig. 25. excepting the faces o.

Fracture uneven, scarcely perceptible.

* Name derived from πικρός, bitter, and ὄρος, odour, from the bitter and argillaceous odour the mineral exhales when humected.
Lustre pearly, distinct upon Pr + ∞, inclining to vitreous upon the other faces. Colour greenish-white, passing into greenish-grey, and mountain-green, sometimes also oil-, leek-, and blackish-green. Streak white, dull. Translucent on the edges ... opake.

Very sectile. Hardness = 2.5 ... 3.0. Sp. Gr. = 2.660 of a cleavable compound variety, 2.596 of a columnar variety.

Compound Varieties. Massive: composition granular, strongly coherent. If the composition becomes impalpable, the fracture is earthy. The particles of columnar compositions are very thin; fracture splintery.

Its chemical composition is unknown. Before the blow-pipe it is infusible, but gives out water, becomes first black, then white and opake, and acquires a degree of hardness nearly = 5.0. It is soluble in salt of phosphorus, with the exception of a silica skeleton. When heated with solution of cobalt, it assumes a pale red colour. It appears therefore to contain water, silica, and magnesia.

The cleavable varieties have been found, accompanied by octahedral Iron-ore and macrotypous Lime-haloide, in a bed in primitive rocks. The only locality hitherto known is the iron mine called Engelsburg near Presnitz in Bohemia.

It is likely that many varieties of the common Asbestus of Werner, (J. Am. Syst. Vol. II. p. 156.), particularly that from Zöblitz in Saxony, should be referred to this species. According to Wiegleb, it consists of

- Silica 46.66.
- Magnesia 48.45.
- Oxide of Iron 4.79.
Various localities are quoted for the common Asbestus; but since Asbestus contains also varieties of hemi-prismatic and of paratomous Augite-spar, they cannot all be supposed exact, and it would therefore be very interesting to institute a closer natural-historical examination of all these minerals. Among the localities chiefly quoted, are Zöblitz in Saxony, Silesia, the Tyrol, and many other countries along the line of the Alps, the Shetland isles, Portsoy, &c. where it occurs in veins traversing serpentine; in the Taberg and other places in Sweden, where it occurs in beds, along with octahedral Iron-ore, with several species of Pyrites, rhombohedral and macrotypous Lime-haloide, &c.

FINITE.

Rhombohedral. \(R - \infty \). \(R + \infty \); \(R - \infty \). \(R + \infty \).

\(P + \infty \). Cleavage very indistinct. Composition, \(R - \infty \). Fracture uneven.

Sectile. Hardness = 2.0 ... 2.5. Sp. Gr. = 2.782, the crystallised variety from France.

In thin splinters the variety from Auvergne melts imperfectly before the blowpipe, and consists, according to C. G. Gmelin, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>55.964</td>
</tr>
<tr>
<td>Alumina</td>
<td>25.480</td>
</tr>
<tr>
<td>Potash</td>
<td>7.690</td>
</tr>
<tr>
<td>Soda</td>
<td>0.336</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>5.512</td>
</tr>
<tr>
<td>Magnesia</td>
<td>3.760</td>
</tr>
<tr>
<td>Water</td>
<td>1.410</td>
</tr>
</tbody>
</table>
with traces of lime, manganese, and animal matter. According to Klaproth, the variety from Saxony is infusible before the blowpipe, and consists of alumina 63.75, silica 29.50, and protoxide of iron 6.75.

It occurs in several countries in granite; at Schneeberg in Saxony, in Salzburg, in Auvergne, in Cornwall, in North-America, &c.

PLOMBGOMME.

Reniform. Surface smooth. Composition thin columnar ... impalpable.
Colour yellowish- and reddish-brown, striped.
Translucent.
Scratches octahedral Fluor-haloide, but does not affect glass.

If rubbed in an isolated state, it acquires a strong negative electricity. If quickly heated before the blowpipe, it decrepitates and loses its water; but is infusible by itself. With borax it yields a transparent colourless glass, without reduction of the lead. According to Berzelius, it consists of

Oxide of Lead	40.14
Alumina	37.00
Water	18.80
Sulphurous Acid	0.20
Lime and the Oxides of Iron and Manganese	1.80
Silica	0.60

It occurs at Huelgoet near Poullaouen in Brittany, in clay-slate, along with hexahedral Lead-glance, dodecahedral Garnet-blende, hexahedral Iron-pyrites, and di-prismatic Lead-baryte.

Lustre resinous. Colour smoke-grey and pearl-grey, flesh-red and brick-red.

Hardness greater than 3.0. Sp. Gr. = 2.7689, Stromeyer.

Taste saline and bitter.

In the flame of a candle it melts into an opaque globule, is readily dissolved in water, and, according to Stromeyer, consists of

- Sulphate of Potash 27.7037.
- Anhydrous Sulphate of Lime 44.7429.
- Anhydrous Sulphate of Magnesia 20.0347.
- Muriate of Soda 0.1910.
- Water 5.9535.
- Peroxide of Iron 0.3376.

It occurs at Berchtesgaden and Ischel, along with hexahedral Rock-salt, and the two species of Gypsum-haloide. It has lately been discovered also in the salt mines of Vic in Lorraine.

Pyrallolite.

Tetarto-prismatic. Comb. l. M. T. Sim. Fig. 81.

Inclination of M on T = 94° 36'; of l on M = 140° 49'.
Cleavage, distinct parallel to M and to T, also in the direction of a plane which takes away the more obtuse edge between M and T; this plane intersects M at an angle of $144^\circ 3'$, and T at an angle of $130^\circ 33'$.

Hardness = 3:5 ... 4:0. It seems to become harder by exposure to the air. Sp. Gr. = 2:55 ... 2:60.

When reduced to powder it phosphoresces with a blueish light. Before the blowpipe it first becomes black, then white, afterwards intumesces and melts on its edges. With borax it yields a transparent glass. According to NORDENSKIOLD, from whom the whole of the preceding description is taken, it consists of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>56:62</td>
</tr>
<tr>
<td>Magnesia</td>
<td>23:38</td>
</tr>
<tr>
<td>Alumina</td>
<td>3:38</td>
</tr>
<tr>
<td>Lime</td>
<td>5:58</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>0:99</td>
</tr>
<tr>
<td>Protoxide of Manganese</td>
<td>0:99</td>
</tr>
<tr>
<td>Water</td>
<td>3:58</td>
</tr>
</tbody>
</table>

leaving 6:38 of an unknown bituminous substance and loss.

It occurs at Storgard in the parish of Pargas in Finland, with several species of the genera Feld-spar and Augite-spar; also with prismatic Titanium-ore and rhombohedral Lime-haloide.

PYORTHITE.

If gently heated on one side, it takes fire, and burns without either flame or smoke; after which it becomes white, and melts into a black enamel. It gives a transparent glass with borax, is soluble in heated acids with the exception of a black powder, and consists, according to Berzelius, of

<table>
<thead>
<tr>
<th>Silica</th>
<th>10.43.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>3.59.</td>
</tr>
<tr>
<td>Protoxide of Cerium</td>
<td>13.92.</td>
</tr>
<tr>
<td>Protoxide of Iron</td>
<td>6.03.</td>
</tr>
<tr>
<td>Yttria</td>
<td>4.87.</td>
</tr>
<tr>
<td>Lime</td>
<td>1.81.</td>
</tr>
<tr>
<td>Protoxide of Manganese</td>
<td>1.39.</td>
</tr>
<tr>
<td>Water</td>
<td>26.50.</td>
</tr>
<tr>
<td>Carbon</td>
<td>31.41.</td>
</tr>
</tbody>
</table>

It has been found at Kärrarf near Fahlun in Sweden, in a kind of granite, accompanied by prismatic Gadolinite.

PYROSMALITE.

MICA.

Rhombohedral. Combination, $R \rightarrow \infty$. $R + \infty$.

Cleavage, $R \rightarrow \infty$ perfect; $R + \infty$ less distinct.

Fracture uneven.

Lustre pearly upon $R \rightarrow \infty$; lower degrees of vitreous lustre in other directions. Colour pale liver-brown, passing into grey and green. Streak paler than the colour. Translucent ... opake.
Rather brittle. Hardness = 4·0...4·5. Sp. Gr. = 3·077, **Hausmann**.

Before the blowpipe it becomes reddish-brown, and develops fumes of muriatic acid. In a strong fire it melts first into a black scoria, and then into a globule, which is attractable to the magnet. It is easily soluble in glass of borax, and consists, according to **Hisinger**, of

<table>
<thead>
<tr>
<th>Component</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>35·850</td>
</tr>
<tr>
<td>Protoxide of Iron</td>
<td>21·810</td>
</tr>
<tr>
<td>Protoxide of Manganese</td>
<td>21·140</td>
</tr>
<tr>
<td>Muriate of Iron, with excess of base</td>
<td>14·095</td>
</tr>
<tr>
<td>Lime</td>
<td>1·210</td>
</tr>
<tr>
<td>Water</td>
<td>5·895</td>
</tr>
</tbody>
</table>

It was discovered by Messrs **Gahn** and **Clason**, in the iron-mines of Nordmark in Wermeland in Sweden, and is associated with rhombohedral Lime-haloide and paratomatic Augite-spar.

The forms of Pyrosmalite are considered by **Haüy** as belonging to the prismatic system. It will probably be found to belong to the genus Pearl-mica.

RADIATED ACICULAR OLIVENITE.

Radiated Acicular Olivenite. **JAM. Syst.** Vol. II. p. 335.

Oblique Prismatic Arseniate of Copper. **PHILL.** p. 318.

Hemi-prismatic. Form frequently similar to Fig. 44, having the most acute solid angles replaced by a face c'. Inclination of M on $M = 56^\circ 0'$, of P on $M = 95^\circ 0'$, of P on c' (contiguous to the same summit) $99^\circ 30'$, according to **Phillips**.

Lustre pearly upon the face of perfect cleavage. Colour dark verdigris-green, inclining to sky-blue, still darker on the surface. Streak verdigris-green. Translucent on the edges.
Not very brittle. Hardness = 2·5...3·0. Sp. Gr. = 4·192.

Before the blowpipe it deflagrates, and emits arsenical vapours. According to Chenevix, it consists of

Oxide of Copper 54·00.
Arsenic Acid 30·00.
Water 16·00.

It has hitherto been found only in Cornwall, with several other species of the order Malachite, also with pyramidal Copper-pyrites, rhombohedral Quartz, &c.

RED VITRIOL OR SULPHATE OF COBALT.

Salt.

Hemi-prismatic. Similar to the forms of the hemi-prismatic Vitriol-salt, Mitscherlich. Stalactitic and coralloidal shapes: composition columnar, in most cases impalpable. Friable.

Lustre vitreous; in very thin columnar compositions it becomes pearly. Colour flesh-red and rose-red ... reddish-white. Semi-transparent ... translucent.

Taste astringent.

It is soluble in water. To glass of borax it communicates a blue colour. According to Kopp, it consists of

Oxide of Cobalt 38·71.
Sulphuric Acid 19·74.
Water 41·55.

It occurs in the rubbish of old mines, at Bieber in the neighbourhood of Hanau.
Roundish, and blunt-edged masses. Fracture conchoidal.
Lustre resinous. Colour green, yellow, red, brown, sometimes in striped delineation. Semi-transparent ... opake.
Hardness = 1·5 ... 2·0, of the variety from Halle.
Sp. Gr. = 1·135, Hatchett.

The Retinite from Halle very much resembles a vegetable resin. The purer specimens frequently consist of alternating layers more or less transparent, corresponding to the external shape, and commonly including a cavity.
It emits a strong peculiar odour, even in its natural state, but still more powerfully if rubbed between the fingers; which odour they retain for a considerable time. Its specific gravity is = 1·079.
Retinite, if rubbed in an isolated state, acquires negative electricity. It takes fire at the flame of a candle, melts, and burns with a particular odour. It is partly soluble in alcohol, leaving behind an unctuous residue. According to Hatchett and Bucholz, it consists of
Vegetable Resin 55·00 91·00.
Asphalt or Bitume 42·00 9·00.
Earthy Matter 3·00 0·00.

It has been found in the beds of earthy brown coal near Halle on the Saale, at Bovey in Devonshire, also in Upper Austria, Moravia, &c.

The different substances called Retinite, Retin-Asphalt, &c. deserve an accurate comparative examination.
ROSELITE.

HALOIDE.

Prismatic. \(P = 114^\circ 24', 79^\circ 15', 140^\circ 40' \). Vol. I. Fig. 9. Lévy.

\[a : b : c = 1 : \sqrt{0.1909} : \sqrt{0.3761}. \]

Simple forms. \(P = \infty (P) ; \frac{5}{2} \Pr (\cos \frac{3}{2}) = 45^\circ 0' \); \(\Pr (a^2) = 47^\circ 12' ; \Pr + \infty (g) \).

Combination of all these forms represented Fig. 195. Inclination of edge \(z \) on edge \(z = 119^\circ 46' \). Cleavage perfect parallel to \(P \). Surface, \(\Pr \) rough, and hollowed out in the middle.

Hardness = 3-0.

According to Mr Children, it contains water, oxide of cobalt, lime, arsenic acid, and magnesia. Before the blowpipe it gives off water and becomes black. It imparts a blue colour to borax and salt of phosphorus, and is entirely soluble in muriatic acid. It occurs at Schneeberg in Saxony, disposed on rhombohedral Quartz, and was formerly considered as a variety of the prismatic Cobalt-mica, but seems rather to belong to the order Haloide.

SARCOLITE.

Spar.

Tessular. Combinations of the hexahedron and the octahedron, Vol. I. Fig. 3.
Fracture presenting a vitreous tissue. Colour flesh-red. Hardness sufficient to scratch glass.

It is supposed by Haüy to be a variety of the hexahedral Kouphone-spar; but the form of the octahedron having never yet been observed in that species, an accurate examination of Sarcolite is still a desideratum.

SAUSSURITE.

Lustre pearly, inclining to vitreous upon the faces of cleavage; resinous in compound varieties, particularly when cut and polished. Colour white, passing into mountain-green, greenish- and ash-grey. Streak white.

Sp. Gr. = 3·256 of a granular variety from Piedmont, 3·342 of a compact variety from the Pays de Vaud.

Before the blowpipe it melts with difficulty into a white glass. According to Saussure and Klaproth, it consists of

<table>
<thead>
<tr>
<th>Component</th>
<th>Granular Variety</th>
<th>Compact Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>49·00</td>
<td>44·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>24·00</td>
<td>30·00</td>
</tr>
<tr>
<td>Lime</td>
<td>10·00</td>
<td>4·00</td>
</tr>
<tr>
<td>Magnesia</td>
<td>3·75</td>
<td>Potash 0·25</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>6·50</td>
<td>12·50</td>
</tr>
</tbody>
</table>
SCORODITE.

Oxide of Manganese 0·00
Soda 5·50
Loss 0·75

0·05
6·00
3·20

Saussurite, or Jade, occurs in primitive mountains, and constitutes with several varieties of the species of paratomatic and hemiprismatic Augite-spar, the rocks called gabbro and euphotide. It is found in large masses in the Monte Rosa, and in its neighbourhood; in Corsica; in the Bacher mountain in Lower Stiria, in Bayreuth, &c.

SCORODITE.

Martial Arseniate of Copper. Skorodite. PHILL. p. 320. 321. Skorodit. BREITHAUP.

Prismatic. \(P = 115^\circ 6', 102^\circ 1', 111^\circ 34' \). Vol. I.

Fig. 9. Ap.

\[a : b : c = 1 : \sqrt[3]{1} : 0.093 : 0.792. \]

Simple forms. \(P = \infty \) (h); \(P = 1 = 134^\circ 37', 126^\circ 25', 72^\circ 40' \); \(P (P) \); \((\Pr + \infty)^3 (d) = 60^\circ 58' \); \(\Pr + 1 (m) = 47^\circ 59' \); \(\Pr + \infty \);

\(\Pr + \infty (r) \).

Char. of Comb. Prismatic.

Comb. 1. \(P = \infty \). P. Löling, Carinthia.

2. \(P = \infty \). P. \(\Pr + 1 \). \((\Pr + \infty)^3 \). \(\Pr + \infty \).

Fig. 19. Löling.

3. \(P = 1 \). P. \(\Pr + 1 \). \((\Pr + \infty)^3 \). \(\Pr + \infty \).

\(\Pr + \infty \). Saxony.

Cleavage. \((\Pr + \infty)^3 \) imperfect, traces of \(\Pr + \infty \) and of \(\Pr + \infty \). Fracture uneven. Surface; \(\Pr + \infty \), partly also \((\Pr + \infty)^3 \) in a vertical direction. The rest of the faces commonly very smooth and even.
Lustre vitreous, inclining to adamantine on the surface, and to resinous in the interior. Colour principally leek-green, which passes almost into white, or also into olive-green and liver-brown. Streak white. Semi-transparent ... translucent on the edges.

Rather brittle. Hardness = 3·5 ... 4·0. Sp. Gr. = 3·162.

Before the blowpipe it emits an arsenical odour, and melts into a reddish-brown scoria, which acts upon the magnet, if it has been heated long enough to drive off all the arsenic. According to Ficinus, it consists of

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenious Acid</td>
<td>31·40</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>1·54</td>
</tr>
<tr>
<td>Water</td>
<td>18·00</td>
</tr>
<tr>
<td>Protoxide of Iron, with</td>
<td></td>
</tr>
<tr>
<td>Magnesia, Lime, and</td>
<td>47·80</td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
</tr>
</tbody>
</table>

It occurs in primitive mountains at Schwarzenberg in Saxony with prismatic Arsenical-pyrites, at Lölling near Hüttenberg in Carinthia with axotomous Arsenical-pyr·ites; it is accompanied in the latter place also by octahedral Bismuth and brachytypous Parachrose-baryte. Beautiful specimens have lately been brought from Brazil. It occurs in several of the Cornish mines. The Martial Arseniate of Copper from Cornwall seems to be merely a variety of the Scorodite. It consists, according to Chenevière, of oxide of copper 22·5, arsenic acid 33·5, oxide of iron 27·5, water 12·0, and silica 3·0.

SELENIURET OF COPPER.

Massive; also superficial upon fissures in rhombo-hedral Lime-haloide.

Soft. Malleable.

It acquires negative electricity by friction. It melts easily upon charcoal into a grey malleable globule, giving out a strong smell of selenium, and consists of selenium and copper. It has been hitherto exclusively found in the Skrickerum copper mine, in Smaland in Sweden.

Serpentine.

Prismatic. $P = 139^\circ 34', 105^\circ 26', 88^\circ 26'$. Vol. I. Fig. 9. Ar.

$$a : b : c = 1 : \sqrt{4} : \sqrt{14}.$$

Simple forms. $P (P); (Pr)^5 (n); (Pr + \infty)^5 (d) = 82^\circ 27'; \bar{Pr} (o) = 128^\circ 31'; \bar{Pr} + 1 (r) = 92^\circ 4'; \bar{Pr} + \infty (b); \bar{Pr} + \infty (s)$.

Char. of Comb. Prismatic.

Comb. 1. \bar{Pr}. P. ($\bar{Pr} + \infty)^5$. $\bar{Pr} + \infty$. $\bar{Pr} + \infty$. Sim. Fig. 25.

2. \bar{Pr}. P. $\bar{Pr} + 1$. ($\bar{Pr} + \infty)^5$. ($\bar{Pr} + \infty)^5$. $\bar{Pr} + \infty$. $\bar{Pr} + \infty$. Fig. 33.

Cleavage. Traces of $\bar{Pr} + \infty$ and of ($\bar{Pr} + \infty)^5$, apparent only in a strong light. Fracture flat conchoidal, splintery, uneven. Surface, almost dull, very little glistening, but rather even.

Lustre resinous, indistinct, low degrees of intensity. Colour dark blackish- and leek-green, seldom lighter shades of oil-green and siskin-green colours, none of them being bright; they pass into yel-
lowish-grey. Streak white, acquires some lustre. Translucent ... opake.

Sectile. Hardness = 3-0. Sp. Gr. = 2·507 of a greenish-black crystallised variety; = 2·560 of an oil-green, translucent one.

Compound Varieties. Massive: composition granular, impalpable. Varieties of this kind present also red, brown, black, yellow, and grey colours, in different veined, spotted, and other delineations. The purer varieties sometimes possess an indistinct slaty structure.

The regular forms have been observed in a blackish-green variety, the locality of which is unknown. Serpentine is said to occur crystallised in the Tyrol. Imbedded crystals, the prismatic form of which, however, is nearly obliterated, occur in the weisstein of Penig in Saxony. Serpentine often contains crystals and grains of octahedral Iron-ore, which must be well attended to, if we determine its hardness and specific gravity.

Serpentine is generally divided into two subspecies, the common and precious Serpentine, the latter of which again comprises a conchoidal and a splintery kind, distinguished in colour, fracture, and transparency. It hardens on being exposed to fire, and melts only with great difficulty on the edges. According to John, it consists of

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>42·50</td>
</tr>
<tr>
<td>Magnesia</td>
<td>38·63</td>
</tr>
<tr>
<td>Alumina</td>
<td>1·00</td>
</tr>
<tr>
<td>Lime</td>
<td>0·25</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>1·50</td>
</tr>
<tr>
<td>Oxide of Manganese</td>
<td>0·62</td>
</tr>
<tr>
<td>Oxide of Chrome</td>
<td>0·25</td>
</tr>
<tr>
<td>Water</td>
<td>15·20</td>
</tr>
</tbody>
</table>

Serpentine forms mountain masses and beds in primitive
SILLIMANITE.

rocks, and frequently contains crystals, grains, or compound nodules of various other species. Precious Serpentine, in particular, is often mixed with granular limestone. The different varieties of Serpentine are met with in Saxony, Silesia, Austria, Hungary, Stiria, Italy, Corsica, Sweden, in England and Scotland, and other countries. It is turned on the lathe into vases, and also worked into different ornaments.

SILLIMANITE.

SPAR.

Hemi-prismatic. It occurs crystallised in four-sided prisms of about 106° 30', the inclination of the base on the axis being 113°.

Cleavage parallel to the long diagonal of the prism.

Fracture, uneven, splintery. Surface often rounded, the crystals themselves bent.

Lustre, considerable upon the single face of cleavage. Colour dark grey, passing into clove-brown. Translucent on the edges.

Hardness, superior to quartz or even to topaz. Brittle and easily reduced to powder. Sp. Gr. = 3.410. Electricity or magnetism none.

It was found by Bowen to contain

Alumina 54.111.
Silica 42.666.
Oxide of Iron 1.999.
Water 0.510.

It is infusible before the blowpipe, whether alone or with borax, and is not acted upon by acids. It occurs in the
town of Saybrook, Connecticut, and was formerly consider-
ed as a variety of Anthopyllite. The analysis agrees ex-
actly with that of prismatic Disthene-spar by Klaproth,
(Vol. II. p. 215.). No exact crystallographic description is
given, but the angle of 106° 30' is very near the incidence of
P on M, 106° 15', in that species, also the specific gravity is
not much different, and the great hardness may perhaps
be accounted for by the want of a more general diffusion of
correct methods for ascertaining this property. Sillimanite is
therefore probably a variety of the prismatic Disthene-spar.

SOMERVILLITE.

XVI. p. 274.

Pyramidal. \(P = 134° 48', 65° 50'. \) Vol. I. Fig. 8.
Brooke.

\[a = \sqrt{0.419}. \]

Simple forms. \(P \rightarrow \infty (P); \ P (a); \ P + \infty (d); \]
\[[P + \infty] (M); \ (P + \infty)^3 (e) = 126° 52' 12'', \]
\[148° 7' 48''. \]

Combination of all these forms, resembling Fig. 101.,
having the apex, and the edges between \(g \) and \(l \) replaced.

Cleavage, \(P \rightarrow \infty \) perfect, none observable parallel
to the axis.

Lustre more glassy in the cross fracture than that
of pyramidal Garnet. Colour pale dull yellow.

Hardness inferior to that of pyramidal Garnet.

It decrepitates before the blowpipe, and melts alone into
a grey coloured globule, with borax into a colourless one.
It occurs at Mount Vesuvius, associated with black mica
and other minerals.
SORDAWALITE.

Massive: composition impalpable; no trace of cleavage. Fracture conchoidal.
Lustre vitreous, inclining to semi-metallic. Colour greenish- or greyish-black. Opake.
Brittle. Hardness equal to that of glass. Sp. Gr. = 2.530, NORDENSKIÖLD.

It becomes reddish by exposure to the atmosphere. Before the blowpipe it forms with difficulty a blackish globule. With a small quantity of soda it yields a blackish-green globule; with a larger quantity a rough slaggy mass is produced. Borax dissolves it into a green glass. It is partly soluble in muriatic acid. Analysis by NORDENSKIÖLD:

Silica 49.40.
Alumina 13.80.
Peroxide of Iron 18.17.
Magnesia 10.67.
Phosphoric Acid 2.68.
Water 4.38.

It occurs near the town of Sordawala in Finland, in layers from half an inch to an inch in thickness in a primitive rock.

SPHÆRULITE.

Imbedded spheroidal masses. Surface of some of them smooth, of others rough. Composition columnar ... impalpable. In the latter case the fracture even, splintery.

Colour various shades of brown and grey. Translucent on the edges ... opake.
Brittle. Hard (it scratches quartz slightly, BREITHAUP). Sp. Gr. = 2.52 from Spechtshausen; = 2.40 from Hungary, BREITHAUP.

Before the blowpipe it is almost infusible, only the edges become covered with a sort of enamel. It is said to be very nearly related to obsidian in respect to its composition. It occurs at Glashütte near Schenmiz in Hungary, imbedded in pearlstone, and at Spechtshausen near Tharand in Saxony, imbedded in pitchstone, both varieties of empyrodox Quartz. It was first distinguished by Mr BREITHAUP.

SPINELLANE.

Tessular form, the dodecahedron, sometimes combined with the hexahedron. PHILL. Grains. Cleavage, the dodecahedron, imperfect. Fracture conchoidal, uneven. Lustre vitreous, inclining to resinous. Colour greyish-black, passing into ash-grey and brown. Sometimes a whitish play of light parallel to the faces of the hexahedron. Translucent ... opake. Hardness = 5.5 ... 6.0. Sp. Gr. = 2.282.

Before the blowpipe it is infusible, whether alone or with additions. According to KLAPROTH, it consists of

Silica 43.00.
Alumina 29.50.
Lime 1.50.
Soda 19.00.
Oxide of Iron 2.00.
Sulphur 1.00.
Water 2.50.
STEATITE OR SOAPSTONE.

It occurs on the shores of the lake of Laach, along with prismatic Feld-spar, hemi-prismatic Augite-spar, octahedral Iron-ore, &c. It resembles pitchstone when broken, and according to the observations of Dr Brewster, also in its structure, when examined in thin splinters by a powerful microscope. The name of Nosin has been given to it, in honour of Mr Nose, its first discoverer.

STEATITE OR SOAPSTONE.

Crystals, chiefly of the rhombohedral system, and among these particularly such as resemble varieties of rhombohedral Quartz, and macrotypous Lime-haloide, the nature of which is as yet problematic. The crystals are found imbedded in the massive varieties of the same mineral. Massive; composition impalpable, fracture uneven, splintery. Colour generally white, passing into grey, green, yellow, red. Streak having a faint resinous lustre. Translucent on the edges. Perfectly sectile. Feels greasy. Does not adhere to the tongue. Soft ... very soft. Sp. Gr. = 2·604 ... 2·632, Breithaupt.

Before the blowpipe it is very difficultly fusible, and only partly vitrified. According to Klaproth, it consists of

<table>
<thead>
<tr>
<th>From Baireuth</th>
<th>From Cornwall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica 50·50</td>
<td>45·00</td>
</tr>
<tr>
<td>Magnesia 30·50</td>
<td>24·75</td>
</tr>
<tr>
<td>Alumina 0·00</td>
<td>9·25</td>
</tr>
<tr>
<td>Oxide of Iron 2·50</td>
<td>1·00</td>
</tr>
<tr>
<td>Water 5·50</td>
<td>18·00</td>
</tr>
</tbody>
</table>
Stilpnosiderite is generally considered as a variety of prismatic Iron-ore; it possesses a stronger lustre, from which property the name has been derived.
STROMNITE.

Massive: composition thin columnar, and shewing traces of crystallisation.
Colour yellowish-white internally; on the outside, where it appears to be disintegrated, it is greyish-white. Lustre inclining to pearly, faint. Translucent.

According to Dr Traill, it contains
Carbonate of Strontia 60.6.
Sulphate of Baryta 27.5.
Carbonate of Lime 2.6.
Oxide of Iron 0.1.

It effervesces with acids, but is infusible before the blowpipe. It occurs in veins along with hexahedral Lead-glance, in a kind of clay-slate at Stromness in Orkney.

SULPHATE OF POTASH.

SALT.

Prismatic. \(P = 131^\circ 15', 112^\circ 32', 87^\circ 34' \). Vol. I. Fig. 9. Ap.

\[\frac{a}{b} = \frac{c}{1} = \sqrt[3]{3.06} : \sqrt[3]{1.69}. \]

Simple forms. \(P - \infty; P (P); P + \infty = 106^\circ 46' \); \((Pr)^3 (a); (Pr + \infty)^3 (d) = 67^\circ 52'\); \(Pr (o) = 120^\circ 29'\); \(\frac{3}{4} Pr + 2 = 60^\circ 30'\); \(Pr + \infty (p) \);
\((Pr + \infty) (s)\).
Char. of Comb. Prismatic.

Combinations. 1. \(\Pr \, \Rp + \infty \). \(\Pr + \infty \). (Pot. \text{sulf. prismaticque. Haüy.})

2. \(P \). (\(\Pr + \infty \))^3. (Pot. \text{sulf. dodécaèdre. Haüy.})

Sim. Fig. 7. without \(s \).

3. \(\Pr \, P \). (\(\Pr \))^3. \(P + \infty \). (\(\Pr + \infty \))^3. \(\Pr + \infty \). \(\Pr + \infty \).

Sim. Fig. 30., the edges between \(d \) and \(s \) being replaced by the faces of \(P + \infty \).

There is almost always regular composition parallel to one or both faces of \(\Pr \).

Cleavage, very indistinct, parallel to \(\Pr \) and \(Pr + \infty \), the latter a little more apparent; Traces of \(\Pr + \infty \). Fracture imperfect conchoidal ... uneven. Surface; (\(\Pr + \infty \))^3, and partly also \(P + \infty \) irregularly streaked parallel to their common edges of combination; the rest of the faces smooth.

Lustre vitreous, inclining to resinous. Colour white, yellowish or greyish, sometimes superficially greenish or blueish. Streak white, a little shining. Transparent ... translucent.

Rather brittle. Hardness = 2-5 ... 3-0. Sp. Gr. = 1-731. Taste saline and bitter, disagreeable.

Its chemical formula is \(K \, \bar{S}^2 \), according to Berzelius, corresponding to

Sulphuric Acid 45.93.

Potash 54.07.

It occurs at Mount Vesuvius. The regular forms of this salt have been likewise ascertained to belong to the prismatic system, by Dr Brewster, and by Messrs Brooke and Lévy.
TENANTITE.

GLANCE.

Tennantite. PHILL. p. 304.

Semi-tessular, with inclined faces. Combinations similar to Fig. 158 ... 161; often in regular compositions, according to the law of Fig. 164. Cleavage dodecahedron, imperfect. Sometimes massive, composition granular ... impalpable. Fracture uneven.

The existence of the regular composition is most easily ascertained by the striae upon the faces of the hexahedron, which are parallel to the edges of combination with one of the tetrahedrons.

Before the blowpipe Tennantite decrepitates a little, and burns with a blue flame, emitting copious arsenical vapours, and melting at last into a black scoria, which affects the magnetic needle. According to Mr R. PHILLIPS, it consists of

Copper 45-32.
Arsenic 11-84.
Sulphur 28-74.
Silica 5-00.

It occurs in several of the Cornish copper mines, in veins traversing granite and clay-slate, and is accompanied by several ores of copper.
PHYSIOGRAPHY.

THOMSONITE.
KOUPHONE-SPAR.

Prismatic. $P + \infty = 90^\circ 40'$, BROOKE. Crystals elongated in the direction of the axis, having the apices engaged. Massive: composition columnar, radiating from common centres.

Cleavage, parallel to $Pr + \infty$, and $Pr + \infty$, forming a rectangular four-sided prism, very easily obtained. Fracture uneven. Surface smooth. Lustre vitreous, much inclining to pearly. Colour white. Transparent ... translucent.

Brittle. Hardness = 5·0. Sp. Gr. = 2·27, BROOKE.

According to THOMSON and BERZELIUS, it consists of

<table>
<thead>
<tr>
<th>Component</th>
<th>THOMSON</th>
<th>BERZELIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>36·80</td>
<td>38·30</td>
</tr>
<tr>
<td>Alumina</td>
<td>31·36</td>
<td>30·20</td>
</tr>
<tr>
<td>Lime</td>
<td>15·40</td>
<td>13·54</td>
</tr>
<tr>
<td>Soda</td>
<td>0·00</td>
<td>4·53</td>
</tr>
<tr>
<td>Magnesia</td>
<td>0·20</td>
<td>0·40</td>
</tr>
<tr>
<td>Peroxide of Iron</td>
<td>0·00</td>
<td>0·00</td>
</tr>
<tr>
<td>Water</td>
<td>13·00</td>
<td>13·10</td>
</tr>
</tbody>
</table>

It intumesces before the blowpipe, and becomes snow-white and opaque, but does not melt. It occurs with axotomous Triphane-spar, in the trap-rocks of Kilpatrick, near Dumbaron in Scotland.

THULITE.

SPAR.

Thulite. BROOKE. Crystallography, p. 494. PHILL. p. 211.

Cleavage, parallel to the sides of a rhombic prism of $92^\circ 30'$ and $87^\circ 30'$.
Colour rose-red. Streak greyish-white.
Scratched by quartz, and yielding to the knife with difficulty.

This mineral is very imperfectly described, as all the properties given do not suffice, if it be a particular species, to distinguish it from the Manganese-spar, at least by characters derived from the descriptions of the two substances. It occurs at Tellemarken in Norway with rhombohedral Quartz, octahedral Fluor-haloide, and Cyprine, which is said to be a cupriferous variety of pyramidal Garnet.

TIN-PYRITES.

GLANCE.

Brittle. Hardness = 4·0. Sp. Gr. = 4·350, Klaproth.

In the collections of Mr Rashleigh of Menabilly, and Mr Williams of Scorrier, crystals of Tin-pyrites are preserved, having apparently the form of regular hexahedrons, but their surface is dull. The traces of cleavage, sometimes observed in massive varieties, seem likewise to be parallel to this form, and at the same time parallel to the dodecahedron.

Before the blowpipe sulphur is driven off, and the mineral melts into a blackish scoria, without yielding a metallic button. It is soluble in nitro-muriatic acid, during which
PHYSIOGRAPHY.

the sulphur is precipitated. According to Klaproth, it consists of

Tin 34·00.
Copper 36·00.
Iron 2·00.
Sulphur 25·00.

It is found near St Agnes in Cornwall, with pyramidal Copper-pyrites, dodecahedral Garnet-blende, &c.

TORBELITE.

No description.

The analysis by Professor Renwick gives

Silica 32·60.
Peroxide of Cerium 12·32.
Protoxide of Iron 21·00.
Alumina 3·68.
Lime 24·08.
Water 3·50.

It occurs in Sussex county, New Jersey.

TRONA.

SALT.

Hemi-prismatic. Combinations observed resembling Fig. 75., without r. Inclination of M on \(T = 103^\circ 15', \) of \(n \) on \(n \), adj. = 132° 30', nearly. Cleavage highly perfect, parallel to \(M \), traces parallel to \(T \) and \(n \). Fracture uneven. Surface, \(T \) often striated parallel to its edges of combination with \(M \).

Lustre vitreous. Colour white, sometimes yellow-
ish. Streak white. Transparent ... translucent. Index of refraction, ord. = 1·43, extr. 1·52. Hardness = 2·5 ... 3·0. Sp. Gr. = 2·112.

Compound Varieties. Thin columnar compositions of crystals lengthened between M and T; fracture radiated, owing to the longitudinal distinct face of cleavage.

The analysis of this mineral by Klaproth has been given above, Vol. II. p. 29., agreeing with Berzelius formula Na Č₃ + 4 Aq, or 37·99 of soda, 40·15 carbonic acid, and 21·86 of water. It does not melt in its water of crystallisation, and is not altered by the influence of the atmosphere. It is formed on the banks of the natron lakes in Sukena, a province of the kingdom of Fezzan in Africa, in the shape of crystalline coats, and occurs also on the surface of the earth. It is exported from thence in considerable quantities under the name of Trona. The natural carbonate of soda from the lake of Merida in Columbia, probably also belongs to this species.

TUNGSTATE OF LEAD.

BABYTE.

Before the blowpipe it melts and gives off vapours of lead, leaving a crystalline globule of a dark colour and metallic aspect, which yields a pale grey powder. When the lead has been driven off, it yields with borax a yellow
globule, transparent and dark red on cooling, and with salt of phosphorus, at a certain degree of saturation, a blue one in the reducing flame. It occurs at Zinnwald in Saxony, associated with rhombohedral Quartz and Mica, and was first noticed as a particular species, and subjected to a chemical examination by Messrs Breithaupt and Lampadius.

TURNERITE.

Hemi-prismatic. Combinations having the general appearance of the crystal of prismatic Azure-malachite, represented Fig. 66.

Measurements of the angles, according to Lévy and Phillips:

\[M \text{ on } M \text{ (over } \overline{i}) = 96^\circ 10'. \]
\[h \text{ on } c = 142^\circ 29'. \]
\[g \text{ on } g \text{ (over } \overline{i}) = 131^\circ 50'. \]
\[c \text{ on } a = 92^\circ 55'. \]
\[M \text{ on } x = 140^\circ 50'. \]
\[h \text{ on } a = 124^\circ 36'. \]
\[h \text{ on } M \text{ (over } x) = 80^\circ 20'. \]
\[a' \text{ on } x = 143^\circ 30'. \]
\[h \text{ on } M \text{ (over } k) = 99^\circ 40'. \]
\[h \text{ on } k = 133^\circ 50'. \]

There are moreover five prisms indicated in the situation of \(l, f, P \), whose edges, contiguous to the face \(h \), are \(130^\circ 34', 98^\circ 50', 94^\circ 44', 90^\circ 0', \) and \(55^\circ 36'; \) the first and third have been observed by Mr Lévy, the other three by Mr Phillips.

Cleavage parallel to both diagonals of the prism resulting from the enlargement of the faces \(M \), one of them more perfect.

Lustre nearly adamantine. Colour several shades of yellow, often inclining to brown. Streak white, sometimes greyish. Transparent ... translucent.
Scratches fluor pretty readily, but yields to the knife.

According to the experiments of Mr Children, it consists chiefly of alumina, lime, magnesia, and a little iron, but very little silica, and no titanium. It was formerly confounded with prismatic Titanium-ore, but is said to have afterwards been distinguished from it under the name of Pictite. Its locality is Mount Sorel in Dauphiny, where it is accompanied by rhombohedral Quartz, prismatic Feldspar, Albite, Crichtonite, and pyramidal Titanium-ore.

VAUQUELINITE.

MALACHITE?

Hemi-prismatic. Minute crystals, nearly resembling Fig. 59., with the obtuse edges oa replaced, compressed between P and P', and joined in regular compositions, parallel to a plane, which passes through the crystals in the direction of ee, and intersects the acute lateral edges. Inclination of P on P', from the other individual, nearly $= 134^\circ 30'$; of the edge oa, or its replacement, on P, about 149°.

Fracture uneven. Surface, P smooth and even, the rest of the faces a little curved.

Lustre adamantine, often faint. Colour blackish-green, olive-green. Streak siskin-green, often inclining to brown. Faintly translucent, with a fine olive-green tint, opake.

Rather brittle. Hardness $= 2.5 \ldots 3.0$. Sp. Gr. $= 5.5 \ldots 5.78$, *Leonhard.*
Compound Varieties. Botryoidal, reniform, massive: composition generally impalpable, surface drusy or rough, fracture imperfect and flat conchoidal, lustre faint resinous.

Alone before the blowpipe it intumesces a little, and then froths and melts into a greyish globule, giving at the same time some globules of lead. In the oxidating flame a small quantity effervesces with, and imparts a green colour to borax and salt of phosphorus, which remains transparent on cooling; but in the reducing flame the globule turns red and transparent, or red and opake, or finally black, according to the quantity of the mineral employed. According to Berzelius, it consists of

Oxide of Lead 60·87.
Oxide of Copper 10·80.
Chromic Acid 28·33.

It occurs at Beresof in Siberia, along with hemi-prismatic and rhombohedral Lead-baryte, and has been quoted also from Brazil, where it likewise accompanies the hemi-prismatic Lead-baryte.

VELVET-BLUE COPPER.

MALACHITE?

Short capillary crystals, in velvety druses and coatings.

It has been found lining drusy cavities in prismatic Iron-ore, only at Moldawa in the Bannat of Temeswar, accompanied by several ores of copper. This rare substance is very imperfectly known, and also its chemical composition has not been ascertained.
WAVELLITE.

WAGNERITE.

Hemi-prismatic. Horizontal projection of a crystal represented Fig. 197*; \(a\) is not a right angle, \(b, k,\) and \(g,\) if enlarged, would produce parallel edges of combination.

Lustre vitreous. Colour several shades of yellow, sometimes nearly orange-yellow, often inclining to grey. Streak white. Translucent.

Hardness = 5·0 ... 5·5. Sp. Gr. = 3·11, Fuchs.

It has been analysed by Fuchs, who found it to consist of

- Phosphoric Acid 41·73.
- Fluoric Acid 6·50.
- Magnesia 46·66.
- Oxide of Iron 5·00.
- Oxide of Manganese 0·50.

The only locality of Wagnerite known at present, is the valley called Höllgraben near Werfen in Salzburg, where it occurs in short and irregular veins of rhombohedral Quartz in clay-slate.

WAVELLITE.

HALOIDE.

Prismatic. \(\Pr = 107^\circ 26'.\) \(P + \infty = 122^\circ 15'.\)

PHILL. Cleavage, \(P + \infty\) and \(\Pr + \infty,\) perfect.

* I have been indebted for this drawing to Dr Gustavus Rose, who first ascertained the crystal to which it refers, in the possession of Mr Heuland, to be Wagnerite. H.
Implanted globules: composition thin columnar.
Surface drusy.
Lustre of the faces of cleavage intermediate between pearly and vitreous. Colour white, passing into several shades of green, grey, brown, and black. Translucent.

Hardness = 3·5 ... 4·0. Sp. Gr. = 2·337, of the variety from Barnstaple.

Before the blowpipe it loses its lustre and transparency, but does not melt. With boracic acid and iron wire, it yields a globule of phosphuret of iron. It consists, according to Fuchs and Berzelius, of

<table>
<thead>
<tr>
<th></th>
<th>Fuchs</th>
<th>Berzelius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>37·20</td>
<td>35·35</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>35·12</td>
<td>33·40</td>
</tr>
<tr>
<td>Fluric Acid</td>
<td>0·00</td>
<td>2·06</td>
</tr>
<tr>
<td>Lime</td>
<td>0·00</td>
<td>0·50</td>
</tr>
<tr>
<td>Oxide of Iron and Manganese</td>
<td>0·00</td>
<td>1·25</td>
</tr>
<tr>
<td>Water</td>
<td>28·00</td>
<td>26·80</td>
</tr>
</tbody>
</table>

It occurs at Barnstaple in Devonshire, in small veins in clay-slate; at St Austle in Cornwall, in veins traversing granite, accompanied by octahedral Fluor-haloide, pyramidal Tin-ore, pyramidal Copper-pyrites, &c.; in the Shiant isles in Scotland; at Zbirow near Beraun in Bohemia, in a kind of sandstone; at Amberg in the Upper Palatinate, with prismatic Iron-ore, &c.; in fine varieties near Cork in Ireland, and in Brazil.

WITHAMITE.

AUGITE-SPAR.

Hemi-prismatic. Minute crystals observed similar to Fig. 75, lengthened between M and T, aggre-
gated in globular masses, radiating from their centres. Inclination of r on $T = 128^\circ 20'$, of M on $T = 116^\circ 40'$, nearly, Brewster.

Lustre vitreous. Colour carmine-red and pale straw-yellow, in two different directions, perpendicular to each other, and to the lengthened prisms. Streak white. Translucent.

Brittle. Hardness = 6·0... 6·5. Sp. Gr. = 3·137, Turner.

Before the blowpipe it intumesces, but fuses only with difficulty into a dark greenish-grey scoria. Salt of phosphorus dissolves it with effervescence into a globule, which contains a skeleton of silica, and becomes opaque on cooling. It shews nearly the same reactions as the Epidote from Arendal, with which it likewise agrees in most of its other properties. This mineral is named in compliment to Mr Witham, who discovered it in Glencoe in Scotland, in a reddish trap-rock.

YELLOW TELLURIUM.

Prismatic. Combination similar to Fig. 14., having the edges between p and p, between P and P, and between M and M replaced. Inclination of the edge y on the edge $y = 74^\circ 30'$; of p on p (adj.) = $73^\circ 40'$, of M on $M = 143^\circ$, of p on $M = 123^\circ 30'$, Brooke.

Imbedded crystalline laminae. Traces of cleavage. Fracture uneven.

Before the blowpipe it melts into a metallic globule, and emits a pungent odour. It is soluble in nitric acid, and consists, according to Klaproth, of

Tellurium 44·75.
Gold 26·75.
Lead 19·50.
Silver 8·50.
Sulphur 0·50.

As yet it is only known from Nagyag in Transylvania, where it occurs with prismatic Tellurium-glance, hexahedral Glance-blende, macrotypous Parachrose-baryte, &c. in veins traversing porphyry.

Yttro-cerite.

Before the blowpipe it loses its colour, and becomes white before it glows, but is infusible by itself. With sulphate of lime it melts into a globule, which becomes white on cooling. According to Berzelius, it consists of

Lime 47·63 50·00.
Fluoric Acid 25·05 25·45.
Yttria 9·11 8·10.
Oxide of Cerium 18·22 16·45.
It occurs at Finbo and Broddbo, near Fahlun in Sweden, along with Albite and rhombohedral Emerald, and is imbedded in rhombohedral Quartz.

YTTRO-TANTALITE.

ORE.

i. **Black Yttro-tantalite.**

ii. **Yellow Yttro-tantalite.**

No trace of crystallisation. It is found between felspar in the state of lamellæ, seldom in grains not exceeding the size of a pepper corn. The longitudinal fracture of the lamellæ is foliated, the cross fracture fine grained. Lustre resinous on the surface, vitreous in the fracture. Colour yellowish-brown, accidentally with green spots or stripes. Streak white ... opake. Scratches glass with difficulty, but is very distinctly scratched by it. Sp. Gr. = 5·882, Eckeberg.

iii. **Dark Yttro-tantalite.**

No trace of crystallisation. Occurs with the preceding, commonly in thin laminae, seldom in
grains. Fracture conchoidal in one direction, fine grained in another.
Lustre intermediate between vitreous and resinous. Colour black, inclining but little to brown. Streak white. Very small fragments are translucent, almost colourless, sometimes a little yellowish.

Hardness equal to that of the yellow variety.

From the analysis of these different kinds, Berzelius obtained the following results:

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Yellow</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide of Tantalum</td>
<td>57·00</td>
<td>59·50—60·124</td>
<td>51·815.</td>
</tr>
<tr>
<td>Yttria</td>
<td>20·25</td>
<td>24·90—29·780</td>
<td>33·515.</td>
</tr>
<tr>
<td>Lime</td>
<td>6·25</td>
<td>3·29—0·500</td>
<td>3·260.</td>
</tr>
<tr>
<td>Oxide of Uranium</td>
<td>0·50</td>
<td>8·23—6·622</td>
<td>1·111.</td>
</tr>
<tr>
<td>Tungstic Acid with Tin</td>
<td>8·25 pure</td>
<td>1·25—1·044</td>
<td>2·592.</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>3·50</td>
<td>2·72—1·155</td>
<td>0·555.</td>
</tr>
</tbody>
</table>

These three kinds have been discovered and described by Berzelius in the Afhandlingar i Fysik, &c., Vol. IV. p. 268. By themselves they are all infusible before the blowpipe; but they decrepitate and acquire a lighter colour. The black Yttrio-tantalite froths and melts with soda, but not the others. Borax dissolves them and forms a yellowish glass, which easily loses its transparency. They are not acted upon by acids.

The different kinds of Yttrio-tantalite occur at Ytterby, and in the neighbourhood of Fahlun in Sweden.

ZEAGONITE.

GEM.

Pyramidal. \(P = 122^\circ 54', 85^\circ 2'. \) Vol. I. Fig. 8.

Brooke. Combination observed, \(P \ + \infty. \)
ZEAGONITE.

Cleavage imperfect parallel to $P + \infty$. Surface, P frequently rounded, $P + \infty$ smooth, and though generally very small, yet possessing high degrees of lustre. Fracture conchoidal.

Lustre adamantine. Colour pale smalt-blue, milk-white, pearl-grey, and rose-red. Translucent, in small crystals nearly transparent.

Hardness $= 7.0 \ldots 7.5$.

According to Carpi, it consists of

- Silica 41.4.
- Lime 48.6.
- Alumina 2.5.
- Magnesia 1.5.
- Oxide of Iron 2.5.

It phosphoresces before the blowpipe, and becomes friable, but is infusible. It gelatinises with acids, without effervescence. It occurs along with white octahedrons of octahedral Fluor-haloide, with prismatic Feld-spar and other species in the drusy cavities of a volcanic rock at Capo di Bove near Rome. In all its characters, Zeagonite is most nearly allied to pyramidal Zircon, as a variety of which it has often been considered, the difference of the angles given by Mr Brooke being only 0° 25' on the terminal edges, and 0° 42' on the lateral edges of the fundamental pyramid. Also the refraction is very considerable, and approaches near that of the same species. Pyramidal Zircon will therefore make an interesting point of comparison with the Zeagonite, in future examinations of this mineral. It is evident that the mineral, of which Mr Phillips has given the angle at the base of the four-sided pyramid $= 96^\circ 30'$, and which is said to yield to the nail, must be another species than that described above, the angles of which have been ascertained by Mr Brooke. The name of Abraxite is sometimes applied to a mineral, which seems to be a variety of paratomous Kouphone-spar (Vol. ii. p. 229.).
ZURLITE.

Form, rectangular four-sided prisms, lengthened in the direction of the axis, and having sometimes their lateral edges replaced.

Cleavage indistinct. Fracture conchoidal. Surface rough, generally covered with a white coating, sometimes convex.

Lustre resinous. Colour asparagus-green. Streak said to be pearl-grey.

Hardness about 6·0. Sp. Gr. = 3·274.

It is infusible before the blowpipe, but yields with borax a black glass. Nitric acid dissolves it, partly with effervescence, and assumes a yellow colour.

Zurlite has been discovered and described as above, by Remondini, in the Memoirs of the Academy of Naples.
APPENDIX II.

MINERALS, WHICH WILL PROBABLY NEVER FORM DISTINCT SPECIES IN THE MINERAL SYSTEM.

ADHESIVE SLATE.

Massive: composition impalpable. Principal fracture slaty, more and less perfect. Cross fracture even, flat conchoidal.

Colour yellowish-grey, passing into white and smoke-grey. A little shining in the streak. Feebly translucent on the edges.

Sectile. Adheres strongly to the tongue, feels a little greasy, and is very soft. Sp. Gr. = 2·086, KLAPROTH.

It absorbs water with great avidity, but does not fall to pieces. On being exposed to a red heat, it becomes brownish-red, and loses in weight. It consists, according to KLAPROTH and LAMPADIUS, of

<table>
<thead>
<tr>
<th>Component</th>
<th>KLAPROTH</th>
<th>LAMPADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>66·50</td>
<td>30·80</td>
</tr>
<tr>
<td>Alumina</td>
<td>7·00</td>
<td>0·00</td>
</tr>
<tr>
<td>Magnesia</td>
<td>1·50</td>
<td>28·00</td>
</tr>
<tr>
<td>Lime</td>
<td>1·25</td>
<td>0·80</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>2·50</td>
<td>11·20</td>
</tr>
</tbody>
</table>

VOL. III.
PHYSIOGRAPHY.

Carbonic Acid 0·00 27·00.
Water 19·00 0·30.

It occurs at Menil Montant, and Montmartre near Paris.

ALUM-SLATE.

Alum-Slate. PHILL. p. 48.

Not very brittle. Intermediate between semi-hard and soft. Sp. Gr. = 2·339 ... 2·588, Kirwan.

Alum-slate has been divided into two kinds, common and glossy alum-slate. The latter differs from the former only by fissures having a higher degree of a somewhat metallic lustre, which traverse it in a direction nearly parallel to that of the slaty structure. Alum-slate seems to be closely connected with clay-slate.

Exposed to the fire, it burns and becomes blueish-grey. It occurs in particular beds between clay-slate and grey-wacke-slate, near Reichenbach in Saxony, also at Reussisch-Ebersdorf, in the valley of the Saale, in several places in the forest of Thuringia, in the Palatinate, in Bohemia, &c.; and is used in manufacturing alum and sulphate of iron. The mineral called Alum-earth is in a closer relation to Slate-clay (Vol. III. p. 181.) and to Earthy Coal (Vol. III. p. 62.).

BITUMINOUS SHALE.

Massive: composition impalpable. Fracture rather thin and straight, slaty.

According to Werner, it is slate-clay with a small portion of bitumen. It occurs at Wehrau in Lusatia, also in the neighbourhood of Elbogen in Bohemia, in the Tyrol, in great quantities in Thuringia, and in many other countries, with different varieties of clay, and with coal.

BOLE.

Faintly glimmering ... dull. Colour brown, yellow, and red. Streak shining, resinous. Feebly translucent on the edges ... opake.
Rather sectile. Adheres to the tongue, feels greasy, and is very soft, sometimes approaching to soft.
Sp. Gr. = 1.600, Klaproth; = 1.977, Breithaupt.

If thrown into water, it emits a crackling noise and falls into powder. It occurs in irregular beds or disseminated masses in wacke, trapp-tuff, &c., and is found at Striegau in Silesia, at Scheibenberg in Saxony, the Habichtswald in Hessa, in Thuringia, Tuscany, &c.
Physiography.

Claystone. JAM. Syst. Vol. II. p. 66.

Massive. Composition impalpable. Fracture uneven, flat conchoidal, sometimes inclining to slaty.

Colour, different shades of grey and red, none of them bright. Opake.

Not particularly brittle. Does not adhere to the tongue; feels meagre. Sometimes semi-hard, sometimes soft, or even very soft. Sp. Gr. = 2.210, Karsten.

Claystone appears to be the residue of the crystalline formation of several kinds of rock, particularly of porphyry; hence its characters are so very different in different specimens, and it seems to exhibit so many passages to other minerals, of which in reality not one is existing. It forms the base of several varieties of porphyry, such as are called clay- or claystone-porphyry, and occurs in various parts of Saxony, as at Chemnitz, Grumbach, also in veins at Frauenstein, Marienberg, Klingenberg, &c.

Common Clay.

Massive. Composition impalpable. Fracture uneven, fine earthy in the small; more or less perfectly slaty.

Dull. Colour white, grey, brown, red, yellow, &c., sometimes in striped, veined, or spotted delineations. Streak more or less shining.

Sectile. Adheres more or less strongly to the
DRAWING SLATE OR BLACK CHALK.

tongue. Feels more or less greasy. Soft, sometimes approaching to friable. Not particularly heavy, passing into light. Sp. Gr. of earthy Potter's Clay = 1.800 ... 2.000, Kirwan; = 2.085, Karsten; Slate-clay = 2.600 ... 2.680, Kirwan; = 2.636, Karsten.

Common Clay has been divided into Loam, Potter's Clay, Variegated Clay, and Slate-Clay; and Potter's clay again into earthy and slaty; which division rests either upon particular, though accidental properties, or upon the employment made of the varieties.

Clay is a mixture of decomposed minerals, and hence it is little constant in its composition. Several varieties soften in water, and allow themselves to be kneaded and formed into moulds, a property to which they owe their well known employment. Some are easily fusible, others refractory; some acquire particular tints of colour, others lose theirs, and become white when exposed to a strong heat; upon all of which properties their applicability depends. They occur in beds near the surface of the earth, or covered by the soil in the formations of brown and black coal. In the latter they very often contain remains of vegetables, and are called slate-clay, which is intimately related to bituminous shale and alum-earth.

The appropriate varieties of clay are of various important applications in pottery, in manufacturing stone-ware and porcelain, in constructing furnaces for metallurgic operations, &c.

DRAWING SLATE OR BLACK CHALK.

Massive. Composition impalpable. Principal frac-
ture rather imperfectly slaty, cross fracture fine earthy.
Faint glimmering in the principal fracture, dull in the cross fracture. Colour intermediate between greyish- and blueish-black. Retains the colour in the streak, and acquires a higher degree of lustre. Opake.
Sectile. Soils more or less, and writes. Adheres a little to the tongue, feels fine and rather meagre, and is very soft. Sp. Gr. = 2.114, Kirwan; = 2.186, Brisson.

Exposed to fire it loses its black colour, and becomes reddish or reddish-grey. Before the blowpipe it yields a white glass, according to Link. The variety from Bayreuth has been found by Wiegler to consist of

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>64.50</td>
</tr>
<tr>
<td>Alumina</td>
<td>11.25</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>2.75</td>
</tr>
<tr>
<td>Carbon</td>
<td>11.00</td>
</tr>
<tr>
<td>Water</td>
<td>7.50</td>
</tr>
</tbody>
</table>

It occurs in rocks of clay-slate, and seems to be very nearly allied to clay-slate and alum-slate. The finest and most applicable varieties come from Italy, Spain, and France. It is also found in Bayreuth, in Thuringia, &c. It is used as a drawing material.

FULLER’S EARTH.

Massive. Composition impalpable. Fracture uneven, splintery, earthy: in the great sometimes imperfectly and flat conchoidal, or even slaty.
LITHOMARGE, 183

Dull. Colour green, grey, white. Streak shining, resinous. Feebly translucent on the edges ... opake.
Perfectly sectile. Feels very greasy. Adheres but feebly or not at all to the tongue, and is very soft. Sp. Gr. = 1·819, Hoffmann; = 2·198, Breithaupt.

If thrown into water, it falls to pieces, and forms a paste which is not plastic. It absorbs oil and fat. It is formed by the decomposition of certain rocks, as for instance at Rosswein in Saxony, at Feistritz on the Bacher in Stiria; and probably also at Reifenstein and Rein in the same country, although in these two places the mode of its formation is not so easily observed. It occurs also in Moravia, in great quantities and very pure at Nutfield in Surry, and other places in England, &c., and is used for cleansing woollen cloth.

LITHOMARGE.

Massive. Spheroidal. Composition impalpable. Fracture uneven, large and flat conchoidal in the large, fine earthy in the small. Sometimes the particles do not cohere, and are found in the shape of a fine scaly powder.

Sectile. Adheres strongly to the tongue, feels fine and greasy, and is soft, sometimes friable. Sp. Gr. = 2·435 ... 2·492, Breithaupt.
It has been divided into two kinds, the friable, and the solid or indurated Lithomarge.

It does not fall to pieces when thrown into water; and hardens if exposed to a strong heat. It occurs in various parts of Saxony, as in tin-veins at Bobershau and Altenberg; in porphyry at Rochlitz; in the coal measures at Planitz near Zwickau, where the variety called *Terra miraculosa Saxonice* is found; in the drusy cavities of the Topaz-rock at Auerbach; in serpentine at Zöblitz; in trap in the county of Antrim in Ireland, &c.

MOUNTAIN SOAP.

Bole. *PHILL.* p. 53.

Massive. Composition impalpable. Fracture fine earthy.

Perfectly sectile. Does not soil, but writes, adheres strongly to the tongue, feels very greasy, is very soft, and light, approaching to not particularly heavy.

It has been found at Olkucz in Poland, and is a very rare mineral.

POLISHING SLATE.

Massive. Composition impalpable. Principal fracture slaty, thin and straight, cross fracture fine earthy.

Colour yellowish-grey, inclining to white or brown. Feels fine, but meagre, adheres but little or not at
all to the tongue, is very soft, passing into friable. Sp. Gr. = 0·590 ... 0·606, HABERLE.

It imbibes water, but does not fall to pieces. It becomes red when burnt, but is infusible. It consists, according to BUCHOLZ, of

<table>
<thead>
<tr>
<th>Compound</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>79·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>1·00</td>
</tr>
<tr>
<td>Lime</td>
<td>1·00</td>
</tr>
<tr>
<td>Oxide of Iron</td>
<td>4·00</td>
</tr>
<tr>
<td>Water</td>
<td>14·00</td>
</tr>
</tbody>
</table>

It is believed to have been formed from the ashes of burnt coal. It occurs at Planitz near Zwickau, and at Kutschlin near Bilin in Bohemia.

TRIPOLI.

Massive. Composition impalpable. Fracture earthy in the small, sometimes slaty in the great. Colour grey, more particularly yellowish- and ash-grey, passing into white and yellow. Opake. Not particularly brittle. Does not adhere to the tongue, feels meagre and a little rough, is said to be soft passing into very soft (it is nevertheless applied as a powerful material for polishing). Sp. Gr. = 1·857, DELAMÉHERIE; = 2·202, BUCHOLZ.

It imbibes water, which softens it. When burnt it becomes white, and is hardened; but it is very difficultly fusible. It consists, according to BUCHOLZ and HAASE, of

<table>
<thead>
<tr>
<th>Compound</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>81·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>1·50</td>
</tr>
<tr>
<td>Alumina</td>
<td>90·00</td>
</tr>
<tr>
<td>Alumina</td>
<td>7·00</td>
</tr>
</tbody>
</table>
Oxide of Iron 8·00 3·00.
Sulphuric Acid 3·50 0·00.
Water 5·00 0·00,

with a trace of Lime. It seems to be nothing but a very fine arenaceous variety of quartz, accidentally mixed with a little clay.

Umber.

Massive. Composition impalpable. Fracture large and flat conchoidal in the great, very fine earthy in the small.

Imperfectly sectile. Does not soil, but writes, adheres strongly to the tongue, feels a little rough and meagre, and is very soft. Sp. Gr. = 2·206, Breithaupt.

It imbibes water with great avidity, and emits air bubbles, but does not become soft. It occurs in beds with brown jasper in the isle of Cyprus, and is used by painters as a brown colour. Its chemical composition is said to be oxide of iron 48, oxide of manganese 20, silex 13, alumina 5, water 14.

Whet-Slate.

Massive. Composition impalpable. Fracture
straight slaty in the great, fine splintery in the small.

Whet-slate is a slaty rock, containing a great proportion of quartz, in which the component particles (the same as in clay-slate, mica-slate, and gneiss, but in different relative quantities) are so very small, as to withdraw themselves from observation. This may serve for explaining on one hand the passage of whet-slate into clay-slate, on the other hand the employment it allows for grinding, which is impossible in any mineral that in reality is soft. Whet-slate occurs in beds between clay-slate, particularly in the older rocks; and the varieties best adapted for use are found at Sonnenberg in Meinungen, and at Probstzelle and Lichtetanne in Saalfeld. They are likewise brought from the Levant. Less useful or fine grained varieties are found in many countries. The varieties from the neighbourhood of Liege, Argile schistose novaculaire of Haüy, are not comprehended among the whet-slate of Werner. They consist of two layers of stone of different colour and composition, one of them being yellowish-grey and very fine grained, the other reddish-brown and coarser. The use of whet-slate as a grinding material is sufficiently known.

YELLOW EARTH.

Massive. Composition impalpable. Principal frac-

If thrown into water it falls into powder and emits a noise. If burnt it becomes red. It is a mixture of fine sand, oxide of iron, clay, &c., and occurs at Wehrau in Upper Lusatia, in France, &c. It is employed both in its natural state and burnt, in painting houses, &c., as a coarse colouring material.
PLATES AND EXPLANATIONS.
VOL. I. PLATE I.

Fig. 1. H. The hexahedron, with a pyramidal section, and a pyramidal axis.

Fig. 2. O. The octahedron.

Fig. 3. H. O. Combination of the hexahedron and the octahedron.

Fig. 4. The same, the faces of the octahedron larger.

Fig. 5. The hexahedron, with two rhombohedral sections, and a rhombohedral axis.

Fig. 6. The hexahedron, with two prismatic sections, and a prismatic axis.
VOL. I. PLATE II.

Fig. 7. R. A rhombohedron.
Fig. 8. P. An isosceles four-sided pyramid.
Fig. 9. P. A scalene four-sided pyramid.
Fig. 10. P. An isosceles six-sided pyramid.
Fig. 11. (P) n. A scalene six-sided pyramid.
Fig. 12. (P) n. A scalene eight-sided pyramid.
VOL. I. PLATE III.

Fig. 13. \[\frac{O}{\overline{2}O} \] The tetrahedron.

Fig. 14. \[\frac{O}{\overline{2}O'} \] The same, in inverse position.

Fig. 15. \[\frac{C_n}{\overline{2}c} \] A trigonal-dodecahedron.

Fig. 16. \[\frac{C_n}{\overline{2}c'} \] The same, in inverse position.

Fig. 17. \[\frac{B_n}{\overline{2}b} \] A digrammic tetragonal-dodecahedron.

Fig. 18. \[\frac{B_n}{\overline{2}b'} \] The same, in inverse position.
VOL. I. PLATE IV.

Fig. 19. \(\frac{A_n}{2a} \) A hexahedral pentagonal-dodecahedron.

Fig. 20. \(- \frac{A_n}{2a'} \) The same, in inverse position.

Fig. 21. \(r \frac{T_n}{4t} \) A right tetrahedral pentagonal-dodecahedron.

Fig. 22. \(- r \frac{T_n}{4t'} \) The same, in inverse position.

Fig. 23. \(l \frac{T_n}{4t''} \) A left tetrahedral pentagonal-dodecahedron.

Fig. 24. \(- l \frac{T_n}{4t'''} \) The same, in inverse position.
VOL. I. PLATE V.

Fig. 25. \(\frac{T_n}{2} \) A tetrahedral trigonal-icositetrahedron.

Fig. 26. \(\frac{T_n}{2} \) The same, in inverse position.

Fig. 27. \(\frac{T_n}{2} \) A trigrammic tetragonal-icositetrahedron.

Fig. 28. \(\frac{T_n}{2} \) The same, in inverse position.

Fig. 29. \(\frac{T_n}{2} \) A right pentagonal-icositetrahedron.

Fig. 30. \(\frac{T_n}{2} \) A left pentagonal-icositetrahedron.
The 1st Dec. 1824.

The 8th Dec. 1824.

The 1st Dec. 1824.

The 2d Dec. 1824.

The 8th Dec. 1824.

The 9th Dec. 1824.
VOL. I. PLATE VI.

FIG. 31.
D. The dodecahedron.

FIG. 32.
An. A hexahedral trigonal-icositetra-hedron.

FIG. 33.
Bn. An octahedral trigonal-icositetra-hedron.

FIG. 34.
Cn. A digrammic tetragonal-icositetra-hedron.

FIG. 35.
Tn. A tetraconta-octahedron.

FIG. 36. Derivation of the tessular forms from the hexahedron.
VOL. I. PLATE VII.

Fig. 37. Derivation of the principal series of scalene four-sided pyramids.

Fig. 38. Derivation of the subordinate series of scalene four-sided pyramids.
VOL. I. PLATE VIII.

Fig. 39. Derivation of scalene four-sided pyramids, having a dissimilar transverse section, from the auxiliary form.

Fig. 40. Derivation of scalene four-sided pyramids, having a dissimilar transverse section, from the fundamental form.
Vol. I.

THE PHYSIOLOGICAL HISTORY OF THE PLANT

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.

The Action of the Nervous System on the Internal Conditions of an Organ.
VOL. I. PLATE IX.

Fig. 41. P. Fundamental pyramid of the hemi-prismatic system.

Fig. 42. P. Fundamental pyramid of the tetartoprismatic system.

Fig. 43. Derivation of two subsequent rhombohedrons from each other.

Fig. 44. Transverse sections of four consecutive rhombohedrons, having the same horizontal projection.
VOL. I. PLATE X.

FIG. 45. Derivation of isosceles four-sided pyramids.

FIG. 46. Derivation of the rhombohedron with an infinite axis (a regular six-sided prism).

FIG. 47. Derivation of scalene six-sided pyramids.

FIG. 48. Derivation of isosceles six-sided pyramids.

FIG. 49. Combination of two rhombohedral forms, producing EF and E'F, the Lines of Combination.

FIG. 50. Similar combination of three rhombohedral forms.
Fig. 51. \(2 (P)^m\). A di-pyramid.
\(a, a', b, b'\)

Fig. 52. \(\pm \frac{R}{2} \{a'\}\). A three sided pyramid, formed by alternating pairs of faces of a di-rhombohedron.

Fig. 53. \(\frac{r}{r} \frac{(P)^m}{2} \{a\}\). A right three-sided trapezohedron, containing on both ends faces of the same pyramid.

Fig. 54. \(\frac{l}{l} \frac{(P)^m}{2} \{b\}\). A left three-sided trapezohedron of the same kind.

Fig. 55. \(\pm \frac{r}{r} \frac{(P)^m}{2} \{a\}\). A right three-sided trapezohedron, the pyramid from which the lower faces are derived being in inverse position from that to which the upper ones belong.

Fig. 56. \(\pm \frac{l}{l} \frac{(P)^m}{2} \{b\}\). A left three-sided trapezohedron of the same kind.
VOL. I. PLATE XII.

Fig. 57. \(\frac{r}{r} \frac{2 ((P)^m)^2}{2} \{a^{a'}\} \). A right six-sided trapezohedron.

Fig. 58. \(\frac{l}{l} \frac{2 ((P)^m)^2}{2} \{b^{b'}\} \). A left six-sided trapezohedron.

Fig. 59. Rhombohedral combination.

\[
\begin{align*}
R &- 1. (P - 2)^5. R. \frac{3}{4} R. R + 1. (P)^5. R + \infty. \\
& a \quad b \quad c \quad d \quad e \quad f \quad g
\end{align*}
\]

Fig. 60. Di-rhombohedral combination.

\[
\begin{align*}
R &- \infty. P. \frac{3}{2} (R). P + 1. P + \infty. \\
& a \quad b \quad c \quad d \quad e
\end{align*}
\]

Fig. 61. \(\frac{P}{2} \). A hemi-pyramidal form, analogous to the tetrahedron.

Fig. 62. \(\frac{P}{2} \). The same, in inverse position.
VOL. I.* PLATE XIII.

Fig. 63. \(\frac{r}{r} \frac{(P)^m}{2} \). A right four-sided trapezohedron.

Fig. 64. \(\frac{l}{l} \frac{(P)^m}{2} \). A left four-sided trapezohedron.

Fig. 65. \(\frac{(P)^m}{2} \). A hemi-pyramidal form, analogous to the tetrahedron, obtained from a scalene eight-sided pyramid.

Fig. 66. \(\frac{(P)^m}{2} \). The same, in inverse position.

Fig. 67. Pyramidal combination.

\[
P. \quad P + 1. \quad (P)^3. \quad P + \infty. \quad [P + \infty].
\]

\[
a \quad b \quad c \quad d \quad e
\]

Fig. 68. Pyramidal combination.

\[
P. \quad (P)^3. \quad \frac{2\sqrt{2}}{3} P + 3. \quad P + \infty. \quad [P + \infty].
\]

\[
a \quad c \quad f \quad d \quad e
\]
The text on the page is not legible due to the quality of the image. It appears to be a page from a book or a journal, but the content cannot be accurately transcribed.
VOL. I. PLATE XIV.

Fig. 69. and 70. Developments of pyramidal combinations.

Fig. 71. Development of a prismatic combination.

Fig. 72. Prismatic combination.

\[\text{Pr} - 1. \quad \text{P} - 1. \quad \Pr. \quad (\Pr - 1)^5. \]

\[a \quad b \quad c \quad d \]

\[\text{P}. \quad \text{P} + \infty. \quad (\Pr + \infty)^5. \quad \Pr + \infty. \]

\[e \quad f \quad g \quad h \]

Fig. 73. and 74. Explanation of the horizontal striae upon the faces of the six-sided prism of rhombohedral Quartz.
VOL. I. PLATE XV.

Fig. 75. \[\frac{A^2}{2} \times \frac{T_1}{2} \] Semi-tessular combination with parallel faces.

Fig. 76. \[\frac{A^2}{2} \times \frac{T_1}{2} \] Semi-tessular combination with parallel faces.

Fig. 77. \[\frac{O}{2} \times \frac{C_1}{2} \] Semi-tessular combination with inclined faces.

Fig. 78. \[\frac{O}{2} - \frac{C_1}{2} \] Semi-tessular combination with inclined faces.

Fig. 79. The saddle-shaped lens.

Fig. 80. A rhombohedron with curved faces, produced by composition.
VOL. II. PLATE I.

Fig. 1. Axotomous Arsenical-pyrites.
Pr. $P + \infty$.
$0 \quad d$

Fig. 2. Prismatic Arsenical-pyrites.
Pr. $P + \infty$.
$r \quad M$

Fig. 3. Prismatic Andalusite.
$P - \infty$. Pr. $P + \infty$.
$P \quad l \quad M$

Fig. 4. Di-prismatic Iron-ore.
Pr. $P. P + \infty$.
$P \quad o \quad M$

Fig. 5. Di-prismatic Olive-malachite.
Pr. $P. P + \infty$.
$0 \quad P \quad u$

Fig. 6. Prismatic Epsom-salt.
$P. P + \infty$. Pr. $+ \infty$.
$l \quad M \quad o$
VOL. II. PLATE II.

Fig. 7. Prismatic Melane-glance.
P. \((\Pr + \infty)^3\). \(\Pr + \infty\).
\(P \quad d \quad s\)

Fig. 8. Prismatic Olive-malachite.
\(\Pr\). \(P + \infty\). \(\Pr + \infty\).
\(l \quad r \quad n\)

Fig. 9. Prismatic Nitre-salt.
\(\Pr + 1\). \(P + \infty\). \(\Pr + \infty\)
\(P \quad M \quad h\)

Fig. 10. Prismatical Kouphone-spar.
P. \(-\infty\). \(P\). \(\Pr + \infty\). \(\Pr + \infty\).
\(P \quad r \quad T \quad M\)

Fig. 11. Axotomous Kouphone-spar.
P. \(-\infty\). \(P\). \(\Pr + \infty\). \(\Pr + \infty\).
\(P \quad r \quad M \quad T\)

Fig. 12. Prismatical Garnet.
P. \(-\infty\). \(Pr\). \((\Pr + \infty)^5\). \(\Pr + \infty\).
\(P \quad r \quad M \quad o\)
VOL. II. PLATE III.

Fig. 13. Axotomous Triphane-spar.
\[P - \infty. \quad \Pr + n. \quad P + \infty. \quad \Pr + \infty. \]
\[P \quad o \quad M \quad l \]

Fig. 14. Prismatic Antimony-baryte.
\[\Pr - 1. \quad P. \quad (Pr + \infty)^5. \quad \Pr + \infty. \]
\[p \quad P \quad M \quad h \]

Fig. 15. Prismatic Iron-pyrites.
\[\Pr. \quad P. \quad P + \infty. \quad \Pr + \infty. \]
\[g \quad h \quad l \quad P \]

Fig. 16. Prismatic Natron-salt.
\[\Pr. \quad P. \quad (Pr + \infty)^5. \quad \Pr + \infty. \]
\[o \quad P \quad d \quad p \]

Fig. 17. Prismatoidal Sulphur.
\[\Pr. \quad P. \quad (Pr + \infty)^5. \quad \Pr + \infty. \]
\[o \quad P \quad u \quad s \]

Fig. 18. Prismatic Sulphur.
\[P - \infty. \quad \frac{4}{3}P - 2. \quad \Pr. \quad P. \quad P + \infty. \]
\[r \quad s \quad n \quad P \quad m \]
VOL. II. PLATE IV.

Fig. 19. Scorodite.

\[
P - \infty. \quad P. \quad \Pr + 1. \quad (\Pr + \infty)^5. \quad \frac{k}{P} \quad \frac{m}{d} \quad \Pr + \infty. \quad r
\]

Fig. 20. Prismatic Chrysolite.

\[
\Pr. \quad (\Pr - 1)^5. \quad P. \quad (\Pr + \infty)^5. \quad \Pr + \infty. \quad d \quad e \quad p \quad n \quad M
\]

Fig. 21. Prismatic Hal-baryte.

\[
\Pr. \quad \Pr. \quad P. \quad (\Pr + \infty)^5. \quad \Pr + \infty. \quad o \quad M \quad z \quad d \quad P
\]

Fig. 22. Paratomous Kouphone-spar.

\[
\Pr. \quad P. \quad \Pr + 2. \quad \Pr + \infty. \quad \Pr + \infty. \quad s \quad P \quad t \quad g \quad o
\]

Fig. 23. Prismatic Nitre-salt.

\[
\Pr - 1. \quad \Pr. \quad \Pr + 1. \quad P + \infty. \quad \Pr + \infty. \quad x \quad P \quad s \quad M \quad h
\]

Fig. 24. Di-prismatic Copper-glance.

\[
P - \infty. \quad \Pr - 1. \quad \Pr. \quad \Pr + \infty. \quad \Pr + \infty. \quad k \quad o \quad d \quad s \quad r
\]
VOL. II. PLATE V.

Fig. 25. Prismatic Corundum.
\[\Pr \cdot P \cdot (P + \infty)^5 \cdot \Pr + \infty \cdot \Pr + \infty. \]
\[i \quad o \quad s \quad T \quad M \]

Fig. 26. Prismatic Gypsum-haloide.
\[P - \infty. \quad P \cdot (\Pr)^3. \quad (P)^3. \quad \Pr + \infty. \]
\[P \quad o \quad n \quad f \quad T \]
\[\Pr + \infty. \quad M \]

Fig. 27. Prismatoidal Manganese-ore.
\[P - \infty. \quad \Pr \cdot P \cdot (\Pr - 1)^5. \quad P + \infty. \]
\[o \quad d \quad P \quad y \quad M \]
\[(\Pr + \infty)^5. \quad s \]

Fig. 28. Peritomous Hal-baryte.
\[P - \infty. \quad P - 1. \quad P \cdot \Pr + 1. \quad P + \infty. \]
\[o \quad z \quad y \quad P \quad M \]
\[\Pr + \infty. \quad h \]

Fig. 29. Hopeite.
\[P - \infty. \quad \Pr \cdot P \cdot (\Pr + \infty)^5. \quad \Pr + \infty. \]
\[g \quad M \quad P \quad s \quad p \]
\[\Pr + \infty. \quad l \]

Fig. 30. Prismatic Melane-glance.
\[\Pr \cdot P \cdot (\Pr)^3. \quad (\Pr + \infty)^5. \quad \Pr + \infty. \]
\[o \quad P \quad a \quad d \quad p \]
\[\Pr + \infty. \quad s \]
\[f(\theta + \phi) = f(\theta) f(\phi) \]

\[g(x + y) = g(x) g(y) \]

\[h(a + b) = h(a) h(b) \]

\[i(x + y) = i(x) i(y) \]

\[j(a + b) = j(a) j(b) \]

\[k(x + y) = k(x) k(y) \]

\[l(a + b) = l(a) l(b) \]

\[m(x + y) = m(x) m(y) \]

\[n(a + b) = n(a) n(b) \]

\[o(x + y) = o(x) o(y) \]

\[p(a + b) = p(a) p(b) \]

\[q(x + y) = q(x) q(y) \]

\[r(a + b) = r(a) r(b) \]

\[s(x + y) = s(x) s(y) \]

\[t(a + b) = t(a) t(b) \]

\[u(x + y) = u(x) u(y) \]

\[v(a + b) = v(a) v(b) \]

\[w(x + y) = w(x) w(y) \]

\[x(a + b) = x(a) x(b) \]

\[y(x + y) = y(x) y(y) \]

\[z(a + b) = z(a) z(b) \]
Fig. 31. Di-prismatic Lead-baryte.

Pr. P. \(\frac{5}{4} \Pr + 2\). \((\Pr + \infty)^5\).

\(M\) \(s\) \(t\) \(e\) \(u\)

\((\Pr + \infty)^5\). \(\Pr + \infty\).

Fig. 32. Prismatoidal Antimony-glance.

\(\frac{4}{5} P - 2. \Pr - 1. (\frac{4}{5} \Pr - 2)^5\). P.

\(s\) \(a\) \(e\) \(P\)

\((\frac{4}{5} \Pr - 2)^7\). \(P + \infty. \Pr + \infty\).

Fig. 33. Serpentine.

Pr. P. \(\Pr + 1. (\Pr)^5. (\Pr + \infty)^5\).

\(o\) \(P\) \(r\) \(n\) \(d\)

\(\Pr + \infty. \Pr + \infty\).

Fig. 34. Prismatic Topaz.

\(P - \infty. \frac{4}{5} P - 1. (\frac{4}{5} \Pr - 1)^5\). P.

\(P\) \(s\) \(x\) \(o\)

\(\Pr + 1. \Pr + 2. P + \infty. (\Pr + \infty)^5\).

\(n\) \(y\) \(M\) \(l\)

Fig. 35. Prismatic Antimony-glance.

\(P - \infty. \Pr. P. (\Pr)^5. (\Pr)^5\).

\(k\) \(o\) \(P\) \(z\) \(a\)

\(\frac{3}{4} P + 2. (\Pr + \infty)^3. \Pr + \infty\).

\(b\) \(d\) \(r\)

\(\Pr + \infty\).

Fig. 36. Prismatic Topaz.

\((\frac{4}{5} \Pr - 1)^5\). P. \(\Pr + 1. P + \infty\).

\(x\) \(o\) \(n\) \(M\)

\((\Pr + \infty)^5. \Pr + 1. P.\)

\(l\) \(n'\) \(o'\).
VOL. II. PLATE VII.

Fig. 37. Prismatic Zinc-baryte.
\[P - \infty. \Pr - 1. \Pr. \frac{2}{3} \Pr + 1. \frac{2}{3} \Pr + 2. \]
\[\{ (\Pr + \infty)^3 \}. \]

Fig. 38. Di-prismatic Lead-baryte.
\[\Pr. P. (\Pr + \infty)^5. (\Pr + \infty)^5. \Pr + \infty, \]
\[M \quad t \quad u \quad s \quad l \]
\[2\{ \Pr \}. \]

Fig. 39. Prismatic Lime-haloide.
\[\Pr - 2. \Pr - 1. P. (\Pr + \infty)^3. \Pr + \infty, \]
\[x \quad P \quad r \quad M \quad h \]
\[\{ (\Pr + \infty)^3 \}. \]

Fig. 40. Paratomous Kouphone-spar.
\[\Pr \quad P \quad \Pr + 2. \Pr + \infty. \Pr + \infty, \]
\[s \quad P \quad t \quad g \quad o \]
\[2\{ \frac{\Pr + \infty}{2} \}. \]

Fig. 41. Prismatic Copper-glance.
\[(P)^5. (\Pr + \infty)^5. \Pr + \infty, 2\{ \frac{(\Pr)^5}{4} \}. \]
\[a \quad e \quad s \]
VOL. II. PLATE VIII.

Fig. 42. Prismatic Iron-pyrites.
\[\begin{align*}
\text{Pr.} & \quad \mathbf{P} + \infty. \quad \overline{\text{Pr}} + \infty, \quad \{\text{Pr}\} \quad \{\overline{\text{Pr}}\}. \\
\text{M} & \quad l \quad \mathbf{P}
\end{align*} \]

Fig. 43. Prismatic Iron-pyrites.
\[\begin{align*}
\overline{\text{Pr}} & \cdot \text{Pr.} \quad \mathbf{P} + \infty. \quad \overline{\text{Pr}} + \infty, \quad \{\text{Pr}\} \quad \{\overline{\text{Pr}}\}. \\
\mathbf{g} & \quad \text{M} \quad l \quad \mathbf{P}
\end{align*} \]

Fig. 44. Diatomous Kouphone-spar.
\[\begin{align*}
\frac{\text{Pr}}{2} & \quad \mathbf{P} + \infty. \\
\mathbf{P} & \quad \mathbf{M}
\end{align*} \]

Fig. 45. Hemi-prismatic Natron-salt.
\[\begin{align*}
\frac{\mathbf{P}}{2} & \cdot (\overline{\text{Pr}} + \infty)^3. \quad \text{Pr} + \infty. \\
\mathbf{P} & \quad \text{M} \quad l
\end{align*} \]

Fig. 46. Prismatic Cobalt-mica.
\[\begin{align*}
\frac{\text{Pr}}{2} & \cdot \overline{\text{Pr}} + \infty. \quad \text{Pr} + \infty. \\
\text{M} & \quad \mathbf{T} \quad \mathbf{P}
\end{align*} \]

Fig. 47. Prismatic Titanium-ore.
\[\begin{align*}
\frac{\text{Pr}}{2} & \cdot \frac{\mathbf{P}}{2} \cdot \frac{\text{Pr}}{2}. \quad (\text{Pr} + \infty)^5. \\
\mathbf{P} & \quad r \quad y \quad n
\end{align*} \]
VOL. II. PLATE IX.

Fig. 48. Hemi-prismatic Sulphur.
\[\frac{\bar{P}_r}{2} - \frac{P}{2} P + \infty. \ (\bar{P}_r + \infty)^3. \]

Fig. 49. Prismatic Scheelium-ore.
\[\frac{\bar{P}_r - 1}{2} \cdot \bar{P}_r. \ rac{\bar{P}_r - 1}{2} P + \infty. \]

Fig. 50. Hemi-prismatic Kouphone-spar.

Fig. 51. Prismatic Borax-salt.
\[P \left(\frac{\bar{P}_r}{2}\right)^5 - \frac{\bar{P}_r}{2} \ (\bar{P}_r + \infty)^3. \bar{P}_r + \infty. \]

Fig. 52. Hemi-prismatic Vitriol-salt.
\[P - \infty. \frac{3}{4} P - \frac{2}{2} \frac{\bar{P}_r}{2} \frac{P}{2} \frac{\bar{P}_r}{2} + \infty. \bar{P}_r + \infty. \]

Fig. 53. Hemi-prismatic Lead-baryte.
\[\frac{\bar{P}_r}{2} \frac{P}{2} - \frac{P}{2} P + \infty. \ (\bar{P}_r + \infty)^4. \]

\[\bar{P}_r + \infty. \]
Fig. 54. Prismatic Emerald.
The elevation copied from Haüy, Traité, 2de Ed. Pl. 72. Fig. 153., the projection from the crystal in the cabinet of M. De Dree.

Fig. 55. Prismatic Glauber-salt.
\[\frac{P}{2} - \frac{\Pr}{2} - \frac{P}{2} \quad (\Pr + \infty)^5. \quad \Pr + \infty. \]

Fig. 56. Prismatic Glauber-salt.
\[\frac{P}{2} - \infty. \quad \frac{\Pr}{2} - \frac{P}{2} - \frac{\Pr}{2} - \frac{P}{2}. \]

Fig. 57. Prismatoidal Gypsum-haloide.
\[\frac{P}{2} - \Pr + \infty. \quad \Pr + \infty. \]

Fig. 58. Prismatoidal Gypsum-haloide.
\[\frac{P}{2} - \frac{3}{4} \frac{\Pr - 2}{2}. \quad P + \infty. \quad (\Pr + \infty)^5. \]

\[\Pr + \infty. \]
VOL. II. PLATE XI.

FIG. 59. Prismatic Brithyne-salt.
\[P - \infty. \quad \frac{P}{2} \]
\[P \quad f \]

FIG. 60. Prismatic Brithyne-salt.
\[P - \infty. \quad \frac{P}{2} - \frac{Pr}{2} - \frac{P}{2} - \frac{(Pr)^5}{2} \]
\[P \quad f \quad t \quad n \quad e \]
\[P + \infty. \quad Pr + \infty. \]
\[M \quad s \]

FIG. 61. Prismatic Feld-spar.
\[\frac{3}{4} \frac{Pr + 2}{2} - \frac{Pr}{2} \cdot \frac{(Pr + \infty)^5}{2}. \quad Pr + \infty. \]
\[y \quad P \quad T \quad l \quad M \]

FIG. 62. Prismatic Feld-spar.
\[\frac{4}{3} \frac{Pr - 2}{2} \quad \frac{Pr}{2} \quad \frac{P}{2} \quad \frac{3}{4} \frac{Pr + 2}{2} - \frac{Pr}{2} \]
\[q \quad x \quad s \quad y \quad P \]
\[(Pr + \infty)^5. \quad (Pr + \infty)^5. \quad Pr + \infty. \]
\[T \quad l \quad z \quad z' \quad M \]

FIG. 63. Prismatic Azure-malachite.
\[P - \infty. \quad \frac{(Pr - 1)^7}{2}. \quad (Pr + \infty)^5. \quad Pr + \infty. \]
\[s \quad d \quad P \quad h \]

FIG. 64. Prismatic Azure-malachite.
\[P - \infty. \quad \frac{Pr}{2} \quad \frac{Pr}{2} \quad \frac{(Pr - 1)^5}{2} \]
\[s \quad a \quad x \quad M \quad h \]
\[Pr + \infty. \quad h \]
VOL. II. PLATE XII.

Fig. 65. Prismatic Azure-malachite.
\[P = \infty. \frac{\Pr}{2}, \frac{\Pr}{2}, \frac{\Pr - 1}{2}, \frac{(\Pr - 1)^3}{2}. \]
\[s \quad a \quad M \quad b \quad k \]
\[(\Pr + \infty)^3, (\Pr + \infty)^5, \Pr + \infty. \]

Fig. 66. Prismatic Azure-malachite.
\[P = \infty. \frac{\Pr}{2}, \frac{\Pr}{2}, \frac{(\Pr - 1)^7}{2}, \frac{(\Pr - 1)^5}{2}. \]
\[s \quad a \quad x \quad d \quad e \]
\[\Pr - 1, \frac{\Pr}{2}, \frac{(\Pr - 1)^3}{2}, \frac{\Pr}{2}. \]
\[g \quad M \quad k \quad c \]
\[P + \infty. (\Pr + \infty)^3, (\Pr + \infty)^5, \Pr + \infty. \]

Fig. 67. Prismatic Dystome-spar.
\[P = \infty. \frac{\Pr}{2}, \frac{\Pr + 1}{2}, \frac{\Pr + 1}{2}, \Pr + \infty. \]
\[b \quad P \quad a \quad o \quad f \]
\[(\Pr + \infty)^5, \Pr + \infty. \]

Fig. 68. Prismatic Dystome-spar.
\[P = \infty. \frac{\Pr}{2}, \frac{\Pr + 1}{2}, \frac{\Pr}{2}, \frac{(\Pr)^3}{2}. \]
\[b \quad P \quad a \quad d \quad e \]
\[P + \infty. (\Pr + \infty)^5. \]

Fig. 69. Prismatic Dystome-spar.
\[P = \infty. \frac{\Pr}{2}, \frac{\Pr + 1}{2}, \frac{(\Pr)^5}{2}, \Pr. \]
\[b \quad P \quad a \quad q \quad d \]
\[\Pr + 1, \frac{\Pr}{2}, \frac{(\Pr)^3}{2}, \frac{(\Pr)^5}{2}. \]
\[o \quad n \quad e \quad i \]
\[P + \infty. (\Pr + \infty)^5, \Pr + \infty. \]
VOL. II. PLATE XIII.

Fig. 70. Prismatic Dystome-spar.

\[
P = \infty. \quad \frac{P}{2}, \quad \frac{\Pr + 1}{2}, \quad \frac{(\Pr)^5}{2}. \quad \Pr.
\]

\[
\begin{array}{cccc}
3 \Pr + 1 & \Pr + 1 & P & - \frac{(\Pr)^5}{2} \\
3 & a & q & d \\
\end{array}
\]

\[
\begin{array}{cccc}
\frac{r}{2} & (\Pr - 1)^5 & \frac{(\Pr + 1)^5}{2} & (\Pr + \infty)^5 \\
\frac{p}{2} & (\Pr)^5 & h & k \\
\end{array}
\]

(Fig. 71) Prismatic Habroneme-malachite.

\[
P = \infty. \quad \frac{\Pr - 1}{2}, \quad \frac{P}{2}, \quad \frac{\Pr - 1}{2}.
\]

\[
\begin{array}{cccc}
\begin{array}{cc}
\begin{array}{cc}
a & b \\
p & o \\
\end{array} & (\Pr - 1)^5, \quad (\Pr + \infty)^5, \quad \Pr + \infty.
\end{array}
\end{array}
\]

Fig. 72. Paratomous Augite-spar.

\[
P = \frac{\Pr + \infty}{2}. \quad \frac{\Pr + \infty}{2}. \quad \Pr + \infty.
\]

Fig. 73. Paratomous Augite-spar.

\[
\begin{array}{cccc}
\Pr & P & (\Pr)^5 & \Pr & - (\Pr)^5 \\
\frac{2}{2} & \frac{2}{2} & \frac{2}{2} & \frac{2}{2} & \frac{2}{2} \\
\end{array}
\]

\[
(\Pr + \infty)^5.
\]

\[
\begin{array}{cccc}
M & r & l \\
s & P & s & t \\
\end{array}
\]
Fig. 74. Hemi-prismatic Augite-spar.
\[P \cdot \frac{\Pr}{2} - \frac{\Pr}{2} \cdot (\Pr + \infty)^5. \Pr + \infty. \]
\[r \quad P \quad M \quad x \]

Fig. 75. Prismatoidal Augite-spar.
\[\frac{\Pr}{2} \cdot \frac{P}{2} - \frac{\Pr}{2} \cdot \Pr + \infty. \]
\[r \quad n \quad T \quad M \]

Fig. 76. Hemi-prismatic Augite-spar.
\[\frac{P}{2} \cdot \frac{\frac{5}{4} \Pr + 2}{2} \cdot \frac{(\Pr)^5}{2} \cdot \frac{(P)^5}{2} \cdot \frac{\Pr}{2}. \]
\[r \quad t \quad a \quad i \quad \Pr \]
\[- \frac{(Pr)^5}{2} \quad - \frac{(P)^5}{2} \quad - \frac{\frac{3}{4} P + 2}{2}. \]
\[z \quad k \quad b \quad P \]
\[(\Pr + \infty)^3. \Pr + \infty. \]
\[M \quad c \quad s \quad \Pr + \infty. \]
\[x \]

Fig. 77. Prismatoidal Augite-spar.
\[P - \infty. \frac{\Pr}{2} \cdot \frac{P}{2} \cdot \frac{(P)^3}{2} \cdot \Pr - 1. \Pr. \]
\[l \quad r \quad n \quad x \quad y \quad q \]
\[- \frac{\Pr}{2} \cdot \frac{(\Pr - 1)^5}{2} \cdot \frac{P}{2} \cdot \frac{(P)^3}{2}. \]
\[T \quad u \quad z \quad d \quad \Pr + \infty. \]
\[o \quad M \]
VOL. II. PLATE XV.

Fig. 78. Hemi-prismatic Habroneme-malachite.
\[
\frac{\Pr}{2} \cdot P + \infty. \Pr + \infty. \{\Pr + \infty\}.
\]

Fig. 79. Prismatic Feldspar.
\[
\frac{\Pr}{2} \cdot \frac{3}{2} \Pr + 2 - \frac{\Pr}{2}. (\Pr + \infty)^3.
\]

Fig. 80. Prismatic Feldspar.
\[
\frac{3}{2} \Pr + 2 - \frac{\Pr}{2}. (\Pr + \infty)^3. \Pr + \infty.
\]

Fig. 81. Prismatic Feldspar.
\[
\frac{3}{2} \Pr + 2 - \frac{\Pr}{2}. (\Pr + \infty)^3. \Pr + \infty.
\]

Fig. 82. Prismatic Disthene-spar.
\[
\frac{\Pr}{2} \cdot r \frac{P + \infty}{2}. \Pr + \infty.
\]

Fig. 83. Tetarto-prismatic Vitriol-salt.
VOL. II. PLATE XVI.

Fig. 84. Albite.
\[\frac{\Pr}{2} \cdot \frac{r}{4} \cdot \frac{P}{2} = \frac{\Pr}{2} \cdot \frac{r}{2} \cdot (\Pr + \infty)^3. \]

\[\frac{l}{2} \cdot (\Pr + \infty)^5. \frac{\Pr}{2} + \infty. \]

Fig. 85. Albite.
\[\frac{\Pr}{2} \cdot \frac{r}{4} \cdot \frac{\frac{5}{4} \Pr + 2}{2} \cdot \frac{r}{2} \cdot \frac{\Pr - 1}{2} = \frac{\Pr}{2} \cdot \frac{y}{P} \cdot \frac{r}{4} \cdot (\Pr + \infty)^3. \]

\[\frac{l}{2} \cdot (\Pr + \infty)^5. \frac{\Pr}{2} + \infty. \]

Fig. 86. Albite.
\[\frac{\Pr}{2} \cdot \frac{r}{4} \cdot \frac{l}{4} \cdot \frac{P}{2} = \frac{\Pr}{2} \cdot \frac{s}{s'} \cdot \frac{\frac{5}{4} \Pr + 2}{2} \cdot \frac{\Pr}{2} \cdot \frac{y}{P} \cdot \frac{r}{4} \cdot (\Pr + \infty)^3. \]

\[\frac{l}{2} \cdot (\Pr + \infty)^5. \frac{\Pr}{2} + \infty. \]

Fig. 87. Albite.
\[\frac{\Pr}{2} \cdot \frac{r}{4} \cdot \frac{P}{2} = \frac{\Pr}{2} \cdot \frac{r}{2} \cdot (\Pr + \infty)^3. \]

\[\frac{l}{2} \cdot (\Pr + \infty)^5. \frac{\Pr}{2} \cdot (\Pr + \infty)^5. \frac{l}{2} \cdot (\Pr + \infty)^5. \]

\[\Pr + \infty. \{ \Pr + \infty \}. \]

M
VOL. II. PLATE XVII.

Fig. 88. Albite.

\[\begin{align*}
\frac{\bar{P}_r}{2} & \quad \frac{Pr}{2} \quad r \left(\frac{Pr + \infty}{2} \right)^5 \quad l \left(\frac{Pr + \infty}{2} \right)^3 \\
\frac{2}{x} & \quad \frac{P}{l} \quad \frac{T}{r} \\
Pr + \infty & \left\{ \frac{-P_r}{2} : \frac{Pr}{2} \right\}
\end{align*} \]

Fig. 89. Prismatic Axinite.

\[\begin{align*}
- \frac{l}{4} \left(\frac{Pr}{2} \right)^5 & \quad - \frac{l}{4} \left(\frac{P}{2} \right)^5 \quad - \frac{l}{4} \left(\frac{P + 2}{2} \right) \\
\frac{x}{4} & \quad \frac{u}{s} \\
\frac{-l}{4} \left(\frac{Pr}{2} \right)^5 & \quad r \left(\frac{Pr + \infty}{2} \right)^3 \quad Pr + \infty \\
\frac{P}{r} &
\end{align*} \]

Fig. 90. Prismatic Axinite.

\[\begin{align*}
- \frac{l}{4} \left(\frac{Pr}{2} \right)^5 & \quad r \left(\frac{Pr + \infty}{2} \right)^3 \quad Pr + \infty \\
\frac{u}{P} &
\end{align*} \]

Fig. 91. Prismatic Axinite.

\[\begin{align*}
\frac{\bar{P}_r}{2} & \quad \frac{Pr}{4} \quad \frac{l}{4} \quad \frac{\frac{3}{2} Pr + 2}{2} \quad - \frac{Pr}{2} \\
\frac{2}{v} & \quad \frac{4}{l} \quad \frac{t}{s} \quad \frac{2}{P} \\
\frac{-r}{4} \left(\frac{Pr}{2} \right)^3 & \quad - \frac{l}{4} \left(\frac{Pr}{2} \right)^3 \quad - \frac{l}{4} \left(\frac{P}{2} \right)^5 \\
\frac{n}{4} & \quad \frac{x}{u} \\
\frac{-l}{4} \left(\frac{Pr}{2} \right)^5 & \quad r \left(\frac{Pr + \infty}{2} \right)^3 \\
\frac{4}{s} & \quad \frac{2}{l} \quad \frac{P}{r} \\
l \left(\frac{Pr + \infty}{2} \right)^3 & \quad l \left(\frac{Pr + \infty}{2} \right)^5 \quad Pr + \infty \\
M & \quad Z
\end{align*} \]

Fig. 92. Pyramidal Lead-baryte.

\[P - \infty. \quad \frac{z \sqrt{2}}{3} \quad P - 3. \]

Fig. 93. Pyramidal Lead-baryte.

\[P - \infty. \quad \frac{z \sqrt{2}}{3} \quad P - 3. \quad P. \]

\[a \quad b \quad P \]
VOL. II. PLATE XVIII.

Fig. 94. Pyramidal Lead-baryte.
\[
\begin{align*}
\text{P} &- \infty. \quad \frac{2N}{3} \text{P} = 3. \quad \text{P} = 3. \\
& a \quad b \quad c
\end{align*}
\]

Fig. 95. Pyramidal Lead-baryte.
\[
\begin{align*}
\frac{2N}{3} \text{P} = 3. \quad \frac{2N}{3} \text{P} = 2. \quad \text{P} = 1. \quad \text{P} \\
b \quad d \quad e \quad \text{P}
\end{align*}
\]

Fig. 96. Pyramidal Garnet.
\[
\begin{align*}
\text{P} &- \infty. \quad \text{P} = 1. \quad \text{P}. \quad (\text{P} - 2)^5. \\
& \text{P} \quad o \quad c \quad a \\
(P - 1)^5. \quad \text{P} + 2. \quad (P)^5. \quad (P)^4. \\
x \quad s \quad b \quad z \\
(P + 1)^5. \quad \text{P} + 4. \quad (P + \infty)^5. \\
h \quad r \quad e \quad \text{f} \\
[(P + \infty)^5]. \quad \text{P} + \infty. \quad [P + \infty]. \\
\text{M} \quad d \quad \text{P}
\end{align*}
\]

Fig. 97. Pyramidal Kouphone-spar.
\[
\begin{align*}
\text{P}. \quad [P + \infty]. \\
\text{P} \quad m
\end{align*}
\]

Fig. 98. Pyramidal Kouphone-spar.
\[
\begin{align*}
\text{P} - \infty. \quad \frac{2}{3} \text{P} - 4. \quad \frac{2}{3} \text{P} - 3. \quad \frac{2N}{3} \text{P} - 3. \\
o \quad b \quad d \quad e \\
\text{P} - 3. \quad \text{P}. \quad [(P + \infty)^5]. \quad [P + \infty]. \\
c \quad \text{P} \quad r \quad \text{m}
\end{align*}
\]

Fig. 99. Pyramidal Zircon.
\[
\begin{align*}
\text{P} - 1. \quad \text{P}. \quad (P)^3. \quad (P)^4. \quad (P)^5. \\
& \text{P} \quad t \quad x \quad y \quad z \\
\text{P} + \infty. \quad [P + \infty]. \\
\text{l} \quad \text{s}
\end{align*}
\]
Pyramidal Titanium-ore.

\[P - \infty. \quad \frac{1}{2} \ P - 4. \quad (P - \frac{7}{2})^{1/4} \ \\
\quad o \quad r \quad s \ \\
P. \quad P + 1. \ \\
P. \quad q \]

Pyramidal Tin-ore.

\[P + 1. \quad P + \infty. \quad [P + \infty]. \ \\
s \quad t \quad g \]

Pyramidal Tin-ore.

\[P. \quad P + 1. \quad P + \infty. \quad [P + \infty]. \ \\
P \quad s \quad t \quad g \]

Pyramidal Tin-ore.

\[P. \quad P + 1. \quad (P)^{5}. \quad (P + \infty)^{5}. \quad [P + \infty]. \ \\
P \quad s \quad z \quad r \quad g \]

Pyramidal Melichrone-resin.

\[P - \infty. \quad P - 1. \quad P. \quad [P + \infty]. \ \\
o \quad t \quad P \quad g \]

Pyramidal Manganese-ore.

\[\frac{3}{4} \ P - 4. \quad P. \ \\
a \quad P \]
VOL. II. PLATE XX.

Fig. 106. Pyramidal Manganese-ore.
\[P, \{ \frac{P-1}{4} \} \].

Fig. 107. Pyramidal Manganese-ore.
\[P, \{ P \} \].

Fig. 108. Pyramidal Scheelium-baryte.
\[P. \ \frac{r\left(\frac{2N-2}{2}\right)^5}{\frac{a}{2}}. \ P + 1. \ \frac{1(P+1)^5}{\frac{r}{2}}. \]

Fig. 109. Pyramidal Copper-pyrites.
\[P - \infty. \ P - 1. \ \frac{P}{2} - \frac{P}{2}. \ P + 1. \]

Fig. 110. Fergusonite.
\[P - \infty. \ P. \ \frac{[P + \infty]^5}{2}. \]

Fig. 111. Rhombohedral Alum-haloide.
\[R - \infty. \ R. \]

[Diagram descriptions and figures are not transcribed here as they are not available in the image provided.]
VOL. II. PLATE XXI.

Fig. 112. Rhombohedral Fluor-haloide.
R - \infty. P - 1. P + \infty.
P r M

Fig. 113. Rhombohedral Lime-haloide.
R - \infty. R + 2.
o m

Fig. 114. Rhombohedral Lime-haloide.
R. R + \infty.
P c

Fig. 115. Rhombohedral Lime-haloide.
R - \infty. R. R + 2.
o P m

Fig. 116. Rhombohedral Lime-haloide.
R. (P)^5. (P)^5. R + 2. R + \infty.
P r y m c

Fig. 117. Rhombohedral Lead-baryte.
P. P + \infty.
P, s n, n'
VOL. II. PLATE XXII.

Fig. 118. Rhombohedral Emerald-malachite.
R + 1. P + ∞.

Fig. 119. Rhombohedral Euchlore-mica.
R = ∞. R.

Fig. 120. Rhombohedral Kouphone-spar.
R = 1. R. R + 1.

Fig. 121. Rhombohedral Corundum.

Fig. 122. Rhombohedral Corundum.

Fig. 123. Rhombohedral Corundum.
VOL. II. PLATE XXIII.

Fig. 124. Rhombohedral Iron-ore.
R = 2. R. P + 1.

Fig. 125. Peritomous Ruby-blende.
R = \infty, R = 2. \frac{4}{5} R = 2. \frac{5}{6} R = 1.

Fig. 126. Rhombohedral Ruby-blende.
R = 1. (P - 2)^5. R. (P - 1)^5.

Fig. 127. Eudialyte.
R = \infty. R = 2. R. P + \infty.

Fig. 128. Rhombohedral Kouphon-spar.
R. 2\{R - \infty\}.
The incorrect polynomial forms follow:

\[\left(\frac{1 - \pi}{\theta} \right) \cdot H \cdot \frac{\alpha + \frac{\pi}{\theta}}{\pi} \]
VOL. II. PLATE XXIV.

Fig. 129. Rhombohedral Lime-haloide.

\[(P - 2)^2. (P)^3. \{R - \infty\}\]

Fig. 130 and 131. Rhombohedral Lime-haloide.

\[R. \left\{ \frac{R - 1}{3} \right\}\]

\[P\]

Fig. 132. Rhombohedral Lime-haloide.

\[R - \infty. R + \infty. \left\{ \frac{R}{3} \right\}\]

Fig. 133. Rhombohedral Lime-haloide.

\[R - \infty. R + \infty. \left\{ \frac{R - 1}{3} \right\}\]

Fig. 134. Rhombohedral Lime-haloide.

\[R. \left\{ \frac{R + \infty}{3} \right\}\]

\[P\]
Fig. 135. Rhombohedral Lime-haloide.
\[R - 1. \frac{R + \infty}{2} \{ R - \infty \}. \]

Fig. 136. Rhombohedral Ruby-blende.
\[R - 1. \frac{R + \infty}{2} P + \infty. \]
\[z \quad k \quad n \]

Fig. 137. Rhombohedral Tourmaline.
\[R. R + 1. P + \infty. R - \infty. \]
\[P \quad o \quad s \quad k' \]

Fig. 138. Rhombohedral Tourmaline.
\[R - \infty. R - 1. R. \frac{[R + \infty]}{2}. P + \infty. \]
\[k \quad n \quad P \quad l \quad s \quad R - 1. R - \infty. \]
\[n' \quad k' \]

Fig. 139. Rhombohedral Ruby-blende.
\[R - 1. P + \infty. \frac{R - 1}{3} \{ R - 1, R - 1 \}. \]
\[z \quad n \]

Fig. 140. Rhombohedral Ruby-blende.
\[R - 1. P + \infty. \frac{R - 1}{3} \{ R - 1, R - 1 \}. \]
\[z \quad n \]
Fig. 141. Axotomous Iron-ore.
\[R - \infty. \quad R \frac{rP + 1}{\frac{1}{2}}. \]
\[a \quad R \quad b \]

Fig. 142. Axotomous Iron-ore.
\[R - \infty. \quad R \frac{1}{r} \frac{P + 1}{2}. \]
\[a' \quad R' \quad b' \]

Fig. 143. Axotomous Iron-ore.
\[R - \infty. \quad R \frac{rP + 1}{\frac{1}{2}}, 2\{ R - \infty \}. \]
\[a \quad R \quad b \]
VOL. II. PLATE XXVII.

Fig. 144. Axotomous Iron-ore.
\[R - \infty. \quad R - 1. \quad R. \quad \frac{1}{r} \left(\frac{P + 1}{2} \right). \quad R + 1. \]

Fig. 145. Rhombohedral Quartz.
\[P. \quad R. \quad P + \infty. \quad -R. \quad P. \]
\[P, z \quad s \quad r, r'. \quad s' \quad z, P \]

Fig. 146. Rhombohedral Quartz.
\[P. \quad R. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{3/6}. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{3/6}. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{3/6}. \]
\[P, z \quad s \quad x \quad y \quad u \]
\[\frac{r}{r} (P)^{5/3}. \quad P + \infty. \]

Fig. 147. Rhombohedral Quartz.
\[P. \quad R. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{5/3}. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{5/3}. \quad \frac{r}{r} \left(\frac{P}{2} \right)^{5/3}. \]
\[P, z \quad s \quad o \quad x \quad y \quad u \]
\[\frac{1}{2} (P)^{5/3}. \quad \frac{5/3}{P}. \quad \frac{4}{3} P + 2. \quad P + 2. \quad P + \infty. \quad \left[\frac{(P + \infty)^{5/3}}{2} \right]. \]

Fig. 148. Rhombohedral Fluor-haloïde.
\[R - \infty. \quad 2 (R - 1). \quad P. \quad 2 (R). \]
\[P \quad a \quad x \quad s \]
\[P + 1. \quad \frac{1}{r} \left(\frac{(P)^{5/3}}{2} \right). \quad \frac{1}{r} \left(\frac{(P + \infty)^{5/3}}{2} \right). \]
\[z \quad u \quad c \quad R + \infty. \quad P + \infty. \]
\[e \quad M \]

Fig. 149. Rhombohedral Fluor-haloïde.
\[R - \infty. \quad P - 1. \quad 2 (R - 1). \quad P. \]
\[P \quad r \quad a \quad x \]
\[2 (R). \quad P + 1. \quad \frac{1}{r} \left(\frac{(P)^{5/3}}{2} \right). \]
\[s \quad z \quad a \quad \frac{1}{r} \left(\frac{(P)^{5/3}}{2} \right). \quad R + \infty. \quad P + \infty. \]
\[b \quad c \quad M \]
VOL. II. PLATE XXVIII.

Fig. 150. Rhombohedral Emerald.

\[R - \infty. \quad P. \quad 2(R). \quad P + 1. \quad 2 ((P)^5). \]

\[P \quad t \quad s \quad u \quad a \]

\[P + \infty. \]

\[M \]

Fig. 151. Octahedral Fluor-haloide.

\[H. \quad D. \]

\[i \quad s \]

Fig. 152. Octahedral Fluor-haloide.

\[H. \quad A_s. \]

\[i \quad x \]

Fig. 153. Hexahedral Kouphone-spar.

\[H. \quad C_1. \]

\[P \quad o \]

Fig. 154. Dodecahedral Garnet.

\[D. \quad C_1. \]

\[P \quad n \]

Fig. 155. Hexahedral Lead-glance.

\[H. \quad O. \quad D. \quad B. \]

\[P \quad c \quad o \quad l \]
Vol. II. Plate XXIX.

The 1861 Descriptive Catalogue

The 1861 Descriptive Catalogue
FIG. 156. Dodecahedral Corundum.

O. \(\{ \frac{0}{4} \} \).

FIG. 157. Hexahedral Gold.

C2. \(\{ \frac{0}{4} \} \).

FIG. 158. Tetrahedral Copper-glance.

\[
\frac{O}{2} - \frac{O}{2} \]

FIG. 159 and 160. Tetrahedral Boracite.

H. \(\frac{0}{2} \) D.

FIG. 161. Tetrahedral Copper-glance.

\[
\frac{0}{2} \quad \text{D.} \quad \frac{C_1}{2} \quad 2 \{ \frac{0}{4} \}.
\]
VOL. II. PLATE XXX.

Fig. 162. Dodecahedral Garnet-blende.
D. $\frac{C^2}{2}$.

Fig. 163. Dodecahedral Garnet-blende.
D. $\{\frac{O}{4}\}$.

Fig. 164. Octahedral Diamond.
$O \quad - \quad T \quad \frac{2}{2} \quad \{H\}$.

Fig. 165. Hexahedral Iron-pyrites.
H. $\frac{A^2}{2}$.

Fig. 166. Hexahedral Iron-pyrites.
O. $\frac{A^2}{2}$.

Fig. 167. Hexahedral Iron-pyrites.
H. O. $\frac{A^2}{2}, \quad C_1. \quad \frac{T_5}{2}$.
P $d \quad e \quad u \quad s$.
VOL. II. PLATE XXXI.

Fig. 168. Prismatic Epsom-salt.

\[\Phi \text{Pr. } \Phi \text{Pr. } \Phi \text{P. } \Phi + 1. \Phi + 1. \frac{r(\Phi)^3}{r \frac{2}{2}}. \frac{1(\Phi)^3}{l \frac{2}{2}}. \]

\[n \quad m \quad l \quad r \quad q \quad t \quad s \]

\[P + \infty. \Phi + \infty. \Phi + \infty. \]

Fig. 169. Di-prismatic Lead-baryte.

\[P - \infty. P - 1. \Phi \text{Pr. } P. \Phi^3. \frac{5}{4} \Phi + 2. \Phi + 1. \Phi^3. \]

\[\frac{g}{w} \quad M \quad t \quad v \quad e \quad y \quad o \]

\[P + \infty. (\Phi + \infty)^3. (\Phi + \infty)^3. \Phi + \infty. \Phi + \infty. \]

\[P \quad u \quad s \quad l \quad h \]

Fig. 170. Hemi-prismatic Lead-baryte.

\[\frac{\Phi}{2} \quad \Phi \text{Pr. } \Phi + 1. \quad \Phi \text{P. } \Phi - \Phi \quad \frac{P}{2} \quad \frac{P}{2} \quad \frac{P}{2} \quad \frac{P}{2} \quad \Phi + \infty. \]

\[\frac{t}{z} \quad \frac{y}{k} \quad \frac{v}{b} \quad M \]

\[(\Phi + \infty)^3. \Phi + \infty. \Phi + \infty. \]

\[a \quad \frac{g}{f} \]

Fig. 171. Axotomous Lead-baryte.

\[P - \infty. \frac{\Phi - 1}{2}. \frac{\Phi}{2}. \frac{\Phi + 1}{2}. \frac{P - 1}{2}. \frac{(P - 2)^4}{2}. \]

\[\frac{a}{i} \quad \frac{f}{e} \quad \frac{e}{g} \quad \frac{h}{h} \]

\[\frac{(\Phi - 1)^3}{2}. \frac{P}{2}. \frac{(P - 2)^3}{2}. \frac{Pr - 2}{2}. \frac{Pr - 1}{2}. \]

\[\frac{k}{2} \quad \frac{P}{2} \quad \frac{o}{2} \quad \frac{l}{2} \quad \frac{m}{2} \]

\[\frac{\frac{5}{4} \Phi}{2}. \frac{\Phi + 1}{2}. \frac{P - 1}{2}. \frac{(P - 2)^4}{2}. \frac{(P - 1)^5}{2}. \]

\[\frac{n}{2} \quad \frac{c}{2} \quad \frac{g}{2} \quad \frac{h}{h} \quad \frac{k}{k} \]

\[\frac{P}{2}. \frac{(p - 2)^3}{2}. \frac{P + \infty. (P + \infty)^4. \Phi + \infty. \Phi + \infty. \}

\[P \quad o' \quad c \quad d \quad b \]

Fig. 172. Prismatic Cobalt-mica.

\[\Phi \text{Pr. } P \quad \frac{P}{2}. (\Phi + \infty)^3. (\Phi + \infty)^3. \Phi + \infty. \Phi + \infty. \]

\[M \quad l \quad k \quad s \quad T \quad P \]

Fig. 173. Rhombohedral Kountone-spar.

\[R - 1. R. R + 1. P + \infty, 2\{R - \infty\}. \]

\[n \quad P \quad r \quad u \]
\[
\frac{\frac{a}{b} + \frac{c}{d}}{\frac{e}{f} + \frac{g}{h}} = \frac{(a \cdot f + c \cdot h)}{(b \cdot f + d \cdot h)}
\]
Fig. 174. Prismatic Kouphone-spar, from Au-
vergne.

Fig. 175. Mesolite from Iceland.

Fig. 176. Paratomoous Augite-spar.
\[\frac{\Pr}{2}, \frac{P}{2}, \frac{\Pr}{2} - \frac{Pr}{2} - \frac{(\Pr)^5}{2}. \]
\[P \quad s \quad o \quad t \quad u \]
\[(\Pr + \infty)^5. \quad \Pr + \infty. \quad P + \infty. \]

Fig. 177. Horizontal projection of the same.

Fig. 178. Pyramidal Copper-pyrites.
\[P - \infty. \quad \frac{P}{2}, \quad \frac{2N}{3} P - 2. \quad P - 1. \quad \frac{3}{2N} P. \]
\[a \quad P \quad g \quad b \quad h \]
\[P + 1. \quad \frac{P - 4}{2}, \quad \frac{\frac{2N}{3} P - 3}{2}. \]
\[c \quad d \quad e \]
\[\frac{\frac{2N}{3} P - 5}{2}^5. \quad \frac{P}{2}. \quad f \quad P^5 \]

Fig. 179. Pyramidal Copper-pyrites.
\[\frac{P}{2}, \quad P + 1. \quad \left\{ P - 1. \quad P \right\}. \quad \text{Regular} \]
composition of five individuals, each of the lateral ones being joined to the central individual, in a plane perpendicular to a terminal edge of P.
The integral of the differential equation:

\[\int (x + y) \, dx = \int (x - y) \, dy \]

The solution of the differential equation:

\[x + y = x - y \]

The integral of the differential equation:

\[\int (x + y) \, dx = \int (x - y) \, dy \]

The solution of the differential equation:

\[x + y = x - y \]

The integral of the differential equation:

\[\int (x + y) \, dx = \int (x - y) \, dy \]

The solution of the differential equation:

\[x + y = x - y \]
VOL. II. PLATE XXXIII.

FIG. 180. Hexahedral Gold.

\[C_2. \left\{ \begin{array}{l} \frac{O}{O} \\
\frac{4}{4} \end{array} \right\}. \]

FIG. 181. Di-prismatic Copper-glance.

\[P - \infty. \frac{Pr - 1}{Pr + 1}. \frac{Pr + 1}{Pr - 1}. \]

\[k \quad e \quad d \quad f \quad o \]

\[(Pr - 1)^3. \quad P. \quad Pr. \quad (Pr + \infty)^3. \]

\[y \quad P \quad p \quad n \]

\[Pr + \infty. \quad Pr + \infty. \]

FIG. 182. Rhombohedral Ruby-blende.

\[R - 1. \quad P + \infty. \quad R + 1. \quad R - 1. \]

\[z \quad n \quad g \quad z \]

FIG. 183. Hemi-prismatic Ruby-blende.

\[P - \infty. \quad \frac{Pr + 1}{2}. \quad P + \infty. \]

\[b \quad t \quad f \]

FIG. 184. Hemi-prismatic Sulphur.

\[\frac{Pr}{2} \quad P \quad \frac{(Pr)^3}{2} \quad \frac{Pr}{2} \quad \frac{P}{2} \]

\[t \quad n \quad q \quad P \quad n' \]

\[\frac{(Pr)^5}{2} \quad \frac{(Pr)^5}{2} \quad \frac{P}{2} \quad \frac{P}{2} \]

\[\frac{(Pr + \infty)^3}{2} \quad \frac{(Pr + \infty)^3}{2} \quad \frac{(Pr + \infty)^3}{2} \quad \frac{(Pr + \infty)^3}{2} \]

\[\frac{Pr + \infty}{2}. \quad \frac{Pr + \infty}{2}. \quad \frac{Pr + \infty}{2}. \]

FIG. 185. Allanite.
VOL. II. PLATE XXXIV.

Fig. 186. Acmite.

Fig. 187. Babingtonite, copied from Mr Le'vy's figure.

Fig. 188. Baryto-Calcite.

Fig. 189. Brewsterite.

Fig. 190. Brookite, copied from Mr Le'vy's figure.

\[\Pr - 1. \ Pr. \ (\frac{3}{4} \Pr - 2)^5. \ (\Pr - 1)^5. \]

\[a^2 \quad a^1 \quad i \quad b^{\frac{1}{2}} \]

\[\frac{3}{4} \Pr. \ P. \ (\Pr + \infty)^5. \ \Pr + \infty. \]

\[e^{\frac{3}{8}} \quad e^5 \quad m \quad h^1 \]

\[\Pr + \infty. \]

\[g^1 \]

Fig. 191. Childrenite.

\[\frac{4}{5} \ P. \ P. \ \frac{5}{4} \Pr + 2. \ \Pr + \infty. \]

\[b \quad e \quad a \quad P \]
Fig. 192. Euchroite.
\[P - \infty, \quad \Pr - P + \infty. \quad (\Pr + \infty)^5. \]
\[P \quad n \quad s \]
\[(\Pr + \infty)^5. \quad \Pr + \infty. \]
\[l \quad k \]

Fig. 193. Fergusonite.
\[P - \infty, \quad P. \quad \frac{(P - 1)^5}{2}. \quad \frac{[(P + \infty)^5]}{2}. \]
\[i \quad s \quad z \quad r \]

Fig. 194. Levyne.
\[R - \infty. \quad R - 1. \quad R. \quad 2\{R - \infty\}. \]
\[o \quad g \quad P \]

Fig. 195. Roselite, copied from Mr Levy's figure.

Fig. 196. Gmelinite.
\[R - \infty. \quad P. \quad P + \infty. \]
\[o \quad y \quad u \]

Fig. 197. Wagnerite, copied from a drawing by Dr G. Rose.
INDEX.

Abrazite iii. 174 Allanite iii. 68, 98
Achirite ii. 172 Allochroit ii. 359
Achmite iii. 67 Allochroite ii. 362
Acicular bismuth-glance iii. 130 Almandin ii. 359
Acicular olivenite iii. 144 Almandine ii. 363
Acid ii. 22 Alum ii. 50
Acide boracique ii. 25 Alum-earth iii. 178
sulfurique ii. 24 Alum-haloide ii. 67
Acmite iii. 67 Alum-rock ii. 68
Actinolite i. 272, 278 Alum-salt ii. 50
Actinote ii. 275 Alum-slate iii. 178
Adamantine spar ii. 302 Alumstone ii. 67
Adhesive slate iii. 177 Alumine fluatée alcaline ii. 66
Adipocire, mineral iii. 107 fluatée siliceuse ii. 308
Adular ii. 251 magnésiée ii. 295
Adularia ii. 258 sulfatée ii. 50
Aérisform carbonic acid ii. 22 sulfatée alcaline ii. 50
muriatic acid ii. 23 sous-sulfatée alcaline ii. 50
Agalmatolite iii. 100 Alumine, subphosphate iii. 169
Agaric mineral ii. 89 of iii. 169
Agate ii. 329 Aluminite iii. 70
Agate-jasper ii. 328 Aluminate iii. 70
Alaun ii. 50 Amalgam ii. 431
Alaunstein ii. 67 Amalgam, native ii. 431
Albin ii. 244 Amazone stone ii. 263
Albite ii. 255 Amber iii. 57
Allagite iii. 123 Amblygonite iii. 70

VOL. III.
<table>
<thead>
<tr>
<th>Terms</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amethyst</td>
<td>ii. 325</td>
</tr>
<tr>
<td>Amethyst, oriental</td>
<td>ii. 303</td>
</tr>
<tr>
<td>Amiantus</td>
<td>ii. 279</td>
</tr>
<tr>
<td>Ammonia, muriate of</td>
<td>ii. 30</td>
</tr>
<tr>
<td>Ammoniac-salt</td>
<td>ii. 39</td>
</tr>
<tr>
<td>Ammoniac, sulphat of</td>
<td>iii. 125</td>
</tr>
<tr>
<td>Ammoniaque muriatée</td>
<td>ii. 39</td>
</tr>
<tr>
<td>Amphibole</td>
<td>ii. 275</td>
</tr>
<tr>
<td>Amphigène</td>
<td>ii. 224</td>
</tr>
<tr>
<td>Analcime</td>
<td>ii. 227</td>
</tr>
<tr>
<td>Anatase</td>
<td>ii. 379</td>
</tr>
<tr>
<td>Andalusite</td>
<td>ii. 293</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>ii. 62</td>
</tr>
<tr>
<td>Anhydrous gypsum</td>
<td>ii. 62</td>
</tr>
<tr>
<td>Ankerite</td>
<td>i. 411</td>
</tr>
<tr>
<td>Anorthite</td>
<td>iii. 71</td>
</tr>
<tr>
<td>Anthophyllite</td>
<td>ii. 211</td>
</tr>
<tr>
<td>Anthophyllit, blättriger strahliger</td>
<td>ii. 207</td>
</tr>
<tr>
<td>Anthracite</td>
<td>iii. 64</td>
</tr>
<tr>
<td>Anthracolite</td>
<td>ii. 90</td>
</tr>
<tr>
<td>Anthrakolit</td>
<td>ii. 83</td>
</tr>
<tr>
<td>Anthrakonit</td>
<td>ii. 84</td>
</tr>
<tr>
<td>Anthrazit</td>
<td>iii. 65</td>
</tr>
<tr>
<td>Antimoine hydro-sulfuré</td>
<td>iii. 36</td>
</tr>
<tr>
<td>natif</td>
<td>ii. 426</td>
</tr>
<tr>
<td>oxidé</td>
<td>ii. 152</td>
</tr>
<tr>
<td>oxidé sulfuré</td>
<td>iii. 36</td>
</tr>
<tr>
<td>sulfuré</td>
<td>iii. 23</td>
</tr>
<tr>
<td>sulfuré plombo-cuprifère</td>
<td>iii. 5</td>
</tr>
<tr>
<td>Antimon, gediegen</td>
<td>ii. 426</td>
</tr>
<tr>
<td>Antimon-Silber</td>
<td>ii. 427</td>
</tr>
<tr>
<td>Antimonblende</td>
<td>iii. 36</td>
</tr>
<tr>
<td>Antimonblüthe</td>
<td>ii. 152</td>
</tr>
<tr>
<td>Antimonglanz</td>
<td>iii. 23</td>
</tr>
<tr>
<td>Antimonial silver</td>
<td>ii. 427</td>
</tr>
<tr>
<td>Antimony</td>
<td>ii. 426</td>
</tr>
</tbody>
</table>

Antimony, dodecahedral ii. 426
Grey iii. 23, 26
Native iii. 426
Nickeliferous grey iii. 131
Octahedral ii. 427
Oxide of ii. 152
Prismatic ii. 427
Prismatic white ii. 151
Red iii. 36
Rhombohedral ii. 426
Sulphuret of iii. 23
Sulphuret of silver
And iii. 30
White ii. 152
Antimony-baryte ii. 151
Antimony-blende iii. 36
Antimony-glance iii. 21
Axistrangible iii. 5
Axotomous iii. 26
Prismatic iii. 4, 21
Prismatoidal iii. 23, 26
Apatite ii. 73
Aphrite iii. 72
Aplome ii. 364
Apophyllite ii. 244, 246
Aquamarine ii. 316
Oriental ii. 312
Arendalite ii. 286
Artvedsonite iii. 73
Antimonié sulfure iii. 38
Antimonié sulfure
Noir iii. 27
Muriaté iii. 154
Natif ii. 434
Noir iii. 27
INDEX.

Argent sulfuré iii. 11 Arseniksaures Kobalt ii. 184
sulfure flexible iii. 30 Arsenik-Wismuth iii. 74
Argentiferous copper-glance iii. 73 Asbest ii. 263, 274
Argile schisteuse no-vaculaire iii. 187 Asche iii. 73
Arragon ii. 79 Asphalt ii. 59
Arragonite ii. 79 Asteria ii. 303
Arseniates of cobalt ii. 184 Atacamite iii. 74
of copper, martial iii. 149 Atmosphärische Luft ii. 20
octahedral ii. 160 Atmospheric air ii. 20
oblique prismatic iii. 144 Atmospheric-gas ii. 20
prismatic ii. 164 Atmospheric-water ii. 21
rhomboidal ii. 178 Augite ii. 268
of iron ii. 162 hemi-prismatic ii. 274
of lead ii. 133 oblique-edged ii. 268
of lime iii. 135 prismatic ii. 286
of nickel ii. 448 prismaticoiial ii. 282
Arsenic ii. 423 pyramido-prismatic ii. 263
Arsenic, oxide of ii. 26 straight-edged ii. 274
native ii. 423 Augite-spar ii. 268
oxoïdè ii. 26 hemi-prismatic ii. 274
sulfuré jaune iii. 47 paratomes ii. 268
sulfuré rouge iii. 50 polystomous iii. 115
Arsenic-acid ii. 26 prismatic ii. 286
Arsenical bismuth iii. 74 prismaticoiial ii. 282
iron ii. 449 Auripigment iii. 47
nickel ii. 446 Automalite ii. 298
Arsenical-pyrites ii. 448 Axinite ii. 341
axotomous ii. 448 Axotomous Antimony-

di-prismatic ii. 449 glance iii. 26
prismatic ii. 448, 449 Arsenical-pyrites ii. 448
Arsenik, gediegen ii. 423 Iron-ore ii. 397
Arsenikblütche ii. 26 Kouphone-spar ii. 246
Arsenikkies ii. 449 Lead-baryte ii. 144
Arsenik-Nickel ii. 446 Triphane-spar ii. 217
Arsenik-Silber ii. 427 Azure-malachite ii. 167
Arseniksaures Eisen ii. 162 Azure-spar ii. 288
Azure-spar, dodecahedral ii. 288
prismatic ii. 290
prismatoidal ii. 292
Azure stone ii. 288
Azurite ii. 290

Babingtonite ii. 75
Bakalit ii. 268, 272
Balas ruby ii. 298
Bardiglione ii. 62
Bary-strontianite iii. 169
Baryt ii. 121
Baryt, kohlensaurer schweifelsaurer ii. 121
Baryte ii. 101
axifrangible ii. 126
carbonatée ii. 119
di-prismatic ii. 116, 119
prismatic ii. 121
prismatoidal ii. 126
pyramido-prismatic ii. 116
rhomboidal ii. 119
sulfatée ii. 121
sulfatée fétide ii. 124
Barytes, carbonate of sulphate of ii. 119, 121
Baryto-calcite iii. 76
Bergmannite iii. 77
Bergmilch ii. 83
Bergpech iii. 59
Bergtheer iii. 59
Beril, schörlartiger ii. 308
Beryl ii. 316
Bernstein iii. 57
Bimstein iii. 337
Bismuth ii. 430
arsenical iii. 74

Bismuth, cuprous iii. 91
cupriferous sulphuret of iii. 91
native ii. 430
octahedral ii. 430
plumbo-cupriferous
sulphuret of iii. 130
sulfuré iii. 19
sulphuret of iii. 19
Bismuth-glance iii. 19
acicular iii. 130
prismatic iii. 19
Bismuthic silver iii. 78
Bitterkalk ii. 94, 98
Bittersalz ii. 48
Bitterspar ii. 94, 98
Bitume iii. 59
Bitumen iii. 59
Bituminöses Holz iii. 61
Bituminous marble iii. 178
marlslate iii. 178
Mineral-coal iii. 61
shale iii. 62
wood iii. 62
Black chalk iii. 181
cobalt-ochre iii. 78
lead ii. 191
Mineral-resin iii. 59
silver ii. 435
tellurium iii. 16
wad ii. 421
Blätterkohle iii. 61
Blätterzeolith ii. 242
Blättriger Stilbit ii. 242
Pseudomalachit ii. 166
INDEX.

Blätter-Tellur
Blau-Bleierz
Blaue Eisenerde
Blauspath
Blei, kohlensaures
Bleierde
Bleifählerz
Bleiglanz
Bleischwärze
Bleischweif
Bleivitril
Bleiweiss
Blende
Blind coal
Bloedite
Blue copper
Felspar
Lead
Spar
Vitriol
Blutstein
Bole
Bolognese-spar
Boracic-acid
Boracite
Borate of lime
of magnesia
of soda
Borax
Borax-salt
Boraxsaure
Boraxsaures Natron
Borazit

iii. 16 Börnstein
iii. 13 Botryolite
ii. 188 Bournonite
ii. 292 Brachytypous Lime-ha-
ii. 130 loide
ii. 134 Parachrose-baryte
ii. 137 Braunbleierz
ii. 140 Braunstein, grauer
ii. 130 Braunkalk
iii. 5 Braunkohle
ii. 140 Braun-Menakerz
iii. 13 Braunspath
ii. 130 Braunstein, grauer
iii. 13 rother
ii. 142 piemontischer
ii. 130 schwarzer
iii. 31. 32 Braunsteinkiesel
iii. 64 Brazilian emerald
iii. 79 Breislakite
ii. 167 Breunnerite
ii. 292 Brewsterite
ii. 136. iii. 13 Brithyne-salt
ii. 292 Brittle silver-glance
ii. 44 sulphuret of silver
ii. 404 Brochantite
iii. 179 Brongniartin
ii. 124 Bronzite
ii. 25 Brookite
ii. 347 Brown coal
ii. 220 Brown coal, trapezoidal
ii. 347 Brown lead-spar
ii. 52 Brohnspar
ii. 52 Brucite
ii. 52 Bucklandite
ii. 25 Bunter Kupferkies
ii. 52 Buntkupfererz
ii. 348 Byssolith
<table>
<thead>
<tr>
<th>Term</th>
<th>Page 1</th>
<th>Page 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacholong</td>
<td>ii. 332</td>
<td>Cerine</td>
</tr>
<tr>
<td>Calamine</td>
<td>ii. 111</td>
<td>Cerenstein</td>
</tr>
<tr>
<td>electric</td>
<td>ii. 108</td>
<td>Cerite</td>
</tr>
<tr>
<td>rhomboidal</td>
<td>ii. 111</td>
<td>oxidé silicifère ii. 394</td>
</tr>
<tr>
<td>Calaite</td>
<td>iii. 83</td>
<td></td>
</tr>
<tr>
<td>Calamite</td>
<td>ii. 278</td>
<td>Cerium-ore ii. 394</td>
</tr>
<tr>
<td>Calcareous spar</td>
<td>ii. 90</td>
<td>indivisible ii. 394</td>
</tr>
<tr>
<td>tufa</td>
<td>ii. 90</td>
<td></td>
</tr>
<tr>
<td>Calcedony</td>
<td>ii. 321</td>
<td>uncleavable ii. 394</td>
</tr>
<tr>
<td>Calcsinter</td>
<td>ii. 89</td>
<td>Chabasie ii. 232</td>
</tr>
<tr>
<td>Cannel-coal</td>
<td>iii. 61</td>
<td>Chabasite ii. 232</td>
</tr>
<tr>
<td>Caoutchouk, mineral</td>
<td>iii. 60</td>
<td>Chalk ii. 89</td>
</tr>
<tr>
<td>Capillary pyrites</td>
<td>iii. 130</td>
<td>black iii. 181</td>
</tr>
<tr>
<td>Carbon, mineral</td>
<td>iii. 64</td>
<td>Charcoal, mineral iii. 64</td>
</tr>
<tr>
<td>Carbonate of barytes</td>
<td>ii. 119</td>
<td></td>
</tr>
<tr>
<td>of copper, blue</td>
<td>ii. 167</td>
<td>boratée silicée ii. 220</td>
</tr>
<tr>
<td>of copper, green</td>
<td>ii. 175</td>
<td>carbonatée ii. 84</td>
</tr>
<tr>
<td>of iron</td>
<td>ii. 102</td>
<td>aluminifère ii. 94</td>
</tr>
<tr>
<td>of lead</td>
<td>ii. 130</td>
<td>ferrifère ii. 94</td>
</tr>
<tr>
<td>of lime</td>
<td>ii. 83</td>
<td>ferrifère perlée ii. 94</td>
</tr>
<tr>
<td>of magnesia</td>
<td>iii. 121</td>
<td></td>
</tr>
<tr>
<td>of manganese</td>
<td>ii. 106</td>
<td>ferro-manganésifère ii. 94</td>
</tr>
<tr>
<td>of manganese and iron</td>
<td>ii. 98</td>
<td></td>
</tr>
<tr>
<td>of soda</td>
<td>ii. 27</td>
<td>manganésifère</td>
</tr>
<tr>
<td>of strontian</td>
<td>ii. 116</td>
<td>rose ii. 94</td>
</tr>
<tr>
<td>of zinc</td>
<td>ii. 111</td>
<td>quartzifère ii. 92</td>
</tr>
<tr>
<td>Carbonic-acid</td>
<td>ii. 22</td>
<td>fluatée ii. 69</td>
</tr>
<tr>
<td>Carburetted hydrogen</td>
<td>ii. 18</td>
<td>phosphatée ii. 73</td>
</tr>
<tr>
<td>gas</td>
<td>ii. 18</td>
<td>sulfatée ii. 57</td>
</tr>
<tr>
<td>Carinithine</td>
<td>ii. 273</td>
<td>anhydre ii. 62</td>
</tr>
<tr>
<td>Carnelian</td>
<td>ii. 327</td>
<td>épigène ii. 65</td>
</tr>
<tr>
<td>Carpholite</td>
<td>iii. 116</td>
<td>Chiastolite iii. 84</td>
</tr>
<tr>
<td>Cats eye</td>
<td>ii. 321</td>
<td>Childrenite iii. 85</td>
</tr>
<tr>
<td>Cawk</td>
<td>ii. 125</td>
<td>Chlorite ii. 193</td>
</tr>
<tr>
<td>Celestine</td>
<td>ii. 126</td>
<td>Chloropal iii. 86</td>
</tr>
<tr>
<td>Cellular pyrites</td>
<td>ii. 460. 464</td>
<td>Chlorophæite iii. 86</td>
</tr>
<tr>
<td>Cererit</td>
<td>ii. 394</td>
<td>Chlorophane ii. 72</td>
</tr>
</tbody>
</table>
INDEX.

Chondrodite iii. 87 Cobalt gris i. 455
Chromate of iron ii. 396 prismatic red ii. 134
of lead ii. 137 radiated white ii. 454
of lead and copper iii. 167 red ii. 184
Chromeisenstein ii. 396 silver-white ii. 455
Chrome-ore ii. 396 sulphate of iii. 145
Chromsaures Blei ii. 137 sulphuret of iii. 88
Chrysoberil ii. 304 tin-white ii. 452
Chrysocola ii. 153 Cobalt bloom ii. 184 186
Chrysolite ii. 345 Cobalt crust ii. 186
Chrysoprase ii. 327 Cobalt-Kies iii. 88
Cinnabar iii. 44 Cobalt-mica ii. 184
hepatic iii. 45 Cobalt-ochre, black iii. 78
Cinnamon-stone ii. 364 yellow and brown iii. 79
Clay ii. 180 Cobalt-ore, grey ii. 454
Clayslate ii. 203 Cobalt-pyrites ii. 452
Claystone iii. 190 hexahedral ii. 455
Cleavelandite ii. 251 octahedral ii. 452
Clinkstone ii. 259 Cobaltic galena iii. 88
Coal iii. 61 Cobaltic lead-glance iii. 88
black iii. 61 62 Coccolite ii. 272
blind iii. 64 Cockscomb pyrites ii. 464
brown iii. 61 62 Colophonite ii. 361
course iii. 63 Columbite ii. 390
columnar iii. 65 Columnar coal iii. 65
common iii. 61 Common asbestus iii. 138
earthly iii. 62 Common clay iii. 180
foliated iii. 63 Comptonite iii. 89
glance iii. 64 Condrodite iii. 87
pitch iii. 63 Copper ii. 444
slate iii. 63 blue carbonate of ii. 167
Coarse coal iii. 63 of cementation ii. 446
Cobalt, arseniate of ii. 184 chromate of lead
arseniaté ii. 184 and iii. 167
arsenical ii. 452 earthy blue ii. 170
bright white ii. 452 455 green carbonate of ii. 175
earthy iii. 78 hydrous phosphate of ii. 173
<table>
<thead>
<tr>
<th>Copper, lenticular</th>
<th>ii. 190</th>
<th>Copper-green</th>
<th>ii. 159</th>
</tr>
</thead>
<tbody>
<tr>
<td>martial arseniate</td>
<td></td>
<td>common</td>
<td>ii. 158</td>
</tr>
<tr>
<td>of</td>
<td>iii. 149</td>
<td>uncleavable</td>
<td>ii. 158</td>
</tr>
<tr>
<td>muriate of</td>
<td>iii. 74</td>
<td>Copper, grey</td>
<td>iii. 1</td>
</tr>
<tr>
<td>native</td>
<td>ii. 444</td>
<td>antimonial</td>
<td>iii. 3</td>
</tr>
<tr>
<td>oblique prismatic</td>
<td></td>
<td>arsenical</td>
<td>iii. 3</td>
</tr>
<tr>
<td>arseniate of</td>
<td>iii. 144</td>
<td>Copper-mica</td>
<td>ii. 178</td>
</tr>
<tr>
<td>octahedral</td>
<td>ii. 444</td>
<td>Copper-Nickel</td>
<td>ii. 446</td>
</tr>
<tr>
<td>octahedral arseniate</td>
<td></td>
<td>Copper-ore</td>
<td>ii. 381</td>
</tr>
<tr>
<td>of</td>
<td>ii. 160</td>
<td>octahedral</td>
<td>ii. 381</td>
</tr>
<tr>
<td>oxydulated</td>
<td>ii. 381</td>
<td>vitreous</td>
<td>iii. 8</td>
</tr>
<tr>
<td>phosphate of</td>
<td>ii. 166.173</td>
<td>yellow</td>
<td>ii. 469</td>
</tr>
<tr>
<td>prismatic arseniate</td>
<td></td>
<td>Copper-pyrites</td>
<td>ii. 467.469</td>
</tr>
<tr>
<td>of</td>
<td>ii. 164</td>
<td>octahedral</td>
<td>ii. 467.469</td>
</tr>
<tr>
<td>purple</td>
<td>ii. 467</td>
<td>pyramidal</td>
<td>ii. 469</td>
</tr>
<tr>
<td>radiated blue</td>
<td>ii. 170</td>
<td>tetrahedral</td>
<td>iii. 1</td>
</tr>
<tr>
<td>red oxide of</td>
<td>ii. 331</td>
<td>yellow</td>
<td>ii. 469</td>
</tr>
<tr>
<td>rhomboidal arseniate</td>
<td></td>
<td>Cordierite</td>
<td>ii. 319</td>
</tr>
<tr>
<td>of</td>
<td>ii. 178</td>
<td>Corindon</td>
<td>ii. 290</td>
</tr>
<tr>
<td>rhomboidal emerald</td>
<td>ii. 171</td>
<td>Cork, rock</td>
<td>ii. 279</td>
</tr>
<tr>
<td>seleniuret of</td>
<td>iii. 150</td>
<td>Corneous lead</td>
<td>ii. 150</td>
</tr>
<tr>
<td>seleniuret of silver</td>
<td></td>
<td>manganese</td>
<td>iii. 123</td>
</tr>
<tr>
<td>and</td>
<td>iii. 94</td>
<td>mercury</td>
<td>ii. 156</td>
</tr>
<tr>
<td>sulphate of</td>
<td>ii. 44</td>
<td>silver</td>
<td>ii. 154</td>
</tr>
<tr>
<td>sulphuret of</td>
<td>iii. 8</td>
<td>Corundum</td>
<td>ii. 295.299</td>
</tr>
<tr>
<td>sulphuret of silver</td>
<td></td>
<td>dodecahedral</td>
<td>ii. 295</td>
</tr>
<tr>
<td>and</td>
<td>iii. 73</td>
<td>octahedral</td>
<td>ii. 295.298</td>
</tr>
<tr>
<td>variegated</td>
<td>ii. 467</td>
<td>prismatic</td>
<td>ii. 304</td>
</tr>
<tr>
<td>velvet-blue</td>
<td>iii. 163</td>
<td>rhombohedral</td>
<td>ii. 299</td>
</tr>
<tr>
<td>vitreous</td>
<td>iii. 8</td>
<td>rhombohedral</td>
<td>ii. 299</td>
</tr>
<tr>
<td>Copper-black</td>
<td>ii. 472</td>
<td>Crichtonite</td>
<td>ii. 309</td>
</tr>
<tr>
<td>Copper-glance</td>
<td>iii. 1</td>
<td>Cronstedtite</td>
<td>iii. 90</td>
</tr>
<tr>
<td>argentiferous</td>
<td>ii. 73</td>
<td>Cross stone</td>
<td>ii. 229</td>
</tr>
<tr>
<td>di-prismatic</td>
<td>iii. 5</td>
<td>Cryolite</td>
<td>ii. 66</td>
</tr>
<tr>
<td>prismatic</td>
<td>iii. 8</td>
<td>Cryone-haloide</td>
<td>ii. 66</td>
</tr>
<tr>
<td>prismatoidal</td>
<td>iii. 4</td>
<td>Crysoberyl</td>
<td>ii. 304</td>
</tr>
<tr>
<td>rhombooidal</td>
<td>iii. 8</td>
<td>Crystal, rock</td>
<td>ii. 325</td>
</tr>
<tr>
<td>tetrahedral</td>
<td>iii. 1</td>
<td>Cube-ore</td>
<td>ii. 162</td>
</tr>
</tbody>
</table>
INDEX.

Cubizit ii. 227 Demant ii. 306
Cuivre arseniaté ii. 164 Demantspath ii. 299
hexagonal lamelliforme ii. 179 Diallag, talkartiger ii. 206
lamelliforme ii. 179 Diallage fibro-laminaire ii. 208
octaèdre aigu ii. 164 métalloïde ii. 208
octaèdre obtus ii. 160 green ii. 272. 274
primitif ii. 160 vert ii. 275
carbonaté ii. 167, 175 Diamant ii. 306
bleu ii. 167 Diamond ii. 306
terreux ii. 158 Diaspore iii. 92
vert ii. 157, 175 Diatomous Kouphon spar ii. 234
diopside ii. 171 Schiller-spar ii. 206
gris iii. 1 hydro-siliceux ii. 158 Dichroïte ii. 319
hydraté siliceux ii. 158 Diopside ii. 268. 272
natif ii. 444 Dioptase ii. 171
oxidée rouge ii. 381 Diploïte iii. 113
oxidulé ii. 381 Di-prismatic Copper-glance iii. 5
phosphaté ii. 166, 173 Hal-baryte ii. 119
pyriteux ii. 469 Iron-ore ii. 414
pyriteux hépatique ii. 467 Lead-baryte ii. 130
sélenié iii. 150 Olive-malachite ii. 166
argentii iii. 94 sulfaté ii. 44 Dipyre ii. 264
sulfuré iii. 8 sulfaté ii. 44 Disthène ii. 213
diplolé iii. 381 Disthène-spar ii. 213
Cupreous bismuth iii. 91 Dodecahedral Azure-spar ii. 213
manganese iii. 92 Garnet-blende iii. 32
sulfate of lead ii. 149 Iron-ore ii. 403
sulphato-carbonate of lead ii. 149 Garnet-blende iii. 32
of bismuth iii. 91
Cupriferous sulphuret of bismuth iii. 91
Cyanite ii. 213 Koupnome-spar ii. 225
Cymophane ii. 304 Mercury ii. 431
Cyprine ii. 356 Dolomite ii. 93. 98
Doubly refracting spar ii. 92
Datolite ii. 220 Drawing slate iii. 181
<table>
<thead>
<tr>
<th>Term</th>
<th>II</th>
<th>III</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duttenstein</td>
<td>83</td>
<td>90</td>
<td>Emerald-malachite</td>
</tr>
<tr>
<td>Dystome spar</td>
<td>220</td>
<td></td>
<td>prismatic</td>
</tr>
<tr>
<td>Earth, fuller's</td>
<td>182</td>
<td></td>
<td>rhombohedral</td>
</tr>
<tr>
<td>Earth, yellow</td>
<td>187</td>
<td></td>
<td>rhombo'idal</td>
</tr>
<tr>
<td>Earthy coal</td>
<td>62</td>
<td></td>
<td>Emeury</td>
</tr>
<tr>
<td>Earthy cobalt</td>
<td>78</td>
<td></td>
<td>Empyreumatic Hydro-gen-gas</td>
</tr>
<tr>
<td>Egeran</td>
<td>354</td>
<td></td>
<td>Epidote</td>
</tr>
<tr>
<td>Eisen, arseniksaures</td>
<td>162</td>
<td></td>
<td>manganésifère</td>
</tr>
<tr>
<td>gediegen</td>
<td>442</td>
<td></td>
<td>Epsom-salt</td>
</tr>
<tr>
<td>kohlensaures</td>
<td>102</td>
<td></td>
<td>Einzegran</td>
</tr>
<tr>
<td>phosphorsaures</td>
<td>188</td>
<td></td>
<td>Epsom-salt</td>
</tr>
<tr>
<td>Eisenblau</td>
<td>188</td>
<td></td>
<td>Erdkobold</td>
</tr>
<tr>
<td>Eisenblüté</td>
<td>79</td>
<td></td>
<td>Erdpeeh</td>
</tr>
<tr>
<td>Eisenchrom</td>
<td>396</td>
<td></td>
<td>Erdkohle</td>
</tr>
<tr>
<td>Eisenerde, grüne</td>
<td>106</td>
<td></td>
<td>Erdöl</td>
</tr>
<tr>
<td>Eisenglanz</td>
<td>404</td>
<td></td>
<td>Essonite</td>
</tr>
<tr>
<td>Eisenkalk</td>
<td>102</td>
<td></td>
<td>Eucairite</td>
</tr>
<tr>
<td>Eisenkies</td>
<td>457</td>
<td></td>
<td>Euchlore-mica</td>
</tr>
<tr>
<td>Eisenkiesel</td>
<td>321</td>
<td></td>
<td>Euchrolit</td>
</tr>
<tr>
<td>Eisenopal</td>
<td>332</td>
<td></td>
<td>prismatic</td>
</tr>
<tr>
<td>Eisenoxyd</td>
<td>404</td>
<td></td>
<td>pyramidal</td>
</tr>
<tr>
<td>Eisenoxyd-hydrat</td>
<td>410</td>
<td></td>
<td>rhombohedral</td>
</tr>
<tr>
<td>Eisen'schüssig Kupfer-grün</td>
<td>156</td>
<td></td>
<td>Euchrolit</td>
</tr>
<tr>
<td>Eisentitan</td>
<td>376</td>
<td></td>
<td>Eudialyte</td>
</tr>
<tr>
<td>Eisin vitriol</td>
<td>41</td>
<td></td>
<td>Eucairite</td>
</tr>
<tr>
<td>Eisspath</td>
<td>251</td>
<td></td>
<td>Fahlberz</td>
</tr>
<tr>
<td>Etalolite</td>
<td>93</td>
<td></td>
<td>Fahlulinte</td>
</tr>
<tr>
<td>Elaterit</td>
<td>59</td>
<td></td>
<td>hard</td>
</tr>
<tr>
<td>Electrum</td>
<td>436</td>
<td></td>
<td>Faserkiesel</td>
</tr>
<tr>
<td>Emerald</td>
<td>313</td>
<td>316</td>
<td>Faserzeolith</td>
</tr>
<tr>
<td>brazilian</td>
<td>353</td>
<td></td>
<td>Passait</td>
</tr>
<tr>
<td>oriental</td>
<td>303</td>
<td></td>
<td>Feldspath</td>
</tr>
<tr>
<td>prismatic</td>
<td>313</td>
<td></td>
<td>apyre</td>
</tr>
<tr>
<td>rhombohedral</td>
<td>316</td>
<td></td>
<td>bleu</td>
</tr>
<tr>
<td>rhomboidal</td>
<td>316</td>
<td></td>
<td>gemeiner</td>
</tr>
<tr>
<td>Emerald copper</td>
<td>171</td>
<td></td>
<td>glasiger</td>
</tr>
</tbody>
</table>
INDEX.

Feldspath résinite ii. 327 Flinty slate ii. 326
Feldstein ii. 251 Floatstone ii. 321
Feld-spar ii. 250 Flos ferri ii. 81
blue ii. 292 Fluorite of lime iii. 100
prismato-pyramidal ii. 264 Fluellite iii. 101
prismatic ii. 251 Fluid Mercury ii. 432
pyramidal ii. 264 Fluor ii. 69
rhomboedral ii. 250 Fluor-haloide ii. 69
rhomboidal ii. 250 octahedral ii. 69
Felspar ii. 251 rhomboedral ii. 73
Fer arseniaté ii. 162 Fluss ii. 69
arsenical ii. 449 Foliated coal iii. 63
calcareo-siliceux ii. 414 Forsterite iii. 102
carburé ii. 191 Franklinite ii. 403
cromaté ii. 396 Frauenkiesel ii. 57
natif ii. 442 Frugardite ii. 356
oligiste ii. 404 Fuller's earth iii. 182
oxido-carbonaté ii. 102
oxydé ii. 404. 410 Gadolinite ii. 371
oxydulé ii. 400 Gahnit ii. 293
phosphaté ii. 188 Galena iii. 13
sulfaté ii. 41 hexahedral iii. 13
sulfuré ii. 457. 462 cobaltic iii. 33
acliculaire radié ii. 462 Galmei ii. 108. 111
blanc ii. 462 Garnet ii. 354. 359
ferrifère ii. 465 dodecahedral ii. 359. 364
magnetique ii. 465 prismatic ii. 364. 366
Fergusonite iii. 98 prismatoidal ii. 366
Fettstein iii. 93 pyramidal ii. 354
Feuerstein ii. 321 tetrahedral ii. 357
Fibrolite iii. 99 Garnet-blende iii. 32
Figurestone iii. 100 Gas ii. 17
Fire-damp ii. 18 Gaseous Carbonic-acid ii. 22
Fire-opal ii. 336 Muriatic-acid ii. 23
Flexible sulphuret of silver iii. 30 Gediegen Arsenik ii. 423
Flint ii. 326 Antimon ii. 426
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gediegen Eisen</td>
<td>ii. 442</td>
</tr>
<tr>
<td>Gold</td>
<td>ii. 434</td>
</tr>
<tr>
<td>Kupfer</td>
<td>ii. 444</td>
</tr>
<tr>
<td>Platin</td>
<td>ii. 441</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>ii. 433</td>
</tr>
<tr>
<td>Spiessglanz</td>
<td>ii. 426</td>
</tr>
<tr>
<td>Silber</td>
<td>ii. 433</td>
</tr>
<tr>
<td>Silvan</td>
<td>ii. 424</td>
</tr>
<tr>
<td>Tellur</td>
<td>ii. 424</td>
</tr>
<tr>
<td>Wismuth</td>
<td>ii. 430</td>
</tr>
<tr>
<td>Gehlenite</td>
<td>iii. 102</td>
</tr>
<tr>
<td>Gekrössstein</td>
<td>ii. 64</td>
</tr>
<tr>
<td>Gelbbeierzer</td>
<td>ii. 140</td>
</tr>
<tr>
<td>Gelbes Rauschgelb</td>
<td>iii. 47</td>
</tr>
<tr>
<td>Gelb-Menakerz</td>
<td>ii. 373</td>
</tr>
<tr>
<td>Gem</td>
<td>ii. 293</td>
</tr>
<tr>
<td>Gibbsite</td>
<td>iii. 103</td>
</tr>
<tr>
<td>Gieseckite</td>
<td>iii. 104</td>
</tr>
<tr>
<td>Gips</td>
<td>ii. 57</td>
</tr>
<tr>
<td>Gismondin</td>
<td>iii. 174</td>
</tr>
<tr>
<td>Glance</td>
<td>iii. 1</td>
</tr>
<tr>
<td>Glance-blende</td>
<td>iii. 31</td>
</tr>
<tr>
<td>Glance-coal</td>
<td>iii. 64</td>
</tr>
<tr>
<td>Glänzerz</td>
<td>iii. 11</td>
</tr>
<tr>
<td>Glanz-Kobold</td>
<td>ii. 455</td>
</tr>
<tr>
<td>Glanzkohle</td>
<td>iii. 65</td>
</tr>
<tr>
<td>Glaserz</td>
<td>iii. 11</td>
</tr>
<tr>
<td>Glass, Muscovy</td>
<td>ii. 202</td>
</tr>
<tr>
<td>Glauberite</td>
<td>ii. 54</td>
</tr>
<tr>
<td>Glauber-salt</td>
<td>ii. 31</td>
</tr>
<tr>
<td>anhydrous prismatic</td>
<td>ii. 33</td>
</tr>
<tr>
<td>Glaubersalz</td>
<td>ii. 31</td>
</tr>
<tr>
<td>Glimmer</td>
<td>ii. 198</td>
</tr>
<tr>
<td>Gmelinite</td>
<td>iii. 104</td>
</tr>
<tr>
<td>Gold</td>
<td>ii. 436</td>
</tr>
<tr>
<td>gediegen graphic</td>
<td>ii. 436</td>
</tr>
<tr>
<td></td>
<td>iii. 21</td>
</tr>
<tr>
<td></td>
<td>ii. 171</td>
</tr>
<tr>
<td></td>
<td>ii. 275</td>
</tr>
<tr>
<td></td>
<td>ii. 359</td>
</tr>
<tr>
<td></td>
<td>ii. 264</td>
</tr>
<tr>
<td></td>
<td>ii. 21</td>
</tr>
<tr>
<td></td>
<td>ii. 264</td>
</tr>
<tr>
<td></td>
<td>ii. 21</td>
</tr>
<tr>
<td></td>
<td>iii. 102</td>
</tr>
<tr>
<td></td>
<td>ii. 191</td>
</tr>
<tr>
<td></td>
<td>ii. 191</td>
</tr>
<tr>
<td></td>
<td>ii. 419</td>
</tr>
<tr>
<td></td>
<td>ii. 419</td>
</tr>
<tr>
<td></td>
<td>iii. 1</td>
</tr>
<tr>
<td></td>
<td>iii. 23</td>
</tr>
<tr>
<td></td>
<td>iii. 193</td>
</tr>
<tr>
<td></td>
<td>iii. 86.106</td>
</tr>
<tr>
<td></td>
<td>ii. 136</td>
</tr>
<tr>
<td></td>
<td>ii. 41</td>
</tr>
<tr>
<td></td>
<td>ii. 359</td>
</tr>
<tr>
<td></td>
<td>ii. 366</td>
</tr>
<tr>
<td></td>
<td>iii. 23.26</td>
</tr>
<tr>
<td></td>
<td>iii. 131</td>
</tr>
<tr>
<td></td>
<td>iii. 1</td>
</tr>
<tr>
<td></td>
<td>iii. 3</td>
</tr>
<tr>
<td></td>
<td>iii. 61</td>
</tr>
<tr>
<td></td>
<td>ii. 359</td>
</tr>
<tr>
<td></td>
<td>ii. 134</td>
</tr>
<tr>
<td></td>
<td>ii. 106</td>
</tr>
<tr>
<td></td>
<td>ii. 104</td>
</tr>
<tr>
<td></td>
<td>ii. 99</td>
</tr>
<tr>
<td></td>
<td>ii. 57</td>
</tr>
<tr>
<td></td>
<td>ii. 57</td>
</tr>
<tr>
<td></td>
<td>ii. 57</td>
</tr>
<tr>
<td></td>
<td>ii. 62</td>
</tr>
<tr>
<td></td>
<td>ii. 57</td>
</tr>
</tbody>
</table>
INDEX.

Gypsum, prismatic ii. 62 Hemi-prismatic Ruby-blende iii. 42
 prismaticoidal ii. 57
Gypsum-haloide ii. 57 Schiller-spar ii. 207
 prismatic ii. 62 Sulphur iii. 49
 prismaticoidal ii. 57
Gypsum-haloide ii. 57 Schiller-spar ii. 207
 prismatic ii. 62 Sulphur iii. 49
 prismaticoidal ii. 57
Habreneme-malachite ii. 173 Hematite ii. 121
 hemi-prismatic ii. 175 Hepatite ii. 124
 prismatic ii. 173 Hessonite ii. 365
Hair-salt ii. 50 Heulandite ii. 240, 242
 Hair-salt ii. 50 Heulandite ii. 240, 242
Hal-baryte ii. 116 Hexahedral Cobalt-pyrites ii. 455
di-prismatic ii. 119
 hemi-prismatic iii. 77 Glance-blende iii. 31
 peritomous ii. 116 Gold ii. 436
 prismatic ii. 121 Iron-pyrites ii. 457
 prismaticoidal ii. 126 Koupone-spar ii. 227
Haloide ii. 57 Lead-glance iii. 13
 Haloide ii. 57 Lead-glance iii. 13
 Halotrichum ii. 50 Lirocone-malachite ii. 162
Hard Fahlunite ii. 320 Pearl-Kerate ii. 154
Harmotome ii. 229 Rock-salt ii. 36
Hart-Wasser ii. 21 Silver ii. 433
Hatchetine iii. 106 Silver-glance iii. 11
Haiyne iii. 107 Hialith ii. 332
 Heavy-spar iii. 121 Hiazinth ii. 363
 Heliotrop ii. 321 Hisingerite iii. 108
 Heliotrope ii. 327 Holz, bituminöses iii. 61
 Helvine ii. 357 Hone iii. 186
Hematite, black ii. 418 Honeystone iii. 56
 brown ii. 412 Honigstein iii. 56
 red ii. 408 Hopeite iii. 109
Hemi-prismatic Augite-spar ii. 274 Hornblende ii. 274
 Habroneme-malachite ii. 175 Hornblende ii. 274
 Hal-baryte iii. 77 Hornblende ii. 274
 Koupone-spar ii. 242 Hornblende ii. 274
 Lead-baryte ii. 137 Hornblende ii. 274
 Natron-salt ii. 27 Houille iii. 61
<p>| Humboldtine | iii. 110 | Iron, native | ii. 442 |
| Humboldtite | ii. 220 | octahedral | ii. 442 |
| Humite | iii. 110 | oxydulated | ii. 339 |
| Hyacinth | ii. 365, 369 | prismatic blue | ii. 188 |
| Hyalite | ii. 332 | phosphate of | ii. 188 |
| Hyalosiderite | iii. 111 | spathose | ii. 102 |
| Hydrate of Magnesia | iii. 112 | specular | ii. 404 |
| Hydrogen-gas | ii. 17 | sulphate of | ii. 41 |
| | | | |
| carburytted | ii. 18 | titanitic | ii. 397 |
| empyreumatic | ii. 18 | tungstate of | ii. 387 |
| phosphorous | ii. 19 | Iron-earth, green | iii. 86, 106 |
| phosphuretted | ii. 19 | Iron-flint | ii. 328 |
| pure | ii. 17 | Iron-froth, red | ii. 408 |
| sulphureous | ii. 19 | brown | ii. 421 |
| sulphuretted | ii. 19 | Iron-mica | ii. 188 |
| Hydrolite | iii. 104 | Iron-ore | ii. 397 |
| Hydrophane | ii. 332 | axotomous | ii. 397 |
| Hyperstene | ii. 209 | black | ii. 418 |
| | | | |
| Ice-spar | ii. 251 | columnar clay | ii. 408 |
| Ichthyophthalm | ii. 246 | di-prismatic | ii. 414 |
| Idocrase | ii. 354 | dodecahedral | ii. 403 |
| Idokras | ii. 354, 364 | lenticular clay | ii. 408 |
| Ignis fatuus | ii. 20 | magnetic | ii. 401 |
| Ilvait | ii. 414 | micaceous | ii. 408 |
| Indianite | iii. 113 | octahedral | ii. 399 |
| Indicolite | ii. 353 | pitchy | iii. 136 |
| Iolite | ii. 319 | prismatic | ii. 410 |
| Iridium | iii. 114 | red | ii. 404, 407 |
| Iridium and osmium, alloy of | iii. 114 | rhombohedral | ii. 404 |
| Iron | ii. 442 | rhomboidal | ii. 404 |
| arseniate of | ii. 162 | Iron-pyrites | ii. 457, 462 |
| arsenical | ii. 449 | common | ii. 457 |
| carbonate of | ii. 102 | hexahedral | ii. 457 |
| chromate of | ii. 396 | magnetic | ii. 465 |
| earthy blue | ii. 190 | prismatic | ii. 461 |
| hydrour oxide of | ii. 410 | rhombohedral | ii. 465 |</p>
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Volume</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron-pyrites, rhomboidal</td>
<td>ii.</td>
<td>465</td>
<td>Kieselmalachit</td>
</tr>
<tr>
<td>white</td>
<td></td>
<td></td>
<td>Kieselschiefer</td>
</tr>
<tr>
<td>Iron-sand</td>
<td>ii.</td>
<td>401</td>
<td>Killinite</td>
</tr>
<tr>
<td>Iron-shot copper-green</td>
<td>ii.</td>
<td>150</td>
<td>Knebelite</td>
</tr>
<tr>
<td>Iron-sinter</td>
<td>iii.</td>
<td>115</td>
<td>Kobalt, arseniskaures</td>
</tr>
<tr>
<td>Iron-stone, green</td>
<td>ii.</td>
<td>364</td>
<td>Kobaltblüthe</td>
</tr>
<tr>
<td>Jade</td>
<td>iii.</td>
<td>149</td>
<td>Kochsalz</td>
</tr>
<tr>
<td>Jamesonite</td>
<td>i.</td>
<td>471</td>
<td>Kohlenblende</td>
</tr>
<tr>
<td>Jargon de Ceylon</td>
<td>ii.</td>
<td>371</td>
<td>Kohlensäure</td>
</tr>
<tr>
<td>Jasper</td>
<td>ii.</td>
<td>321</td>
<td>Kohlensaurer Baryt</td>
</tr>
<tr>
<td>Jayet</td>
<td>iii.</td>
<td>61</td>
<td>Strontian</td>
</tr>
<tr>
<td>Jeffersonite</td>
<td>iii.</td>
<td>115</td>
<td>Kohlensaures Eisen</td>
</tr>
<tr>
<td>Jet</td>
<td>iii.</td>
<td>61</td>
<td>Blei</td>
</tr>
<tr>
<td>Kalamit</td>
<td>ii.</td>
<td>275</td>
<td>Mangan</td>
</tr>
<tr>
<td>Kalk</td>
<td>ii.</td>
<td>84</td>
<td>Natron</td>
</tr>
<tr>
<td>flusssaurer</td>
<td>ii.</td>
<td>69</td>
<td>Kohlenwasserstoffgas</td>
</tr>
<tr>
<td>kohlensaurer</td>
<td>ii.</td>
<td>84</td>
<td>Kokkolith</td>
</tr>
<tr>
<td>phosphorsaurer</td>
<td>ii.</td>
<td>73</td>
<td>Kolophonit</td>
</tr>
<tr>
<td>wasserfreier schwebfelsaurer</td>
<td>ii.</td>
<td>62</td>
<td>Korund</td>
</tr>
<tr>
<td>wasserhaltiger schwefelsaurer</td>
<td>ii.</td>
<td>57</td>
<td>axotomous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>diatomous</td>
</tr>
<tr>
<td>Kalkstein</td>
<td>ii.</td>
<td>83</td>
<td>dodecahedral</td>
</tr>
<tr>
<td>Kalktuff</td>
<td>ii.</td>
<td>83</td>
<td>hemi-prismatic</td>
</tr>
<tr>
<td>Kallochrom</td>
<td>ii.</td>
<td>137</td>
<td>hexahedral</td>
</tr>
<tr>
<td>Kalzedon</td>
<td>ii.</td>
<td>321</td>
<td>paratomous</td>
</tr>
<tr>
<td>Kamkies</td>
<td>ii.</td>
<td>462</td>
<td>prismatic</td>
</tr>
<tr>
<td>Kaneelstein</td>
<td>ii.</td>
<td>364</td>
<td>prismatoidal</td>
</tr>
<tr>
<td>Kannelkohle</td>
<td>iii.</td>
<td>61</td>
<td>pyramidal</td>
</tr>
<tr>
<td>Kaolin</td>
<td>ii.</td>
<td>263</td>
<td>rhombohedral</td>
</tr>
<tr>
<td>Karinthin</td>
<td>ii.</td>
<td>275</td>
<td>trapezoidal</td>
</tr>
<tr>
<td>Karpholite</td>
<td>iii.</td>
<td>116</td>
<td>Kreide</td>
</tr>
<tr>
<td>Karstenit</td>
<td>ii.</td>
<td>62</td>
<td>Kreuzstein</td>
</tr>
<tr>
<td>Katzenauge</td>
<td>ii.</td>
<td>321</td>
<td>Krisoberil</td>
</tr>
<tr>
<td>Kerate</td>
<td>ii.</td>
<td>154</td>
<td>Krisolith</td>
</tr>
<tr>
<td>Kieselkupfer</td>
<td>ii.</td>
<td>153</td>
<td>Krisopras</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Kryolith</td>
<td>ii. 66</td>
<td>Lazulith</td>
<td>ii. 292</td>
</tr>
<tr>
<td>Krystallisirte Blaueisen-erde</td>
<td>ii. 188</td>
<td>kürniger</td>
<td>ii. 290</td>
</tr>
<tr>
<td>Kupfer, gediegen</td>
<td>ii. 444</td>
<td>Lead, arseniate of blue</td>
<td>iii. 13</td>
</tr>
<tr>
<td>kohlensaures</td>
<td>ii. 167, 175</td>
<td>phosphorsaures</td>
<td>ii. 173</td>
</tr>
<tr>
<td>Kupferfahlerz</td>
<td>iii. 1</td>
<td>cupreous sulphate of</td>
<td></td>
</tr>
<tr>
<td>Kupferglass</td>
<td>iii. 8</td>
<td>Kupfer</td>
<td>ii. 178</td>
</tr>
<tr>
<td>Kupferkies</td>
<td>ii. 469</td>
<td>gemeinsen</td>
<td></td>
</tr>
<tr>
<td>bunter</td>
<td>ii. 467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupferlasur</td>
<td>ii. 167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupfernickel</td>
<td>ii. 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupferschaum</td>
<td>ii. 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupfersmaragd</td>
<td>ii. 171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupferzitriol</td>
<td>ii. 44</td>
<td>Lead and copper, chromate of</td>
<td></td>
</tr>
<tr>
<td>Kyanite</td>
<td>ii. 213</td>
<td>Lead-baryte</td>
<td>iii. 167</td>
</tr>
<tr>
<td>Labrador</td>
<td>ii. 251</td>
<td>axotomous</td>
<td>ii. 144</td>
</tr>
<tr>
<td>Labrador schiller-spar</td>
<td>ii. 209</td>
<td>di-prismatic</td>
<td>ii. 130</td>
</tr>
<tr>
<td>Labrador felspar</td>
<td>ii. 258</td>
<td>hemi-prismatic</td>
<td>ii. 137</td>
</tr>
<tr>
<td>Labradorite</td>
<td>ii. 257</td>
<td>peritomous</td>
<td>ii. 151</td>
</tr>
<tr>
<td>Lapis lazuli</td>
<td>ii. 288</td>
<td>prismatic</td>
<td>ii. 142</td>
</tr>
<tr>
<td>Lapis ollaris</td>
<td>ii. 196</td>
<td>pyramidal</td>
<td>ii. 140</td>
</tr>
<tr>
<td>Lasurstein</td>
<td>ii. 288</td>
<td>rhombohedral</td>
<td>ii. 133</td>
</tr>
<tr>
<td>Latrobeite</td>
<td>iii. 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laumonite</td>
<td>ii. 234</td>
<td>cobaltic</td>
<td>iii. 88</td>
</tr>
<tr>
<td>Lave alterée alunifère</td>
<td>ii. 67</td>
<td>hexahedral</td>
<td>iii. 13</td>
</tr>
<tr>
<td>vitreuse obsidiene</td>
<td>ii. 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitreuse perlée</td>
<td>ii. 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitreuse pumiceé</td>
<td>ii. 337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lazulite</td>
<td>ii. 289, 290</td>
<td>hemi-prismatic</td>
<td>ii. 137</td>
</tr>
</tbody>
</table>
INDEX.

Lead-spar, prismatic
pyramidal
red
rhomboidal
tri-prismatic
Lebererz
Leberkies ii. 462, 465
Leelite
Lenticular copper
Lepidolite
crystallized
Leucite
Leuzit
Levyne
Lievrite
Ligurite
Lime, arseniate of
borate of
carbonate of
fluorate of
phosphate of
sulphate of
tungstate of
Lime-haloide
brachytypous
macrotypous
paratominous
prismatic
rhombohedral
Limestone
brachytypous
macrotypous
magnesian
prismatic
rhombohedral
Linsenerz
Linsenkupfer

Liquid Sulphuric-acid ii. 24
Liriconite ii. 160
Lirocone-malachite ii. 160
hexahedral ii. 162
prismatic ii. 160
Lithomarge iii. 183
Loam iii. 180
Loboite ii. 356
Lomonit ii. 234
Luft, atmosphærische ii. 20
Lumachella ii. 91
Lydian stone ii. 326

Macroleite
Macrotypous Lime-ha-
haloide
Parachrose-baryte ii. 106
Magnesia, borate of ii. 347
carbonate of iii. 121
hydrate of iii. 112
native iii. 112
sulphate of ii. 48
Magnesia and iron, car-
borate of ii. 98
Magnesian marble iii. 122
Magnésie, boratée ii. 348
sulfatée ii. 48
Magnesite iii. 121
Magnetiteisenstein ii. 399
Magnetic iron-ore ii. 401
Magnetskies ii. 465
Malachite ii. 158, 175
di-prismatic green ii. 175
common ii. 175
prismatic ii. 167
prismatic blue ii. 167
prismatic green ii. 173
Malacolithe ii. 268 Marble, magnesian iii. 122
Mangan, kohlensaures ii. 106 Marekanite ii. 339
Manganblende iii. 31 Margarite ii. 204
Manganese, black ii. 416 Marl ii. 90
carbonate of ii. 106 Marle, bituminous iii. 178
compact grey oxide of ii. 418 Marmo bardiglio di Bergamo ii. 65
corneous iii. 123 Marmolite iii. 124
cupreous iii. 92 Melanite iii. 264
grey oxide of iii. 419 Martial arseniate of phosphate of iii. 136 copper iii. 149
rhomboidal red ii. 106 Mascagnine iii. 125
siliciferous oxide of iii. 122 Melonite ii. 264
sulphuret of iii. 31 Meltane-glance iii. 27
Manganèse, carbonaté ii. 106 Melanit iii. 359
oxidé carbonaté ii. 106 Melanite ii. 361
oxidé hydraté ii. 416 Melichrone-resin iii. 56
oxidé rose silicifère amorphe ii. 106 Melilite iii. 125
oxydé ii. 419 Mellite iii. 56
oxydé hydraté con-
crétionné ii. 418 Menilite ii. 332
oxydé noir-brunatre ii. 418 Mercure argental ii. 431
sulfuré iii. 31 muriaté ii. 156
Manganese-blende iii. 31 natif ii. 433
Manganese-ore ii. 416 sulfuré iii. 44
black ii. 418 Mercury ii. 431
compact ii. 418 dodecahedral ii. 431
fibrous ii. 418 fluid ii. 432
foliated black ii. 416 liquid native ii. 432
grey ii. 419 muriaté of ii. 156
prismatic ii. 418. 419 pyramidal corneous ii. 156
prismatoidal ii. 419 sulphuret of iii. 44
pyramidal ii. 416 Mergel ii. 83
uncleavable ii. 418 Mergelschiefer, bitumi-
Manganese-spar ii. 122 nöser ii. 83
Manganglanz iii. 31 Mesole iii. 126
Marble ii. 93 Mesoline iii. 126
INDEX.

Mesolite ii. 237 Mountain soap iii. 184
Mesotype ii. 236 tallow iii. 107
épontée ii. 244 Muller's glass ii. 332
Metal ii. 423 Muriate of ammonia ii. 39
Meteoreisen ii. 442 of copper ii. 74
Mica ii. 178, 196 of mercury ii. 156
rhomboidal ii. 193, 196 of silver ii. 154
Miemite ii. 97 Muriatic-acid ii. 23
Mine d'argent grise antimoniale iii. 30 Murio-carbonate of lead ii. 150
Mineral-Alcali ii. 27 Moscovy glass ii. 202
Mineral, agaric ii. 89
Mineral adipocire iii. 107 Nacrite ii. 196
cauchochouk iii. 60 Nagyager-erz iii. 16
carbon iii. 64 Naphtha iii. 59
charcoal iii. 64, 66 Native Amalgam ii. 431
oíl iii. 59 Antimony ii. 426
pitch iii. 59 Arsenic ii. 423
turquoise iii. 63 Bismuth ii. 430
Mineral-coal iii. 61 Copper ii. 444
bituminous iii. 61 Gold ii. 436
non-bituminous iii. 64 Iron ii. 442
Mineral-resin iii. 57 Lead iii. 129
black iii. 59 Nickel iii. 129
yellow iii. 57 Palladium iii. 134
Mispickel ii. 449 Platin ii. 441
Molybdänglanz iii. 18 Quicksilver ii. 432
Molybdänsaures Blei ii. 140 Silver ii. 433
Molybdate of lead ii. 140 Tellurium ii. 424
Molybdena, rhomboidal iii. 18 Natrolite ii. 237
sulphuret of iii. 18 Natron ii. 27
Molybdena-glance iii. 18 boraxsaures ii. 52
Molybdena-silver iii. 127 kohlensaures ii. 27
Molybdene sulphure iii. 18 prismatic ii. 27
Molybdic silver iii. 127 schwefelsaures ii. 31
Moonstone ii. 264 Natron-salt ii. 27
Moor coal iii. 62 hemi-prismatic ii. 27
Moorkohle iii. 61 prismatic ii. 29
INDEX.

Naturlich Amalgam ii. 431 Octahedral Copper-ore ii. 381
Kochsalz ii. 36 Copper-pyrites ii. 467
Mineral-Alkali ii. 27 Corundum ii. 298
Natürlcher Salmiak ii. 39 Diamond ii. 306
Salpeter ii. 34 Fluor-haloide ii. 69
Schwefel iii. 52 Iron-ore ii. 399
Vitriol ii. 41. 44. 46 Iron ii. 442
Needle-ore iii. 130 Octahedrite ii. 379
Nepheline ii. 250 Oil, mineral iii. 59
Nephrite iii. 131 Oktaedrit ii. 379
Nickel, arsenical ii. 446 Olive-malachite ii. 164
arseniaté ii. 448 di-prismatic ii. 166
arseniate of ii. 448 prismatic ii. 164
native iii. 129 Olivenerz ii. 164. 166
Nickel-ochre ii. 448 Olivenit ii. 164
Nickel-pyrites ii. 446 Olivenite acicular ii. 164
Nickeliferous grey anti-
timony iii. 131 di-prismatic ii. 160. 166
Nigrine ii. 376 prismatic ii. 164. 166. 173
Nitrate of soda iii. 132 hexahedral ii. 162
of potash ii. 34 radiated acicular iii. 144
Nitre ii. 34 Olivenkupfer ii. 164
Nitre-salt ii. 34 Omphazit ii. 268
Non-bituminous Mine-
ral-coal iii. 64 Oolite ii. 89
Nasin iii. 157 Opal-jasper ii. 335
Nuttallite iii. 133 Opal-jaspis ii. 332
Or natif ii. 434
Oblique prismatic ar-
seniate of copper iii. 144 Oriental amethyste ii. 303
Obsidian ii. 337 aquamarine ii. 312
Octahedral Alum-salt ii. 50 emerald ii. 303
Ammoniac-salt ii. 39 ruby ii. 303
Arsenic-acid ii. 26 sapphire ii. 303
Bismuth ii. 430 topaz ii. 303
Chrome-ore ii. 396 Orpiment iii. 47. 48
Cobalt-pyrites ii. 452 yellow iii. 47
Copper ii. 444 red iii. 49
INDEX.

Orthite iii. 133 Péridot ii. 345
Osmium, alloy of iridium and iii. 114 Peritomous Hal-baryte ii. 116
Oxide of antimony ii. 152 Lead-baryte iii. 44
of arsenic ii. 26 Ruby-blende iii. 44
of iron, hydrous ii. 410 Titantium-ore ii. 376
of manganese, grey compact ii. 418 Perlglimmer ii. 304
grey ii 419 Perlstein ii. 337
siliciferous iii. 122 Petaline-spar ii. 248
of tin ii. 384 Petalite ii. 248
of zinc, red ii. 380 Pharmakolit ii. 162
siliceous ii. 108 Phisalit ii. 308
Palladium iii. 134 Phosphate of cop-
Papierkohle iii. 61 per ii. 166. 173
brachytypous ii. 101 hydrous ii. 173
macrotypous ii. 106 of iron ii. 188
Pharmacolite iii. 135
Paranthine ii. 264 of lead ii. 133
of lime ii. 73
Paratomous Augite-spar ii. 268 of manganese ii. 136
Kouphone-spar ii. 229 of uranium ii. 182
Lime-haloide ii. 100 Phosphorit ii. 73
Pargasite ii. 281 Phosphorkupfererz ii. 173
Pea-stone ii. 38 Phosphorit ii. 73
of iron ii. 188
of lead ii. 133
Phosphorus Hydrogen-
gas ii. 19
Peach ii. 198 Phosphorsaurer Kalk ii. 73
Pearl-kerate ii. 154 Phosphorsaures Blei ii. 134
hexahedral ii. 154 Eisen ii. 188
pyramidal ii. 156 Kupfer ii. 166. 173
Pearl-mica ii. 204 Phosphorwasserstoffgas ii. 19
Pearlspar ii. 94 Photizite iii. 123
Pearlstone ii. 337 Physalite ii. 311
Pecherz ii. 393 Picnit ii. 308
Pechkohle iii. 61 Picrolite iii. 136
Pechstein ii. 337 Picropharmacolite iii. 135
Pechuran ii. 393 Picrosmine iii. 137
Peliom ii. 319 Pictite iii. 167
Pentaklasit ii. 268 Pierre de trippes ii. 64
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinite</td>
<td>iii. 139</td>
</tr>
<tr>
<td>Pipe-clay</td>
<td>iii. 180</td>
</tr>
<tr>
<td>Pirenüit</td>
<td>ii. 359</td>
</tr>
<tr>
<td>Pirop</td>
<td>ii. 359</td>
</tr>
<tr>
<td>Pisolite</td>
<td>ii. 89</td>
</tr>
<tr>
<td>Pistazit</td>
<td>ii. 262</td>
</tr>
<tr>
<td>Pitch, mineral</td>
<td>iii. 59</td>
</tr>
<tr>
<td>Pitch-blende</td>
<td>ii. 393</td>
</tr>
<tr>
<td>Pitch coal</td>
<td>iii. 63</td>
</tr>
<tr>
<td>Pitch-ore</td>
<td>ii. 393</td>
</tr>
<tr>
<td>Pitchstone</td>
<td>ii. 337</td>
</tr>
<tr>
<td>Pitchy iron-ore</td>
<td>iii. 136</td>
</tr>
<tr>
<td>Plasma</td>
<td>ii. 321</td>
</tr>
<tr>
<td>Platina</td>
<td>ii. 441</td>
</tr>
<tr>
<td>Pleonaste</td>
<td>ii. 295</td>
</tr>
<tr>
<td>Plomb carbonate</td>
<td>ii. 130</td>
</tr>
<tr>
<td>carbonaté rhomboidal</td>
<td>ii. 144</td>
</tr>
<tr>
<td>chromaté</td>
<td>ii. 137</td>
</tr>
<tr>
<td>hydro-aluminé</td>
<td>iii. 140</td>
</tr>
<tr>
<td>molybdaté</td>
<td>ii. 140</td>
</tr>
<tr>
<td>natif</td>
<td>iii. 129</td>
</tr>
<tr>
<td>phosphaté</td>
<td>ii. 134</td>
</tr>
<tr>
<td>sulfaté</td>
<td>ii. 142</td>
</tr>
<tr>
<td>sulfuré</td>
<td>iii. 13</td>
</tr>
<tr>
<td>sulfuré antimonifère</td>
<td>iii. 5</td>
</tr>
<tr>
<td>sulfuré plombo-cuprifère</td>
<td>iii. 5</td>
</tr>
<tr>
<td>Plombgommme</td>
<td>iii. 140</td>
</tr>
<tr>
<td>Plomboago</td>
<td>ii. 191</td>
</tr>
<tr>
<td>Plumbo-cupriferous sulphure of bismuth</td>
<td>iii. 130</td>
</tr>
<tr>
<td>Polishing slate</td>
<td>iii. 164</td>
</tr>
<tr>
<td>Polyhalite</td>
<td>iii. 141</td>
</tr>
<tr>
<td>Polyxen</td>
<td>ii. 441</td>
</tr>
<tr>
<td>Porcelain-earth</td>
<td>ii. 259</td>
</tr>
<tr>
<td>Porcelain-spar</td>
<td>ii. 260</td>
</tr>
<tr>
<td>Pot-stone</td>
<td>ii. 196</td>
</tr>
<tr>
<td>Potash, nitrate of sulphate</td>
<td>iii. 159</td>
</tr>
<tr>
<td>Potters-clay</td>
<td>iii. 180</td>
</tr>
<tr>
<td>Prase</td>
<td>ii. 326</td>
</tr>
<tr>
<td>Prehnite</td>
<td>ii. 217</td>
</tr>
<tr>
<td>Prismatic Andalusite</td>
<td>ii. 293</td>
</tr>
<tr>
<td>Antimony</td>
<td>ii. 427</td>
</tr>
<tr>
<td>Antimony-baryte</td>
<td>ii. 151</td>
</tr>
<tr>
<td>Antimony-glance</td>
<td>iii. 4.21</td>
</tr>
<tr>
<td>arseniate of copper, oblique</td>
<td>iii. 144</td>
</tr>
<tr>
<td>Arsenical-pyrites</td>
<td>ii. 449</td>
</tr>
<tr>
<td>Augite-spar</td>
<td>ii. 206</td>
</tr>
<tr>
<td>Axinite</td>
<td>ii. 341</td>
</tr>
<tr>
<td>Azure-malachite</td>
<td>ii. 167</td>
</tr>
<tr>
<td>Azure-spar</td>
<td>ii. 290</td>
</tr>
<tr>
<td>Bismuth-glance</td>
<td>iii. 19</td>
</tr>
<tr>
<td>Boracic-acid</td>
<td>ii. 25</td>
</tr>
<tr>
<td>Borax-salt</td>
<td>ii. 52</td>
</tr>
<tr>
<td>Brithyne-salt</td>
<td>ii. 54</td>
</tr>
<tr>
<td>Chrysolite</td>
<td>ii. 345</td>
</tr>
<tr>
<td>Cobalt-mica</td>
<td>ii. 184</td>
</tr>
<tr>
<td>Copper-glance</td>
<td>iii. 8</td>
</tr>
<tr>
<td>Corundum</td>
<td>ii. 304</td>
</tr>
<tr>
<td>Cryone-haloide</td>
<td>ii. 66</td>
</tr>
<tr>
<td>Disthene-spar</td>
<td>ii. 213</td>
</tr>
<tr>
<td>Dystome-spar</td>
<td>ii. 220</td>
</tr>
<tr>
<td>Emerald</td>
<td>ii. 313</td>
</tr>
<tr>
<td>Emerald-malachite</td>
<td>ii. 95</td>
</tr>
<tr>
<td>Epsom-salt</td>
<td>ii. 48</td>
</tr>
<tr>
<td>Euchlore-mica</td>
<td>ii. 180</td>
</tr>
<tr>
<td>Feld-spar</td>
<td>ii. 251</td>
</tr>
<tr>
<td>Gadolinite</td>
<td>ii. 371</td>
</tr>
<tr>
<td>Glauber-salt</td>
<td>ii. 31</td>
</tr>
</tbody>
</table>
INDEX.

Prismatic Gypsum-haloide ii. 62
Prismatic Hal-baryte ii. 126
Habroneme-malachite ii. 173
Kouphone-spar ii. 239
Hal-baryte ii. 121
Manganese-ore ii. 419
Iron-mica ii. 188
Schiller-spar ii. 209
Iron-ore ii. 410
Sulphur iii. 47
Iron-pyrites ii. 461
blättriger ii. 166
Kouphone-spar ii. 236
Pumice ii. 337
Lead-baryte ii. 142
Pure Atmospheric-gas ii. 20
Lime-haloide ii. 79
Atmospheric-water ii. 21
Lirocone-malachite ii. 160
Hydrogen-gas ii. 17
Melane-glance iii. 27
Purple-blende iii. 36
Natron-salt ii. 29
Pycnite ii. 308. 311
Nickel-pyrites ii. 446
Pyrallolite iii. 141
Nitre-salt ii. 34
Pyramidal Copper-pyrites ii. 469
Olive-malachite ii. 164
Petaline-spar ii. 248
Euchlore-mica ii. 182
Purple-blende iii. 36
Feld-spar ii. 264
Quartz ii. 319
Garnet ii. 354
Scheelium-ore ii. 387
Kouphone-spar ii. 244
Schiller-spar ii. 211
Lead-baryte ii. 140
Sulphur iii. 52
Manganese-ore ii. 416
Talc-mica ii. 193
Melichrone-resin iii. 56
Tantalum-ore ii. 300
Pearl-kerate ii. 156
Tellurium-glance iii. 16
Scheelium-baryte ii. 113
Titanium-ore ii. 373
Tin-ore ii. 384
Topaz ii. 308
Titanium-ore ii. 379
Triphane-spar ii. 216
Zircon ii. 368
Vitriol-salt ii. 46
Pyreneite ii. 361
Zinc-baryte ii. 108
Pyrites ii. 446
Prismaticoidal Antimony-glance iii. 23. 26
auriferous ii. 461
capillary iii. 130
cellular ii. 460. 464
cockscomb ii. 464
Copper-glance iii. 4
Copper-pyrites ii. 446
hepatic ii. 464
Garnet ii. 306
magnetic ii. 465
Gypsum-haloide ii. 57
radiated ii. 464
<table>
<thead>
<tr>
<th>Term</th>
<th>Volume</th>
<th>Page</th>
<th>Term</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrites, spear</td>
<td>ii.</td>
<td>464</td>
<td>Realgar</td>
<td>iii.</td>
<td>48</td>
</tr>
<tr>
<td>Pyromorphit</td>
<td>ii.</td>
<td>134</td>
<td>Red antimony</td>
<td>iii.</td>
<td>36</td>
</tr>
<tr>
<td>Pyrop</td>
<td>ii.</td>
<td>339</td>
<td>manganese, rhombooidal</td>
<td>ii.</td>
<td>106</td>
</tr>
<tr>
<td>Pyrope</td>
<td>ii.</td>
<td>361</td>
<td>orpiment</td>
<td>iii.</td>
<td>49</td>
</tr>
<tr>
<td>Pyrothite</td>
<td>iii.</td>
<td>142</td>
<td>silver</td>
<td>iii.</td>
<td>38</td>
</tr>
<tr>
<td>Pyrosmalite</td>
<td>iii.</td>
<td>143</td>
<td>vitriol</td>
<td>iii.</td>
<td>145</td>
</tr>
<tr>
<td>Pyro-smaragdus</td>
<td>ii.</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyroxène</td>
<td>ii.</td>
<td>268</td>
<td>Resin</td>
<td>iii.</td>
<td>56</td>
</tr>
<tr>
<td>Quartz</td>
<td>ii.</td>
<td>319, 325</td>
<td></td>
<td>ii.</td>
<td>326</td>
</tr>
<tr>
<td>common</td>
<td>ii.</td>
<td>326</td>
<td>Rhaetizit</td>
<td>ii.</td>
<td>213</td>
</tr>
<tr>
<td>empyrodox</td>
<td>ii.</td>
<td>337</td>
<td>Rhodochosit</td>
<td>ii.</td>
<td>106</td>
</tr>
<tr>
<td>fibrous</td>
<td>ii.</td>
<td>327</td>
<td>Rhodonite</td>
<td>iii.</td>
<td>123</td>
</tr>
<tr>
<td>fusible</td>
<td>ii.</td>
<td>337</td>
<td>Rhombohedral Alumhaloide</td>
<td>ii.</td>
<td>67</td>
</tr>
<tr>
<td>hyalin-concretionné</td>
<td>ii.</td>
<td>332</td>
<td>Antimony</td>
<td>ii.</td>
<td>426</td>
</tr>
<tr>
<td>indivisible</td>
<td>ii.</td>
<td>332, 337</td>
<td></td>
<td>ii.</td>
<td>299</td>
</tr>
<tr>
<td>prismatic</td>
<td>ii.</td>
<td>319</td>
<td>Emerald</td>
<td>ii.</td>
<td>316</td>
</tr>
<tr>
<td>prismatico-rhomboide</td>
<td>ii.</td>
<td>319</td>
<td>Emerald-malachite</td>
<td>ii.</td>
<td>171</td>
</tr>
<tr>
<td>- dal</td>
<td>ii.</td>
<td>319</td>
<td>Euchlore-mica</td>
<td>ii.</td>
<td>173</td>
</tr>
<tr>
<td>- résinite</td>
<td>ii.</td>
<td>332</td>
<td>Feld-spar</td>
<td>ii.</td>
<td>250</td>
</tr>
<tr>
<td>- rhombohedral</td>
<td>ii.</td>
<td>321</td>
<td>Fluor-haloide</td>
<td>ii.</td>
<td>73</td>
</tr>
<tr>
<td>- rhomboidal</td>
<td>ii.</td>
<td>321</td>
<td>Graphite-mica</td>
<td>ii.</td>
<td>191</td>
</tr>
<tr>
<td>- rose</td>
<td>ii.</td>
<td>326</td>
<td>Iron-ore</td>
<td>ii.</td>
<td>404</td>
</tr>
<tr>
<td>- spongiform</td>
<td>ii.</td>
<td>321</td>
<td>Iron-pyrites</td>
<td>ii.</td>
<td>465</td>
</tr>
<tr>
<td>- uncleavable</td>
<td>ii.</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quecksilber, gediegen</td>
<td>ii.</td>
<td>433</td>
<td>Kouphone-spar</td>
<td>ii.</td>
<td>232</td>
</tr>
<tr>
<td>Quecksilber-Hornerz</td>
<td>ii.</td>
<td>156</td>
<td>Lead-baryte</td>
<td>ii.</td>
<td>133</td>
</tr>
<tr>
<td>Quecksilber-Lebererz</td>
<td>iii.</td>
<td>44</td>
<td>Lime-haloide</td>
<td>ii.</td>
<td>83</td>
</tr>
<tr>
<td>Quicksilver, native</td>
<td>ii.</td>
<td>432</td>
<td>Molybdena-glance</td>
<td>iii.</td>
<td>18</td>
</tr>
<tr>
<td>Quicksilver liver-ore</td>
<td>iii.</td>
<td>45</td>
<td>Pearl-mica</td>
<td>ii.</td>
<td>204</td>
</tr>
<tr>
<td>Radiated acicular olivenite</td>
<td>iii.</td>
<td>144</td>
<td>Quartz</td>
<td>ii.</td>
<td>321</td>
</tr>
<tr>
<td>Rauschgelb</td>
<td>iii.</td>
<td>47</td>
<td>Ruby-blende</td>
<td>ii.</td>
<td>38</td>
</tr>
<tr>
<td>gelbes</td>
<td>iii.</td>
<td>47</td>
<td>Talc-mica</td>
<td>ii.</td>
<td>198</td>
</tr>
<tr>
<td>rothes</td>
<td>iii.</td>
<td>50</td>
<td>Tourmaline</td>
<td>ii.</td>
<td>349</td>
</tr>
<tr>
<td>Rauchwacke</td>
<td>iii.</td>
<td>73</td>
<td>Zinc-baryte</td>
<td>ii.</td>
<td>111</td>
</tr>
<tr>
<td>Rautenspath</td>
<td>ii.</td>
<td>94, 98</td>
<td>Rhomb-spar</td>
<td>ii.</td>
<td>96, 98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

Rock-milk ii. 89 Salt ii. 27
Rock-salt ii. 36 common ii. 36
Rock-wood ii. 279 Salzsäure ii. 23
Roestone ii. 89 Saphir ii. 299
Rohwand ii. 100 Saphir ii. 301
Röschgewächs iii. 29 oriental ii. 303
Rose quartz ii. 326 d'eau ii. 321
Roselite iii. 147 Sarcolite iii. 104. 147
Rosszahn ii. 100 Sassoline ii. 25
Rothbleierz ii. 137 Satin-spar ii. 82
Rotheisenstein ii. 404 Saugkalk ii. 84
Rothe Rauschgelb iii. 50 Saussurite iii. 148
Rothgiltigerz iii. 38 Scapolite ii. 264
Rothkupfererz ii. 391 Schabasit ii. 232
Rothspiesglasierz iii. 36 Schalstein ii. 286
Rubinglimmer ii. 413 Schéelin, calcaire ii. 113
Ruby ii. 301 ferruginé ii. 387
oriental ii. 303 Scheelit ii. 113
spinelle ii. 296. 298 Scheelium-baryt ii. 113
balas ii. 298 Scheelium-ore ii. 387
Ruby-blende iii. 38 Schieferspath ii. 83. 84
hemi-prismatic iii. 42 Schilfglasierz iii. 31
peritomous iii. 44 Schiller-spar ii. 206. 207
prismato-rhomboi-
dal iii. 44 axotomous ii. 274
rhombohedral iii. 38 diatomous ii. 206
rhomboideal iii. 38 hemi-prismatic ii. 207
Ruby silver iii. 38 labrador ii. 209
Ruby sulphur ii. 49 prismatic ii. 211
Russkohle iii. 61 prismatoidal ii. 209
Rutile ii. 376 Schillerspath ii. 206
Sahlit ii. 268 Schmelzein ii. 264
Sal ammoniac ii. 39 Schmirgel ii. 299
Salamstein ii. 296. 299 Schörl ii. 349
Salamstone ii. 301 Schörlartiger Beril ii. 308
Salmiak ii. 39 Schrifterz iii. 21
Salpeter ii. 34 Schrift-Tellur iii. 21
INDEX.

Schwaden ii. 23 Silber, gediegen ii. 433
Schwarz Braunstein, Silberglanz iii. 11
blättriger Silber-Hornerz ii. 154
dichter Silberspiessglanz ii. 427
färiger Silice fluatée alumi-
neuse ii. 308
Schwarzbleierz ii. 130 Siliceous oxide of zinc ii. 108
Schwarzeisenstein ii. 418 sinter ii. 332
Schwarzerz iii. 1. 31 Siliciferous oxide of
Schwarzgiltigerz manganese iii. 122
Schwarzkohle iii. 61 Sillimanite iii. 153
Schwarzmanganerz ii. 418 Silver ii. 433
Schwarzspiesglaserz iii. 5 Silver-glance iii. 11
Schwefel antimonial ii. 429
Schwefelkies arsenaical ii. 429
Schwefelsäure bismuthic iii. 78
Schweufelsaurer Baryt black ii. 435
Kalk, wasserfreier brittle sulphuret of iii. 27
Kalk, wasserhalti-
er flexible sulphuret
Strontian of iii. 30
Schwefelsaures Natron hexahedral ii. 433
Schwefelwasserstoffgas hexahedral corne-
Schweiflichte Saüre ous iii. 154
Schwerspath molybdic iii. 127
Schwerstein muriate of iii. 154
Schwimmkiesel native iii. 433
Schwimstein red iii. 38
Scolezite sulphuret of iii. 11
Schorodite vitreous iii. 11
Scorza white iii. 29
Sea-salt Silver and antimony, sulpheuret of iii. 30
Selenite Silver and copper, sulpheuret of iii. 94
Seleniuret of copper iii. 150
of silver and cop-
Seleniuret of iii. 94
Semi-opal Silver-glance iii. 11
Serpentine brittle iii. 27
Shale, bituminous hexahedral iii. 11
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver-glance, rhomboidal</td>
<td>iii. 27</td>
<td>Spath en tables</td>
<td>ii. 286</td>
</tr>
<tr>
<td>Sinter, siliceous</td>
<td>ii. 332</td>
<td>Spathose iron</td>
<td>ii. 102</td>
</tr>
<tr>
<td>Skapolith</td>
<td>ii. 264</td>
<td>Spathenstein</td>
<td>ii. 102</td>
</tr>
<tr>
<td>Skorodite</td>
<td>iii. 149</td>
<td>Speiskobalt</td>
<td>ii. 452</td>
</tr>
<tr>
<td>Slate, adhesive</td>
<td>iii. 177</td>
<td>Speiskobold, weisser</td>
<td>ii. 452</td>
</tr>
<tr>
<td>polising</td>
<td>iii. 184</td>
<td>Sphaerulite</td>
<td>iii. 155</td>
</tr>
<tr>
<td>Slate coal</td>
<td>iii. 63</td>
<td>Sphaerosiderit</td>
<td>ii. 102</td>
</tr>
<tr>
<td>Slate-spar</td>
<td>ii. 90</td>
<td>Sphene</td>
<td>ii. 373</td>
</tr>
<tr>
<td>Smaragd</td>
<td>ii. 316</td>
<td>Spiessglanzbleierz</td>
<td>iii. 5</td>
</tr>
<tr>
<td>Smaragdite</td>
<td>ii. 274</td>
<td>Spiessglanzweiss</td>
<td>ii. 152</td>
</tr>
<tr>
<td>Smoky topaz</td>
<td>ii. 330</td>
<td>Spiesglas-Silber</td>
<td>ii. 427</td>
</tr>
<tr>
<td>Snuff, Spanish</td>
<td>ii. 425</td>
<td>Spinel</td>
<td>ii. 295</td>
</tr>
<tr>
<td>Soap, mountain</td>
<td>iii. 184</td>
<td>Spinellane</td>
<td>iii. 156</td>
</tr>
<tr>
<td>Soapstone</td>
<td>iii. 157</td>
<td>Spinelle ruby</td>
<td>ii. 295</td>
</tr>
<tr>
<td>Soda</td>
<td>ii. 17</td>
<td>Spinelle zincifère</td>
<td>ii. 298</td>
</tr>
<tr>
<td>carbonate of</td>
<td>ii. 52</td>
<td>Spodumene</td>
<td>ii. 216</td>
</tr>
<tr>
<td>nitrate of</td>
<td>ii. 27</td>
<td>Sprödglaserz</td>
<td>iii. 27</td>
</tr>
<tr>
<td>sulphate of</td>
<td>iii. 132</td>
<td>Stangenkohle</td>
<td>iii. 65</td>
</tr>
<tr>
<td>Sodalite</td>
<td>ii. 225.226</td>
<td>Staurolite</td>
<td>ii. 366</td>
</tr>
<tr>
<td>Somervillite</td>
<td>iii. 154</td>
<td>Staurotide</td>
<td>ii. 366</td>
</tr>
<tr>
<td>Sommite</td>
<td>ii. 250</td>
<td>Steatite</td>
<td>iii. 157</td>
</tr>
<tr>
<td>Sordawalite</td>
<td>iii. 155</td>
<td>Steinheilite</td>
<td>ii. 320</td>
</tr>
<tr>
<td>Soude boratée</td>
<td>ii. 52</td>
<td>Steinsalz</td>
<td>ii. 36</td>
</tr>
<tr>
<td>carbonatée</td>
<td>ii. 27</td>
<td>Stilbite</td>
<td>ii. 239.242</td>
</tr>
<tr>
<td>muriatée</td>
<td>ii. 36</td>
<td>Stilpnosiderite</td>
<td>iii. 158</td>
</tr>
<tr>
<td>nitratée</td>
<td>iii. 132</td>
<td>Stinkgyps</td>
<td>ii. 57</td>
</tr>
<tr>
<td>sulfatée</td>
<td>ii. 31</td>
<td>Stinkkalk</td>
<td>ii. 34</td>
</tr>
<tr>
<td>Soufre</td>
<td>iii. 52</td>
<td>Stinkmergel</td>
<td>ii. 84</td>
</tr>
<tr>
<td>Spanish snuff</td>
<td>ii. 425</td>
<td>Stinkstein</td>
<td>ii. 33</td>
</tr>
<tr>
<td>Spar</td>
<td>ii. 206</td>
<td>Stinkzinnober</td>
<td>iii. 44</td>
</tr>
<tr>
<td>calcareous</td>
<td>ii. 89</td>
<td>Strahlkies</td>
<td>ii. 462</td>
</tr>
<tr>
<td>doubly refracting</td>
<td>ii. 92</td>
<td>Strahlstein</td>
<td>ii. 268.274</td>
</tr>
<tr>
<td>Bolognese-</td>
<td>ii. 124</td>
<td>Strahlzeolith</td>
<td>ii. 239</td>
</tr>
<tr>
<td>Spargelstein</td>
<td>ii. 73</td>
<td>Strommite</td>
<td>ii. 159</td>
</tr>
<tr>
<td>Spärkies</td>
<td>ii. 462</td>
<td>Stronthian</td>
<td>ii. 116</td>
</tr>
<tr>
<td>Sparry iron</td>
<td>ii. 101</td>
<td>Strontian, carbonate of</td>
<td>ii. 116</td>
</tr>
<tr>
<td>Spath chatoyant</td>
<td>ii. 206</td>
<td>kohlensaurer</td>
<td>ii. 116</td>
</tr>
</tbody>
</table>
INDEX.

Strontian, schwefelsaurer ii. 126 Sulphuret of lead iii. 13
sulphate of ii. 126 of manganese iii. 31
Strontiane carbonatée ii. 116 of mercury iii. 44
sulfatée ii. 126 of molybdena iii. 18
Strontianite ii. 116 of silver iii. 11
Subphosphate of alu-
mine iii. 169 of silver, brittle iii. 27
Succin iii. 57 of silver, flexible iii. 30
Sulphate of ammonia iii. 125 of silver and anti-
of barytes ii. 121 mony iii. 30
of cobalt iii. 145 of tin iii. 163
of copper ii. 44 of zinc iii. 32
of iron ii. 41 triple iii. 5
of lime ii. 57 Sulphuretted hydrogen-gas ii. 19
of lead ii. 142 Sulphuric-acid ii. 23
of magnesia ii. 48 aëriform ii. 23
of potash iii. 159 gaseous ii. 23
of soda ii. 31 liquid ii. 24
of strontia ii. 126 Sunstone ii. 264
of zinc ii. 46 Surturbrand iii. 64
Sulphato-carbonate of Swathe ii. 23
of lead ii. 148 Swine-stone ii. 90
Sulphato-tri-carbonate Tabular-spar ii. 286
of lead ii. 144 Tafelspath ii. 286
Sulphur iii. 47, 52 Talc ii. 193
hemi-prismatic iii. 49 Venetian ii. 198
prismatic iii. 52 Talc-mica ii. 193
prismatoidal iii. 47 prismatic ii. 193
Sulphureous Hydrogen-
gas ii. 19 rhombohedral ii. 198
Sulphuret of antimony iii. 23 rhombooidal ii. 198
of bismuth iii. 19 Talk ii. 194
of bismuth, cupri-
ferous iii. 91 Tallow, mountain iii. 107
of bismuth, plum-
bo-cupriferous iii. 130 Tantale oxidé ii. 390
of cobalt iii. 88 Tantalite ii. 390
of copper iii. 8 Tantalum-ore ii. 390
Tellure natif aurifère et argentifère iii. 21
INDEX.

Tellure natif aurifère et plombifère iii. 16 Tin-stone ii. 386
auro-argenti.
auro-ferrire iii. 21 Titane anatase ii. 379
ferrire et auro-
auro-plombifère iii. 16 calcaréo-siliceux ii. 373
fère ii. 424 oxydé ii. 376
Tellurium ii. 424 siliceo-calcaire ii. 373
black iii. 16 Titanitic iron ii. 397
graphic iii. 21 peritomous ii. 376
hexahedral ii. 424 prismatic ii. 373
native ii. 424 prismato-pyramidal ii. 376
prismatic black iii. 16 pyramidal ii. 379
yellow iii. 171 Topaz ii. 308
Tellurium-glance iii. 16 oriental ii. 303
Tennantite iii. 161 prismatic ii. 303
Terra miraculosa Sax-
oniae iii. 184 Topfstein ii. 194
Tesselite ii. 247 Torrelite iii. 164
Tetarto-prismatic Vi-
trio-salt ii. 44 Tourmaline ii. 349
Tetrahedral Boracite ii. 347 Sparr ii. 224
Copper-glance iii. 1 Traublenblei ii. 134
Garnet ii. 357 Tremolite ii. 278
Tetraklasit ii. 264 Tremolite ii. 275
Thomsonite iii. 162 Triclasis ii. 97
Thoneisenstein ii. 404. 410 Triphane ii. 216
Thulite iii. 162 Triphane-spar ii. 216
Thumerstone ii. 344 axotomous ii. 217
Thumite ii. 344 prismatic ii. 216
Tile-ore ii. 382 Triple sulphuret iii. 5
Tin, oxide of sulphuret of iii. 163 Trona ii. 27. iii. 164
Tin-ore ii. 384 Tufa, calcareous ii. 90
pyramidal ii. 384 Tungstate of iron ii. 387
cornish ii. 386 of lead iii. 165
Tin-pyrites iii. 163 of lime ii. 113
INDEX.

Tungsten ii. 113 Vitriol, red iii. 145
Turkey hone iii. 186 rhomboidal ii. 41
Turmalin ii. 349 white ii. 46
Turnerite iii. 166 Vitriol-Bleierz ii. 142
Turquoise, mineral iii. 83 Vitriol-salt ii. 41
Turquoise iii. 83 hemi-prismatic ii. 41
prismatic ii. 46
tetarto-prismatic ii. 44
Umber iii. 186
Uncleavable Cerium-ore ii. 394 Vivianite ii. 188
Manganese-ore ii. 418 Vulpinite ii. 64
Quartz ii. 332
Staphyline-malachite ii. 158 Wad, black ii. 421
Uranium-ore ii. 393 Wagnerite iii. 169
Uran-Glimmer ii. 182 Wand, rohe ii. 100
Uran-mica ii. 182 Wandstein ii. 100
Uran-ochre ii. 393 Weich- ii. 21
Uran-Oxyd ii. 182 Wasserblei ii. 16
Uran-Pecherz ii. 393 Wasserkies ii. 462
Urane oxydé ii. 182 Wasserstoffgas ii. 17
Urane oxydulé ii. 393 Water ii. 21
Uranite ii. 182 Wavellite iii. 169
Uranium-ore ii. 393 Weich-Wasser ii. 21
Uranium, indivisible phosphate of ii. 182 Weichgewächs iii. 12
Variolite ii. 250 Weisser Speiskobold ii. 452
Vauquelinite iii. 167 Weisssiglitzerz iii. 29
Venetian talc ii. 193 Wernerite ii. 264
Vesuvian ii. 354 Whet-slate iii. 186
Velvet-blue copper iii. 163 White antimony ii. 152
cobalt, radiated ii. 454
silver iii. 11 silver iii. 29
Vitriol, blue ii. 44 vitriol ii. 46
green ii. 41 Wismuth, gediegen ii. 430
natürlicher ii. 41, 44. 46 Wismuthglanz ii. 19
prismatic ii. 44 Withamite ii. 170
pyramidal ii. 46 Witherite ii. 119
INDEX.

Wolfram ii. 367 Zeolite, trapezoidal ii. 224
Wollastonite ii. 286 Zeolith ii. 236
Wood, bituminous iii. 62 Ziegelerz ii. 381
Wood, rock ii. 279 Zinc, carbonate of ii. 111
Wood-opal ii. 335 carbonaté ii. 111
Wood-rose ii. 326 oxidé ii. 108
Wood-tin ii. 386 oxidé ferrifère lamellaire brun rouge-atre ii. 380
Würfelierz ii. 162

Yellow earth iii. 187 oxidé silicifère ii. 108
gold-glance iii. 171 red ii. 380
Mineral-resin iii. 57 red oxide of ii. 380
orpiment iii. 47 siliceous oxide of ii. 108
tellurium iii. 171 sulphate of ii. 46
Yenite ii. 414 sulfaté ii. 46
Yttrio-cerite iii. 172 sulfuré iii. 32
Yttrio-columbite iii. 173 sulphuret of iii. 32
Yttrio-tantalite iii. 173 Zink-baryte ii. 108
prismatic ii. 108
Zeagonite iii. 174 rhombohedral ii. 111
Zeilanit ii. 295 Zinc-blende iii. 32
Zelkies ii. 457, 462 Zinc-ore ii. 380
Zoelite, axifragible ii. 244, 246 Zinerz, Kornisch ii. 384
diatomous ii. 234 Zinkvitriol ii. 46
di-prismatic ii. 234 Zinkglas ii. 108
dodecahedral ii. 224, 225 Zinkoxyd ii. 380
efflorescente ii. 234 Zinkspath ii. 111
foliated ii. 242 Zinnerz ii. 384
hemi-prismatic ii. 242 Zinnober iii. 44
hexahedral ii. 227 Zinnstein ii. 384
prismatic ii. 236 Zircon ii. 363
prismatoidal ii. 239, 242 Zirkon ii. 363
pyramidal ii. 229, 244 Zoisit ii. 282
pyramido-prismatic ii. 229 Zölestin ii. 126
radiated ii. 239 Zurlite iii. 176
rhomboidal ii. 232

THE END.
ERRATA.

VOL. II.

Page 76. line 7. for parallel with faces, read with parallel faces.

<table>
<thead>
<tr>
<th>Line</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>90. 20.</td>
<td>(\ddot{C}^2) (\dot{C}^2)</td>
</tr>
<tr>
<td>131. 8.</td>
<td>(\Pr + \infty. \dot{\Pr} + \infty) (\ddot{\Pr} + \infty. \ddot{\Pr} + \infty)</td>
</tr>
<tr>
<td>145. 10.</td>
<td>(\frac{+(P - 2)^4}{2}) (\frac{+(P - 2)^4}{2})</td>
</tr>
<tr>
<td>156. 5. from below (\frac{2N_9}{2}) (\frac{2N_9}{2})</td>
<td></td>
</tr>
<tr>
<td>208. 10.</td>
<td>(\ddot{P} + \infty) (\ddot{\Pr} + \infty)</td>
</tr>
<tr>
<td>244. 21.</td>
<td>(P + \infty (m)) ([P + \infty] (m))</td>
</tr>
<tr>
<td>315. 12.</td>
<td>154 153</td>
</tr>
<tr>
<td>367. 14.</td>
<td>forms formed.</td>
</tr>
<tr>
<td>377. 5.</td>
<td>67° 58' 73° 31'</td>
</tr>
<tr>
<td>379. 15.</td>
<td>126° 136°</td>
</tr>
</tbody>
</table>

VOL. III.

<table>
<thead>
<tr>
<th>Line</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>45. 27.</td>
<td>for rhombohedral (\text{read}) peritomous.</td>
</tr>
<tr>
<td>120. 7.</td>
<td>(\sqrt{8:3}) (\sqrt{8:38})</td>
</tr>
<tr>
<td>RETURN</td>
<td>CIRCULATION DEPARTMENT</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>LOAN PERIOD 1</td>
<td>2</td>
</tr>
<tr>
<td>HOME USE</td>
<td>4</td>
</tr>
</tbody>
</table>

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

RENEWALS AND RECHARGES MAY BE MADE 4 DAYS PRIOR TO DUE DATE.
LOAN PERIODS ARE 1-MONTH, 3-MONTHS, AND 1-YEAR.
RENEWALS: CALL (415) 642-3405

DUE AS STAMPED BELOW

| JAN 03 1991 |
| AUTO DISC OCT 20 90 |
| SENT ON ILL |
| OCT 29 2001 |
| U.C. BERKELEY |

UNIVERSITY OF CALIFORNIA, BERKELEY
FORM NO. DD6, 60m, 1/83 BERKELEY, CA 94720